P2DFlow / data /so3_utils.py
Holmes
test
ca7299e
import logging
import os
from typing import Callable, Dict, Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
logger = logging.getLogger(__name__)
def scale_rotmat(
rotation_matrix: torch.Tensor, scalar: torch.Tensor, tol: float = 1e-7
) -> torch.Tensor:
"""
Scale rotation matrix. This is done by converting it to vector representation,
scaling the length of the vector and converting back to matrix representation.
Args:
rotation_matrix: Rotation matrices.
scalar: Scalar values used for scaling. Should have one fewer dimension than the
rotation matrices for correct broadcasting.
tol: Numerical offset for stability.
Returns:
Scaled rotation matrix.
"""
# Check whether dimensions match.
assert rotation_matrix.ndim - 1 == scalar.ndim
scaled_rmat = rotvec_to_rotmat(rotmat_to_rotvec(rotation_matrix) * scalar, tol=tol)
return scaled_rmat
def _broadcast_identity(target: torch.Tensor) -> torch.Tensor:
"""
Generate a 3 by 3 identity matrix and broadcast it to a batch of target matrices.
Args:
target (torch.Tensor): Batch of target 3 by 3 matrices.
Returns:
torch.Tensor: 3 by 3 identity matrices in the shapes of the target.
"""
id3 = torch.eye(3, device=target.device, dtype=target.dtype)
id3 = torch.broadcast_to(id3, target.shape)
return id3
def skew_matrix_exponential_map_axis_angle(
angles: torch.Tensor, skew_matrices: torch.Tensor
) -> torch.Tensor:
"""
Compute the matrix exponential of a rotation in axis-angle representation with the axis in skew
matrix representation form. Maps the rotation from the lie group to the rotation matrix
representation. Uses Rodrigues' formula instead of `torch.linalg.matrix_exp` for better
computational performance:
.. math::
\exp(\theta \mathbf{K}) = \mathbf{I} + \sin(\theta) \mathbf{K} + [1 - \cos(\theta)] \mathbf{K}^2
Args:
angles (torch.Tensor): Batch of rotation angles.
skew_matrices (torch.Tensor): Batch of rotation axes in skew matrix (lie so(3)) basis.
Returns:
torch.Tensor: Batch of corresponding rotation matrices.
"""
# Set up identity matrix and broadcast.
id3 = _broadcast_identity(skew_matrices)
# Broadcast angle vector to right dimensions
angles = angles[..., None, None]
exp_skew = (
id3
+ torch.sin(angles) * skew_matrices
+ (1.0 - torch.cos(angles))
* torch.einsum("b...ik,b...kj->b...ij", skew_matrices, skew_matrices)
)
return exp_skew
def skew_matrix_exponential_map(
angles: torch.Tensor, skew_matrices: torch.Tensor, tol=1e-7
) -> torch.Tensor:
"""
Compute the matrix exponential of a rotation vector in skew matrix representation. Maps the
rotation from the lie group to the rotation matrix representation. Uses the following form of
Rodrigues' formula instead of `torch.linalg.matrix_exp` for better computational performance
(in this case the skew matrix already contains the angle factor):
.. math ::
\exp(\mathbf{K}) = \mathbf{I} + \frac{\sin(\theta)}{\theta} \mathbf{K} + \frac{1-\cos(\theta)}{\theta^2} \mathbf{K}^2
This form has the advantage, that Taylor expansions can be used for small angles (instead of
having to compute the unit length axis by dividing the rotation vector by small angles):
.. math ::
\frac{\sin(\theta)}{\theta} \approx 1 - \frac{\theta^2}{6}
\frac{1-\cos(\theta)}{\theta^2} \approx \frac{1}{2} - \frac{\theta^2}{24}
Args:
angles (torch.Tensor): Batch of rotation angles.
skew_matrices (torch.Tensor): Batch of rotation axes in skew matrix (lie so(3)) basis.
Returns:
torch.Tensor: Batch of corresponding rotation matrices.
