File size: 11,426 Bytes
ca7299e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import torch
import numpy as np
from data import so3_utils
from data import utils as du
from scipy.spatial.transform import Rotation
from data import all_atom
import copy
from scipy.optimize import linear_sum_assignment
def _centered_gaussian(num_batch, num_res, device):
noise = torch.randn(num_batch, num_res, 3, device=device)
return noise - torch.mean(noise, dim=-2, keepdims=True)
def _uniform_so3(num_batch, num_res, device):
return torch.tensor(
Rotation.random(num_batch*num_res).as_matrix(),
device=device,
dtype=torch.float32,
).reshape(num_batch, num_res, 3, 3)
def _trans_diffuse_mask(trans_t, trans_1, diffuse_mask):
return trans_t * diffuse_mask[..., None] + trans_1 * (1 - diffuse_mask[..., None])
def _rots_diffuse_mask(rotmats_t, rotmats_1, diffuse_mask):
return (
rotmats_t * diffuse_mask[..., None, None]
+ rotmats_1 * (1 - diffuse_mask[..., None, None])
)
class Interpolant:
def __init__(self, cfg):
self._cfg = cfg
self._rots_cfg = cfg.rots
self._trans_cfg = cfg.trans
self._sample_cfg = cfg.sampling
self.add_noise = cfg.add_noise
self._igso3 = None
@property
def igso3(self):
if self._igso3 is None:
sigma_grid = torch.linspace(0.1, 1.5, 1000)
self._igso3 = so3_utils.SampleIGSO3(
1000, sigma_grid, cache_dir='.cache')
return self._igso3
def set_device(self, device):
self._device = device
def sample_t(self, num_batch):
# t: [min_t, 1-min_t]
t = torch.rand(num_batch, device=self._device)
return t * (1 - 2*self._cfg.min_t) + self._cfg.min_t
def _esmfold_gaussian(self, num_batch, num_res, device, trans_esmfold):
noise = torch.randn(num_batch, num_res, 3, device=device) # (B,L,3)
noise = self._trans_cfg.noise_scale * noise + trans_esmfold
return noise - torch.mean(noise, dim=-2, keepdims=True)
def _corrupt_trans(self, trans_1, t, res_mask, trans_esmfold):
# trans_nm_0 = _centered_gaussian(*res_mask.shape, self._device)
# trans_0 = trans_nm_0 * du.NM_TO_ANG_SCALE
if self.add_noise:
trans_0 = self._esmfold_gaussian(*res_mask.shape, self._device, trans_esmfold)
else:
trans_0 = trans_esmfold
trans_0 = self._batch_ot(trans_0, trans_1, res_mask)
trans_t = (1 - t[..., None]) * trans_0 + t[..., None] * trans_1
trans_t = _trans_diffuse_mask(trans_t, trans_1, res_mask)
return trans_t * res_mask[..., None]
def _batch_ot(self, trans_0, trans_1, res_mask):
num_batch, num_res = trans_0.shape[:2]
noise_idx, gt_idx = torch.where(
torch.ones(num_batch, num_batch))
batch_nm_0 = trans_0[noise_idx]
batch_nm_1 = trans_1[gt_idx]
batch_mask = res_mask[gt_idx]
aligned_nm_0, aligned_nm_1, _ = du.batch_align_structures(
batch_nm_0, batch_nm_1, mask=batch_mask
)
aligned_nm_0 = aligned_nm_0.reshape(num_batch, num_batch, num_res, 3)
aligned_nm_1 = aligned_nm_1.reshape(num_batch, num_batch, num_res, 3)
# Compute cost matrix of aligned noise to ground truth
batch_mask = batch_mask.reshape(num_batch, num_batch, num_res)
cost_matrix = torch.sum(
torch.linalg.norm(aligned_nm_0 - aligned_nm_1, dim=-1), dim=-1
) / torch.sum(batch_mask, dim=-1)
noise_perm, gt_perm = linear_sum_assignment(du.to_numpy(cost_matrix))
return aligned_nm_0[(tuple(gt_perm), tuple(noise_perm))]
# return aligned_nm_0
def _esmfold_igso3(self, res_mask, rotmats_esmfold):
num_batch, num_res = res_mask.shape
noisy_rotmats = self.igso3.sample(
torch.tensor([self._rots_cfg.noise_scale]),
num_batch*num_res
).to(self._device)
noisy_rotmats = noisy_rotmats.reshape(num_batch, num_res, 3, 3)
