File size: 11,426 Bytes
ca7299e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
import numpy as np
from data import so3_utils
from data import utils as du
from scipy.spatial.transform import Rotation
from data import all_atom
import copy
from scipy.optimize import linear_sum_assignment


def _centered_gaussian(num_batch, num_res, device):
    noise = torch.randn(num_batch, num_res, 3, device=device)
    return noise - torch.mean(noise, dim=-2, keepdims=True)

def _uniform_so3(num_batch, num_res, device):
    return torch.tensor(
        Rotation.random(num_batch*num_res).as_matrix(),
        device=device,
        dtype=torch.float32,
    ).reshape(num_batch, num_res, 3, 3)

def _trans_diffuse_mask(trans_t, trans_1, diffuse_mask):
    return trans_t * diffuse_mask[..., None] + trans_1 * (1 - diffuse_mask[..., None])

def _rots_diffuse_mask(rotmats_t, rotmats_1, diffuse_mask):
    return (
        rotmats_t * diffuse_mask[..., None, None]
        + rotmats_1 * (1 - diffuse_mask[..., None, None])
    )


class Interpolant:

    def __init__(self, cfg):
        self._cfg = cfg
        self._rots_cfg = cfg.rots
        self._trans_cfg = cfg.trans
        self._sample_cfg = cfg.sampling
        self.add_noise = cfg.add_noise
        self._igso3 = None

    @property
    def igso3(self):
        if self._igso3 is None:
            sigma_grid = torch.linspace(0.1, 1.5, 1000)
            self._igso3 = so3_utils.SampleIGSO3(
                1000, sigma_grid, cache_dir='.cache')
        return self._igso3

    def set_device(self, device):
        self._device = device

    def sample_t(self, num_batch):
       # t: [min_t, 1-min_t]
       t = torch.rand(num_batch, device=self._device)
       return t * (1 - 2*self._cfg.min_t) + self._cfg.min_t

    def _esmfold_gaussian(self, num_batch, num_res, device, trans_esmfold):
        noise = torch.randn(num_batch, num_res, 3, device=device)  # (B,L,3)
        noise = self._trans_cfg.noise_scale * noise + trans_esmfold
        return noise - torch.mean(noise, dim=-2, keepdims=True)

    def _corrupt_trans(self, trans_1, t, res_mask, trans_esmfold):
        # trans_nm_0 = _centered_gaussian(*res_mask.shape, self._device)
        # trans_0 = trans_nm_0 * du.NM_TO_ANG_SCALE

        if self.add_noise:
            trans_0 = self._esmfold_gaussian(*res_mask.shape, self._device, trans_esmfold)
        else:
            trans_0 = trans_esmfold


        trans_0 = self._batch_ot(trans_0, trans_1, res_mask)
        trans_t = (1 - t[..., None]) * trans_0 + t[..., None] * trans_1
        trans_t = _trans_diffuse_mask(trans_t, trans_1, res_mask)
        return trans_t * res_mask[..., None]
    
    def _batch_ot(self, trans_0, trans_1, res_mask):
        num_batch, num_res = trans_0.shape[:2]
        noise_idx, gt_idx = torch.where(
            torch.ones(num_batch, num_batch))
        batch_nm_0 = trans_0[noise_idx]
        batch_nm_1 = trans_1[gt_idx]
        batch_mask = res_mask[gt_idx]
        aligned_nm_0, aligned_nm_1, _ = du.batch_align_structures(
            batch_nm_0, batch_nm_1, mask=batch_mask
        )

        aligned_nm_0 = aligned_nm_0.reshape(num_batch, num_batch, num_res, 3)
        aligned_nm_1 = aligned_nm_1.reshape(num_batch, num_batch, num_res, 3)
        