"""
# Set up identity matrix and broadcast.
id3 = _broadcast_identity(skew_matrices)
# Broadcast angles and pre-compute square.
angles = angles[..., None, None]
angles_sq = angles.square()
# Get standard terms.
sin_coeff = torch.sin(angles) / angles
cos_coeff = (1.0 - torch.cos(angles)) / angles_sq
# Use second order Taylor expansion for values close to zero.
sin_coeff_small = 1.0 - angles_sq / 6.0
cos_coeff_small = 0.5 - angles_sq / 24.0
mask_zero = torch.abs(angles) < tol
sin_coeff = torch.where(mask_zero, sin_coeff_small, sin_coeff)
cos_coeff = torch.where(mask_zero, cos_coeff_small, cos_coeff)
# Compute matrix exponential using Rodrigues' formula.
exp_skew = (
id3
+ sin_coeff * skew_matrices
+ cos_coeff * torch.einsum("b...ik,b...kj->b...ij", skew_matrices, skew_matrices)
)
return exp_skew
def rotvec_to_rotmat(rotation_vectors: torch.Tensor, tol: float = 1e-7) -> torch.Tensor:
"""
Convert rotation vectors to rotation matrix representation. The length of the rotation vector
is the angle of rotation, the unit vector the rotation axis.
Args:
rotation_vectors (torch.Tensor): Batch of rotation vectors.
tol: small offset for numerical stability.
Returns:
torch.Tensor: Rotation in rotation matrix representation.
"""
# Compute rotation angle as vector norm.
rotation_angles = torch.norm(rotation_vectors, dim=-1)
# Map axis to skew matrix basis.
skew_matrices = vector_to_skew_matrix(rotation_vectors)
# Compute rotation matrices via matrix exponential.
rotation_matrices = skew_matrix_exponential_map(rotation_angles, skew_matrices, tol=tol)
return rotation_matrices
def rotmat_to_rotvec(rotation_matrices: torch.Tensor) -> torch.Tensor:
"""
Convert a batch of rotation matrices to rotation vectors (logarithmic map from SO(3) to so(3)).
The standard logarithmic map can be derived from Rodrigues' formula via Taylor approximation
(in this case operating on the vector coefficients of the skew so(3) basis).
..math ::
\left[\log(\mathbf{R})\right]^\lor = \frac{\theta}{2\sin(\theta)} \left[\mathbf{R} - \mathbf{R}^\top\right]^\lor
This formula has problems at 1) angles theta close or equal to zero and 2) at angles close and
equal to pi.
To improve numerical stability for case 1), the angle term at small or zero angles is
approximated by its truncated Taylor expansion:
.. math ::
\left[\log(\mathbf{R})\right]^\lor \approx \frac{1}{2} (1 + \frac{\theta^2}{6}) \left[\mathbf{R} - \mathbf{R}^\top\right]^\lor
For angles close or equal to pi (case 2), the outer product relation can be used to obtain the
squared rotation vector:
.. math :: \omega \otimes \omega = \frac{1}{2}(\mathbf{I} + R)
Taking the root of the diagonal elements recovers the normalized rotation vector up to the signs
of the component. The latter can be obtained from the off-diagonal elements.
Adapted from https://github.com/jasonkyuyim/se3_diffusion/blob/2cba9e09fdc58112126a0441493b42022c62bbea/data/so3_utils.py
which was adapted from https://github.com/geomstats/geomstats/blob/master/geomstats/geometry/special_orthogonal.py
with heavy help from https://cvg.cit.tum.de/_media/members/demmeln/nurlanov2021so3log.pdf
Args:
rotation_matrices (torch.Tensor): Input batch of rotation matrices.
Returns:
torch.Tensor: Batch of rotation vectors.
"""
# Get angles and sin/cos from rotation matrix.
angles, angles_sin, _ = angle_from_rotmat(rotation_matrices)
# Compute skew matrix representation and extract so(3) vector components.
vector = skew_matrix_to_vector(rotation_matrices - rotation_matrices.transpose(-2, -1))
# Three main cases for angle theta, which are captured
# 1) Angle is 0 or close to zero -> use Taylor series for small values / return 0 vector.
mask_zero = torch.isclose(angles, torch.zeros_like(angles)).to(angles.dtype)
# 2) Angle is close to pi -> use outer product relation.
mask_pi = torch.isclose(angles, torch.full_like(angles, np.pi), atol=1e-2).to(angles.dtype)
# 3) Angle is unproblematic -> use the standard formula.
mask_else = (1 - mask_zero) * (1 - mask_pi)
# Compute case dependent pre-factor (1/2 for angle close to 0, angle otherwise).
numerator = mask_zero / 2.0 + angles * mask_else
# The Taylor expansion used here is actually the inverse of the Taylor expansion of the inverted
# fraction sin(x) / x which gives better accuracy over a wider range (hence the minus and
# position in denominator).
denominator = (
(1.0 - angles**2 / 6.0) * mask_zero # Taylor expansion for small angles.