rotmats_0 = torch.einsum(
"...ij,...jk->...ik", rotmats_esmfold, noisy_rotmats)
return rotmats_0
def _corrupt_rotmats(self, rotmats_1, t, res_mask, rotmats_esmfold):
# num_batch, num_res = res_mask.shape
# noisy_rotmats = self.igso3.sample(
# torch.tensor([1.5]),
# num_batch*num_res
# ).to(self._device)
# noisy_rotmats = noisy_rotmats.reshape(num_batch, num_res, 3, 3)
# rotmats_0 = torch.einsum(
# "...ij,...jk->...ik", rotmats_1, noisy_rotmats)
if self.add_noise:
rotmats_0 = self._esmfold_igso3(res_mask, rotmats_esmfold)
else:
rotmats_0 = rotmats_esmfold
rotmats_t = so3_utils.geodesic_t(t[..., None], rotmats_1, rotmats_0)
identity = torch.eye(3, device=self._device)
rotmats_t = (
rotmats_t * res_mask[..., None, None]
+ identity[None, None] * (1 - res_mask[..., None, None])
)
return _rots_diffuse_mask(rotmats_t, rotmats_1, res_mask)
def corrupt_batch(self, batch):
noisy_batch = copy.deepcopy(batch)
# [B, N, 3]
trans_1 = batch['trans_1'] # Angstrom
# [B, N, 3, 3]
rotmats_1 = batch['rotmats_1']
# [B, N]
res_mask = batch['res_mask']
num_batch, _ = res_mask.shape
# [B, 1]
t = self.sample_t(num_batch)[:, None]
noisy_batch['t'] = t
# Apply corruptions
trans_t = self._corrupt_trans(trans_1, t, res_mask, batch['trans_esmfold'])
noisy_batch['trans_t'] = trans_t
rotmats_t = self._corrupt_rotmats(rotmats_1, t, res_mask, batch['rotmats_esmfold'])
noisy_batch['rotmats_t'] = rotmats_t
# noisy_batch['t'] = 0.5 * torch.ones_like(t)
# noisy_batch['trans_t'] = batch['trans_1']
# noisy_batch['rotmats_t'] = batch['rotmats_1']
return noisy_batch
def rot_sample_kappa(self, t):
if self._rots_cfg.sample_schedule == 'exp':
return 1 - torch.exp(-t*self._rots_cfg.exp_rate)
elif self._rots_cfg.sample_schedule == 'linear':
return t
else:
raise ValueError(
f'Invalid schedule: {self._rots_cfg.sample_schedule}')
def _trans_euler_step(self, d_t, t, trans_1, trans_t):
trans_vf = (trans_1 - trans_t) / (1 - t)
return trans_t + trans_vf * d_t
def _rots_euler_step(self, d_t, t, rotmats_1, rotmats_t):
if self._rots_cfg.sample_schedule == 'linear':
scaling = 1 / (1 - t)
elif self._rots_cfg.sample_schedule == 'exp':
scaling = self._rots_cfg.exp_rate
else:
raise ValueError(
f'Unknown sample schedule {self._rots_cfg.sample_schedule}')
return so3_utils.geodesic_t(
scaling * d_t, rotmats_1, rotmats_t)
def sample(
self,
batch,
model,
):
res_mask = batch['res_mask']
num_batch = batch['aatype'].shape[0]
num_res = batch['aatype'].shape[1]
aatype = batch['aatype']
motif_mask = batch.get('motif_mask',torch.ones(aatype.shape))
# Set-up initial prior samples
# trans_0 = _centered_gaussian(
# num_batch, num_res, self._device) * du.NM_TO_ANG_SCALE
# rotmats_0 = _uniform_so3(num_batch, num_res, self._device)
if self.add_noise:
trans_0 = self._esmfold_gaussian(*res_mask.shape, self._device, batch['trans_esmfold'])
rotmats_0 = self._esmfold_igso3(res_mask, batch['rotmats_esmfold'])
else:
trans_0 = batch['trans_esmfold']
rotmats_0 = batch['rotmats_esmfold']
if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)):
trans_0 = motif_mask[...,None]*trans_0+(1-motif_mask[...,None])*batch['trans_fix']
rotmats_0 = motif_mask[...,None,None]*rotmats_0+(1-motif_mask[...,None,None])*batch['rotmats_fix']
# Set-up time
ts = torch.linspace(
self._cfg.min_t, 1.0, self._sample_cfg.num_timesteps)
# ts = torch.linspace(np.exp(self._cfg.min_t), np.exp(1.0), self._sample_cfg.num_timesteps)
# ts = torch.log(ts)
t_1 = ts[0]
prot_traj = [(trans_0, rotmats_0)]
clean_traj = []
for t_2 in ts[1:]:
# Run model.
trans_t_1, rotmats_t_1 = prot_traj[-1]
batch['trans_t'] = trans_t_1
batch['rotmats_t'] = rotmats_t_1
t = torch.ones((num_batch, 1), device=self._device) * t_1
batch['t'] = t
with torch.no_grad():
model_out = model(batch)
# Process model output.
pred_trans_1 = model_out['pred_trans']
pred_rotmats_1 = model_out['pred_rotmats']
if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)):
pred_trans_1 = motif_mask[...,None]* pred_trans_1+(1-motif_mask[...,None])*batch['trans_fix']
pred_rotmats_1 = motif_mask[...,None,None]*pred_rotmats_1+(1-motif_mask[...,None,None])*batch['rotmats_fix']
clean_traj.append(
(pred_trans_1.detach(), pred_rotmats_1.detach())
)
if self._cfg.self_condition:
batch['trans_sc'] = pred_trans_1
# Take reverse step
d_t = t_2 - t_1
trans_t_2 = self._trans_euler_step(
d_t, t_1, pred_trans_1, trans_t_1)
rotmats_t_2 = self._rots_euler_step(
d_t, t_1, pred_rotmats_1, rotmats_t_1)
if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)):
trans_t_2 = motif_mask[...,None]* trans_t_2+(1-motif_mask[...,None])*batch['trans_fix']
rotmats_t_2 = motif_mask[...,None,None]*rotmats_t_2+(1-motif_mask[...,None,None])*batch['rotmats_fix']
prot_traj.append((trans_t_2, rotmats_t_2))
t_1 = t_2
# We only integrated to min_t, so need to make a final step
t_1 = ts[-1]
trans_t_1, rotmats_t_1 = prot_traj[-1]
batch['trans_t'] = trans_t_1
batch['rotmats_t'] = rotmats_t_1
batch['t'] = torch.ones((num_batch, 1), device=self._device) * t_1
with torch.no_grad():
model_out = model(batch)
pred_trans_1 = model_out['pred_trans']
pred_rotmats_1 = model_out['pred_rotmats']
if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)):
pred_trans_1 = motif_mask[...,None]* pred_trans_1+(1-motif_mask[...,None])*batch['trans_fix']
pred_rotmats_1 = motif_mask[...,None,None]*pred_rotmats_1+(1-motif_mask[...,None,None])*batch['rotmats_fix']
clean_traj.append(
(pred_trans_1.detach(), pred_rotmats_1.detach())
)
prot_traj.append((pred_trans_1, pred_rotmats_1))
# Convert trajectories to atom37.
atom37_traj = all_atom.transrot_to_atom37(prot_traj, res_mask, aatype=aatype, torsions_with_CB=model_out['pred_torsions_with_CB'])
clean_atom37_traj = all_atom.transrot_to_atom37(clean_traj, res_mask, aatype=aatype, torsions_with_CB=model_out['pred_torsions_with_CB'])
return atom37_traj, clean_atom37_traj, clean_traj
|