        # Compute cost matrix of aligned noise to ground truth
        batch_mask = batch_mask.reshape(num_batch, num_batch, num_res)
        cost_matrix = torch.sum(
            torch.linalg.norm(aligned_nm_0 - aligned_nm_1, dim=-1), dim=-1
        ) / torch.sum(batch_mask, dim=-1)
        noise_perm, gt_perm = linear_sum_assignment(du.to_numpy(cost_matrix))
        return aligned_nm_0[(tuple(gt_perm), tuple(noise_perm))]
        # return aligned_nm_0
    
    def _esmfold_igso3(self, res_mask, rotmats_esmfold):
        num_batch, num_res = res_mask.shape
        noisy_rotmats = self.igso3.sample(
            torch.tensor([self._rots_cfg.noise_scale]),
            num_batch*num_res
        ).to(self._device)
        noisy_rotmats = noisy_rotmats.reshape(num_batch, num_res, 3, 3)
        rotmats_0 = torch.einsum(
            "...ij,...jk->...ik", rotmats_esmfold, noisy_rotmats)
        return rotmats_0

    def _corrupt_rotmats(self, rotmats_1, t, res_mask, rotmats_esmfold):
        # num_batch, num_res = res_mask.shape
        # noisy_rotmats = self.igso3.sample(
        #     torch.tensor([1.5]),
        #     num_batch*num_res
        # ).to(self._device)
        # noisy_rotmats = noisy_rotmats.reshape(num_batch, num_res, 3, 3)
        # rotmats_0 = torch.einsum(
        #     "...ij,...jk->...ik", rotmats_1, noisy_rotmats)
        
        if self.add_noise:
            rotmats_0 = self._esmfold_igso3(res_mask, rotmats_esmfold)
        else:
            rotmats_0 = rotmats_esmfold


        rotmats_t = so3_utils.geodesic_t(t[..., None], rotmats_1, rotmats_0)
        identity = torch.eye(3, device=self._device)
        rotmats_t = (
            rotmats_t * res_mask[..., None, None]
            + identity[None, None] * (1 - res_mask[..., None, None])
        )
        return _rots_diffuse_mask(rotmats_t, rotmats_1, res_mask)
    
    def corrupt_batch(self, batch):
        noisy_batch = copy.deepcopy(batch)

        # [B, N, 3]
        trans_1 = batch['trans_1']  # Angstrom

        # [B, N, 3, 3]
        rotmats_1 = batch['rotmats_1']

        # [B, N]
        res_mask = batch['res_mask']
        num_batch, _ = res_mask.shape

        # [B, 1]
        t = self.sample_t(num_batch)[:, None]
        noisy_batch['t'] = t

        # Apply corruptions
        trans_t = self._corrupt_trans(trans_1, t, res_mask, batch['trans_esmfold'])

        noisy_batch['trans_t'] = trans_t

        rotmats_t = self._corrupt_rotmats(rotmats_1, t, res_mask, batch['rotmats_esmfold'])

        noisy_batch['rotmats_t'] = rotmats_t


        # noisy_batch['t'] = 0.5 * torch.ones_like(t)
        # noisy_batch['trans_t'] = batch['trans_1']
        # noisy_batch['rotmats_t'] = batch['rotmats_1']


        return noisy_batch
    
    def rot_sample_kappa(self, t):
        if self._rots_cfg.sample_schedule == 'exp':
            return 1 - torch.exp(-t*self._rots_cfg.exp_rate)
        elif self._rots_cfg.sample_schedule == 'linear':
            return t
        else:
            raise ValueError(
                f'Invalid schedule: {self._rots_cfg.sample_schedule}')

    def _trans_euler_step(self, d_t, t, trans_1, trans_t):
        trans_vf = (trans_1 - trans_t) / (1 - t)
        return trans_t + trans_vf * d_t

    def _rots_euler_step(self, d_t, t, rotmats_1, rotmats_t):
        if self._rots_cfg.sample_schedule == 'linear':
            scaling = 1 / (1 - t)
        elif self._rots_cfg.sample_schedule == 'exp':
            scaling = self._rots_cfg.exp_rate
        else:
            raise ValueError(
                f'Unknown sample schedule {self._rots_cfg.sample_schedule}')
        return so3_utils.geodesic_t(
            scaling * d_t, rotmats_1, rotmats_t)

    def sample(
            self,
            batch,
            model,
        ):
        res_mask = batch['res_mask']
        num_batch = batch['aatype'].shape[0]
        num_res = batch['aatype'].shape[1]
        aatype = batch['aatype']
        motif_mask = batch.get('motif_mask',torch.ones(aatype.shape))