+ 2.0 * angles_sin * mask_else # Standard formula.
+ mask_pi # Avoid zero division at angle == pi.
)
prefactor = numerator / denominator
vector = vector * prefactor[..., None]
# For angles close to pi, derive vectors from their outer product (ww' = 1 + R).
id3 = _broadcast_identity(rotation_matrices)
skew_outer = (id3 + rotation_matrices) / 2.0
# Ensure diagonal is >= 0 for square root (uses identity for masking).
skew_outer = skew_outer + (torch.relu(skew_outer) - skew_outer) * id3
# Get basic rotation vector as sqrt of diagonal (is unit vector).
vector_pi = torch.sqrt(torch.diagonal(skew_outer, dim1=-2, dim2=-1))
# Compute the signs of vector elements (up to a global phase).
# Fist select indices for outer product slices with the largest norm.
signs_line_idx = torch.argmax(torch.norm(skew_outer, dim=-1), dim=-1).long()
# Select rows of outer product and determine signs.
signs_line = torch.take_along_dim(skew_outer, dim=-2, indices=signs_line_idx[..., None, None])
signs_line = signs_line.squeeze(-2)
signs = torch.sign(signs_line)
# Apply signs and rotation vector.
vector_pi = vector_pi * angles[..., None] * signs
# Fill entries for angle == pi in rotation vector (basic vector has zero entries at this point).
vector = vector + vector_pi * mask_pi[..., None]
return vector
def angle_from_rotmat(
rotation_matrices: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Compute rotation angles (as well as their sines and cosines) encoded by rotation matrices.
Uses atan2 for better numerical stability for small angles.
Args:
rotation_matrices (torch.Tensor): Batch of rotation matrices.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Batch of computed angles, sines of the
angles and cosines of angles.
"""
# Compute sine of angles (uses the relation that the unnormalized skew vector generated by a
# rotation matrix has the length 2*sin(theta))
skew_matrices = rotation_matrices - rotation_matrices.transpose(-2, -1)
skew_vectors = skew_matrix_to_vector(skew_matrices)
angles_sin = torch.norm(skew_vectors, dim=-1) / 2.0
# Compute the cosine of the angle using the relation cos theta = 1/2 * (Tr[R] - 1)
angles_cos = (torch.einsum("...ii", rotation_matrices) - 1.0) / 2.0
# Compute angles using the more stable atan2
angles = torch.atan2(angles_sin, angles_cos)
return angles, angles_sin, angles_cos
def vector_to_skew_matrix(vectors: torch.Tensor) -> torch.Tensor:
"""
Map a vector into the corresponding skew matrix so(3) basis.
```
[ 0 -z y]
[x,y,z] -> [ z 0 -x]
[ -y x 0]
```
Args:
vectors (torch.Tensor): Batch of vectors to be mapped to skew matrices.
Returns:
torch.Tensor: Vectors in skew matrix representation.
"""
# Generate empty skew matrices.
skew_matrices = torch.zeros((*vectors.shape, 3), device=vectors.device, dtype=vectors.dtype)
# Populate positive values.
skew_matrices[..., 2, 1] = vectors[..., 0]
skew_matrices[..., 0, 2] = vectors[..., 1]
skew_matrices[..., 1, 0] = vectors[..., 2]
# Generate skew symmetry.
skew_matrices = skew_matrices - skew_matrices.transpose(-2, -1)
return skew_matrices
def skew_matrix_to_vector(skew_matrices: torch.Tensor) -> torch.Tensor:
"""
Extract a rotation vector from the so(3) skew matrix basis.
Args:
skew_matrices (torch.Tensor): Skew matrices.
Returns:
torch.Tensor: Rotation vectors corresponding to skew matrices.
"""
vectors = torch.zeros_like(skew_matrices[..., 0])
vectors[..., 0] = skew_matrices[..., 2, 1]
vectors[..., 1] = skew_matrices[..., 0, 2]
vectors[..., 2] = skew_matrices[..., 1, 0]
return vectors
def _rotquat_to_axis_angle(
rotation_quaternions: torch.Tensor, tol: float = 1e-7
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Auxiliary routine for computing rotation angle and rotation axis from unit quaternions. To avoid
complications, rotations vectors with angles below `tol` are set to zero.
Args:
rotation_quaternions (torch.Tensor): Rotation quaternions in [r, i, j, k] format.
tol (float, optional): Threshold for small rotations. Defaults to 1e-7.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Rotation angles and axes.
"""
# Compute rotation axis and normalize (accounting for small length axes).
rotation_axes = rotation_quaternions[..., 1:]
rotation_axes_norms = torch.norm(rotation_axes, dim=-1)
# Compute rotation angle via atan2
rotation_angles = 2.0 * torch.atan2(rotation_axes_norms, rotation_quaternions[..., 0])
# Save division.
rotation_axes = rotation_axes / (rotation_axes_norms[:, None] + tol)
return rotation_angles, rotation_axes
def rotquat_to_rotvec(rotation_quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert unit quaternions to rotation vectors.
Args:
rotation_quaternions (torch.Tensor): Input quaternions in [r,i,j,k] format.
Returns:
torch.Tensor: Rotation vectors.
"""
rotation_angles, rotation_axes = _rotquat_to_axis_angle(rotation_quaternions)
rotation_vectors = rotation_axes * rotation_angles[..., None]
return rotation_vectors
def rotquat_to_rotmat(rotation_quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert unit quaternion to rotation matrix.
Args:
rotation_quaternions (torch.Tensor): Input quaternions in [r,i,j,k] format.
Returns:
torch.Tensor: Rotation matrices.
"""
rotation_angles, rotation_axes = _rotquat_to_axis_angle(rotation_quaternions)
skew_matrices = vector_to_skew_matrix(rotation_axes * rotation_angles[..., None])
rotation_matrices = skew_matrix_exponential_map(rotation_angles, skew_matrices)
return rotation_matrices
def apply_rotvec_to_rotmat(
rotation_matrices: torch.Tensor,
rotation_vectors: torch.Tensor,
tol: float = 1e-7,
) -> torch.Tensor:
"""
Update a rotation encoded in a rotation matrix with a rotation vector.
Args:
rotation_matrices: Input batch of rotation matrices.
rotation_vectors: Input batch of rotation vectors.
tol: Small offset for numerical stability.
Returns:
Updated rotation matrices.
"""
# Convert vector to matrices.
rmat_right = rotvec_to_rotmat(rotation_vectors, tol=tol)
# Accumulate rotation.
rmat_rotated = torch.einsum("...ij,...jk->...ik", rotation_matrices, rmat_right)
return rmat_rotated
def rotmat_to_skew_matrix(mat: torch.Tensor) -> torch.Tensor:
"""
Generates skew matrix for corresponding rotation matrix.
Args:
mat (torch.Tensor): Batch of rotation matrices.
Returns:
torch.Tensor: Skew matrices in the shapes of mat.
"""
vec = rotmat_to_rotvec(mat)
return vector_to_skew_matrix(vec)
def skew_matrix_to_rotmat(skew: torch.Tensor) -> torch.Tensor:
"""
Generates rotation matrix for corresponding skew matrix.
Args:
skew (torch.Tensor): Batch of target 3 by 3 skew symmetric matrices.
Returns:
torch.Tensor: Rotation matrices in the shapes of skew.
"""
vec = skew_matrix_to_vector(skew)
return rotvec_to_rotmat(vec)
def local_log(point: torch.Tensor, base_point: torch.Tensor) -> torch.Tensor:
"""
Matrix logarithm. Computes left-invariant vector field of beinging base_point to point
on the manifold. Follows the signature of geomstats' equivalent function.
https://geomstats.github.io/api/geometry.html#geomstats.geometry.lie_group.MatrixLieGroup.log
Args:
point (torch.Tensor): Batch of rotation matrices to compute vector field at.
base_point (torch.Tensor): Transport coordinates to take matrix logarithm.