        # Set-up initial prior samples

        # trans_0 = _centered_gaussian(
        #     num_batch, num_res, self._device) * du.NM_TO_ANG_SCALE
        # rotmats_0 = _uniform_so3(num_batch, num_res, self._device)


        if self.add_noise:
            trans_0 = self._esmfold_gaussian(*res_mask.shape, self._device, batch['trans_esmfold'])
            rotmats_0 = self._esmfold_igso3(res_mask, batch['rotmats_esmfold'])
        else:
            trans_0 = batch['trans_esmfold']
            rotmats_0 = batch['rotmats_esmfold']

        
        if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)):
            trans_0 = motif_mask[...,None]*trans_0+(1-motif_mask[...,None])*batch['trans_fix']
            rotmats_0 = motif_mask[...,None,None]*rotmats_0+(1-motif_mask[...,None,None])*batch['rotmats_fix']


        # Set-up time
            
        ts = torch.linspace(
            self._cfg.min_t, 1.0, self._sample_cfg.num_timesteps)
        
        # ts = torch.linspace(np.exp(self._cfg.min_t), np.exp(1.0), self._sample_cfg.num_timesteps)
        # ts = torch.log(ts)



        t_1 = ts[0]

        prot_traj = [(trans_0, rotmats_0)]
        clean_traj = []
        for t_2 in ts[1:]:

            # Run model.
            trans_t_1, rotmats_t_1 = prot_traj[-1]
            batch['trans_t'] = trans_t_1
            batch['rotmats_t'] = rotmats_t_1
            t = torch.ones((num_batch, 1), device=self._device) * t_1
            batch['t'] = t
            with torch.no_grad():
                model_out = model(batch)

            # Process model output.


            pred_trans_1 = model_out['pred_trans']
            pred_rotmats_1 = model_out['pred_rotmats']
            if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)):
                pred_trans_1 = motif_mask[...,None]* pred_trans_1+(1-motif_mask[...,None])*batch['trans_fix']
                pred_rotmats_1 = motif_mask[...,None,None]*pred_rotmats_1+(1-motif_mask[...,None,None])*batch['rotmats_fix']


            clean_traj.append(
                (pred_trans_1.detach(), pred_rotmats_1.detach())
            )
            if self._cfg.self_condition:
                batch['trans_sc'] = pred_trans_1

            # Take reverse step
            d_t = t_2 - t_1


            trans_t_2 = self._trans_euler_step(
                d_t, t_1, pred_trans_1, trans_t_1)
            rotmats_t_2 = self._rots_euler_step(
                d_t, t_1, pred_rotmats_1, rotmats_t_1)
            if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)):
                trans_t_2 = motif_mask[...,None]* trans_t_2+(1-motif_mask[...,None])*batch['trans_fix']
                rotmats_t_2 = motif_mask[...,None,None]*rotmats_t_2+(1-motif_mask[...,None,None])*batch['rotmats_fix']



            prot_traj.append((trans_t_2, rotmats_t_2))
            t_1 = t_2

        # We only integrated to min_t, so need to make a final step
        t_1 = ts[-1]
        trans_t_1, rotmats_t_1 = prot_traj[-1]
        batch['trans_t'] = trans_t_1
        batch['rotmats_t'] = rotmats_t_1
        batch['t'] = torch.ones((num_batch, 1), device=self._device) * t_1
        with torch.no_grad():
            model_out = model(batch)


        pred_trans_1 = model_out['pred_trans']
        pred_rotmats_1 = model_out['pred_rotmats']
        if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)):
            pred_trans_1 = motif_mask[...,None]* pred_trans_1+(1-motif_mask[...,None])*batch['trans_fix']
            pred_rotmats_1 = motif_mask[...,None,None]*pred_rotmats_1+(1-motif_mask[...,None,None])*batch['rotmats_fix']


        clean_traj.append(
            (pred_trans_1.detach(), pred_rotmats_1.detach())
        )
        prot_traj.append((pred_trans_1, pred_rotmats_1))

        # Convert trajectories to atom37.
        atom37_traj = all_atom.transrot_to_atom37(prot_traj, res_mask, aatype=aatype, torsions_with_CB=model_out['pred_torsions_with_CB'])
        clean_atom37_traj = all_atom.transrot_to_atom37(clean_traj, res_mask, aatype=aatype, torsions_with_CB=model_out['pred_torsions_with_CB'])

        return atom37_traj, clean_atom37_traj, clean_traj