Returns:
torch.Tensor: Skew matrix that holds the vector field (in the tangent space).
"""
return rotmat_to_skew_matrix(rot_mult(rot_transpose(base_point), point))
def multidim_trace(mat: torch.Tensor) -> torch.Tensor:
"""Take the trace of a matrix with leading dimensions."""
return torch.einsum("...ii->...", mat)
def geodesic_dist(mat_1: torch.Tensor, mat_2: torch.Tensor) -> torch.Tensor:
"""
Calculate the geodesic distance of two rotation matrices.
Args:
mat_1 (torch.Tensor): First rotation matrix.
mat_2 (torch.Tensor): Second rotation matrix.
Returns:
Scalar for the geodesic distance between mat_1 and mat_2 with the same
leading (i.e. batch) dimensions.
"""
A = rotmat_to_skew_matrix(rot_mult(rot_transpose(mat_1), mat_2))
return torch.sqrt(multidim_trace(rot_mult(A, rot_transpose(A))))
def rot_transpose(mat: torch.Tensor) -> torch.Tensor:
"""Take the transpose of the last two dimensions."""
return torch.transpose(mat, -1, -2)
def rot_mult(mat_1: torch.Tensor, mat_2: torch.Tensor) -> torch.Tensor:
"""Matrix multiply two rotation matrices with leading dimensions."""
return torch.einsum("...ij,...jk->...ik", mat_1, mat_2)
def calc_rot_vf(mat_t: torch.Tensor, mat_1: torch.Tensor) -> torch.Tensor:
"""
Computes the vector field Log_{mat_t}(mat_1).
Args:
mat_t (torch.Tensor): base point to compute vector field at.
mat_1 (torch.Tensor): target rotation.
Returns:
Rotation vector representing the vector field.
"""
return rotmat_to_rotvec(rot_mult(rot_transpose(mat_t), mat_1))
def geodesic_t(t: float, mat: torch.Tensor, base_mat: torch.Tensor, rot_vf=None) -> torch.Tensor:
"""
Computes the geodesic at time t. Specifically, R_t = Exp_{base_mat}(t * Log_{base_mat}(mat)).
Args:
t: time along geodesic.
mat: target points on manifold.
base_mat: source point on manifold.
Returns:
Point along geodesic starting at base_mat and ending at mat.
"""
if rot_vf is None:
rot_vf = calc_rot_vf(base_mat, mat)
mat_t = rotvec_to_rotmat(t * rot_vf)
if base_mat.shape != mat_t.shape:
raise ValueError(
f'Incompatible shapes: base_mat={base_mat.shape}, mat_t={mat_t.shape}')
return torch.einsum("...ij,...jk->...ik", base_mat, mat_t)
class SO3LookupCache:
def __init__(
self,
cache_dir: str,
cache_file: str,
overwrite: bool = False,
) -> None:
"""
Auxiliary class for handling storage / loading of SO(3) lookup tables in npz format.
Args:
cache_dir: Path to the cache directory.
cache_file: Basic file name of the cache file.
overwrite: Whether existing cache files should be overwritten if requested.
"""
if not cache_file.endswith(".npz"):
raise ValueError("Filename should have '.npz' extension.")
self.cache_file = cache_file
self.cache_dir = cache_dir
self.cache_path = os.path.join(cache_dir, cache_file)
self.overwrite = overwrite
@property
def path_exists(self) -> bool:
return os.path.exists(self.cache_path)
@property
def dir_exists(self) -> bool:
return os.path.exists(self.cache_dir)
def delete_cache(self) -> None:
"""
Delete the cache file.
"""
if self.path_exists:
os.remove(self.cache_path)
def load_cache(self) -> Dict[str, torch.Tensor]:
"""
Load data from the cache file.
Returns:
Dictionary of loaded data tensors.
"""
if self.path_exists:
# Load data and convert to torch tensors.
npz_data = np.load(self.cache_path)
torch_dict = {f: torch.from_numpy(npz_data[f]) for f in npz_data.files}
logger.info(f"Data loaded from {self.cache_path}")
return torch_dict
else:
raise ValueError(f"No cache data found at {self.cache_path}.")
def save_cache(self, data: Dict[str, torch.Tensor]) -> None:
"""
Save a dictionary of tensors to the cache file. If overwrite is set to True, an existing
file is overwritten, otherwise a warning is raised and the file is not modified.
Args:
data: Dictionary of tensors that should be saved to the cache.
"""
if not self.dir_exists:
os.makedirs(self.cache_dir)
if self.path_exists:
if self.overwrite:
logger.info("Overwriting cache ...")
self.delete_cache()
else:
logger.warn(
f"Cache at {self.cache_path} exits and overwriting disabled. Doing nothing."
)
else:
# Move everything to CPU and numpy and store.
logger.info(f"Data saved to {self.cache_path}")
numpy_dict = {k: v.detach().cpu().numpy() for k, v in data.items()}
np.savez(self.cache_path, **numpy_dict)
class BaseSampleSO3(nn.Module):
so3_type: str = "base" # cache basename
def __init__(
self,
num_omega: int,
sigma_grid: torch.Tensor,
omega_exponent: int = 3,
tol: float = 1e-7,
interpolate: bool = True,
cache_dir: Optional[str] = None,
overwrite_cache: bool = False,
device: str = 'cpu',
) -> None:
"""
Base torch.nn module for sampling rotations from the IGSO(3) distribution. Samples are
created by uniformly sampling a rotation axis and using inverse transform sampling for
the angles. The latter uses the associated SO(3) cumulative probability distribution
function (CDF) and a uniform distribution [0,1] as described in [#leach2022_1]_. CDF values
are obtained by numerically integrating the probability distribution evaluated on a grid of
angles and noise levels and stored in a lookup table. Linear interpolation is used to
approximate continuos sampling of the function. Angles are discretized in an interval [0,pi]
and the grid can be squashed to have higher resolutions at low angles by taking different
powers. Since sampling relies on tabulated values of the CDF and indexing in the form of
`torch.bucketize`, gradients are not supported.
Args:
num_omega (int): Number of discrete angles used for generating the lookup table.
sigma_grid (torch.Tensor): Grid of IGSO3 std devs.
omega_exponent (int, optional): Make the angle grid denser for smaller angles by taking
its power with the provided number. Defaults to 3.
tol (float, optional): Small value for numerical stability. Defaults to 1e-7.
interpolate (bool, optional): If enables, perform linear interpolation of the angle CDF
to sample angles. Otherwise the closest tabulated point is returned. Defaults to True.
cache_dir: Path to an optional cache directory. If set to None, lookup tables are
computed on the fly.
overwrite_cache: If set to true, existing cache files are overwritten. Can be used for
updating stale caches.
References
----------
.. [#leach2022_1] Leach, Schmon, Degiacomi, Willcocks:
Denoising diffusion probabilistic models on so (3) for rotational alignment.
ICLR 2022 Workshop on Geometrical and Topological Representation Learning. 2022.
"""
super().__init__()
self.num_omega = num_omega
self.omega_exponent = omega_exponent
self.tol = tol
self.interpolate = interpolate
self.device = device
self.register_buffer("sigma_grid", sigma_grid, persistent=False)
# Generate / load lookups and store in non-persistent buffers.
omega_grid, cdf_igso3 = self._setup_lookup(sigma_grid, cache_dir, overwrite_cache)
self.register_buffer("omega_grid", omega_grid, persistent=False)
self.register_buffer("cdf_igso3", cdf_igso3, persistent=False)
def _setup_lookup(
self,
sigma_grid: torch.Tensor,
cache_dir: Optional[str] = None,
overwrite_cache: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Master function for setting up the lookup tables. These can either be loaded from a npz
cache file or computed on the fly. Lookup tables will always be created and stored in double
precision. Casting to the target dtype is done at the end of the function.
Args:
sigma_grid: Grid of sigma values used for computing the lookup tables.
cache_dir: Path to the cache directory.
overwrite_cache: If set to true, an existing cache is overwritten. Can be used for
updating stale caches.
Returns:
Grid of angle values and SO(3) cumulative distribution function.
"""
if cache_dir is not None:
cache_name = self._get_cache_name()
cache = SO3LookupCache(cache_dir, cache_name, overwrite=True)
# If cache dir is provided, check whether the necessary cache exists and whether it
# should be overwritten.
if cache.path_exists and not overwrite_cache:
# Load data from cache.
cache_data = cache.load_cache()
omega_grid = cache_data["omega_grid"]
cdf_igso3 = cache_data["cdf_igso3"]
else:
# Store data in cache (overwrite if requested).
omega_grid, cdf_igso3 = self._generate_lookup(sigma_grid)
cache.save_cache({"omega_grid": omega_grid, "cdf_igso3": cdf_igso3})
else:
# Other wise just generate the tables.
omega_grid, cdf_igso3 = self._generate_lookup(sigma_grid)
return omega_grid.to(sigma_grid.dtype), cdf_igso3.to(sigma_grid.dtype)
def _get_cache_name(self) -> str:
"""
Auxiliary function for determining the cache file name based on the parameters (sigma,
omega, l, etc.) used for generating the lookup tables.
Returns:
Base name of the cache file.
"""
cache_name = "cache_{:s}_s{:04.3f}-{:04.3f}-{:d}_o{:d}-{:d}.npz".format(
self.so3_type,
torch.min(self.sigma_grid).cpu().item(),
torch.max(self.sigma_grid).cpu().item(),
self.sigma_grid.shape[0],
self.num_omega,
self.omega_exponent,
)
return cache_name
def get_sigma_idx(self, sigma: torch.Tensor) -> torch.Tensor:
"""
Convert continuous sigmas to the indices of the closest tabulated values.
Args:
sigma (torch.Tensor): IGSO3 std devs.
Returns:
torch.Tensor: Index tensor mapping the provided sigma values to the internal lookup
table.
"""
return torch.bucketize(sigma, self.sigma_grid)
def expansion_function(
self, omega_grid: torch.Tensor, sigma_grid: torch.Tensor
) -> torch.Tensor:
"""
Function for generating the angle probability distribution. Should return a 2D tensor with
values for the std dev at the first dimension (rows) and angles at the second
(columns).
Args:
omega_grid (torch.Tensor): Grid of angle values.
sigma_grid (torch.Tensor): IGSO3 std devs.
Returns:
torch.Tensor: Distribution for angles discretized on a 2D grid.
"""
raise NotImplementedError
@torch.no_grad()
def _generate_lookup(self, sigma_grid: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Generate the lookup table for sampling from the target SO(3) CDF. The table is 2D, with the
rows corresponding to different sigma values and the columns with angles computed on a grid.
Variance is scaled by a factor of 1/2 to account for the deacceleration of time in the
diffusion process due to the choice of SO(3) basis and guarantee time-reversibility (see
appendix E.3 in [#yim2023_2]_). The returned tables are double precision and will be cast
to the target dtype in `_setup_lookup`.
Args:
sigma_grid (torch.Tensor): Grid of IGSO3 std devs.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple containing the grid used to compute the angles
and the associated lookup table.
References
----------
.. [#yim2023_2] Yim, Trippe, De Bortoli, Mathieu, Doucet, Barzilay, Jaakkola:
SE(3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277. 2023.
"""
current_device = sigma_grid.device
sigma_grid_tmp = sigma_grid.to(torch.float64)
# If cuda is available, initialize everything on GPU.
# Even if Pytorch Lightning usually handles GPU allocation after initialization, this is
# required to initialize the module in GPU reducing the initializaiton time by orders of magnitude.
if torch.cuda.is_available():
sigma_grid_tmp = sigma_grid_tmp.to(device=self.device)
# Set up grid for angle resolution. Convert to double precision for better handling of numerics.
omega_grid = torch.linspace(0.0, 1, self.num_omega + 1).to(sigma_grid_tmp)
# If requested, increase sample density for lower values
omega_grid = omega_grid**self.omega_exponent
omega_grid = omega_grid * np.pi
# Compute the expansion for all omegas and sigmas.
pdf_igso3 = self.expansion_function(omega_grid, sigma_grid_tmp)
# Apply the pre-factor from USO(3).
pdf_igso3 = pdf_igso3 * (1.0 - torch.cos(omega_grid)) / np.pi
# Compute the cumulative probability distribution.
cdf_igso3 = integrate_trapezoid_cumulative(pdf_igso3, omega_grid)
# Normalize integral area to 1.
cdf_igso3 = cdf_igso3 / cdf_igso3[:, -1][:, None]
# Move back to original device.
cdf_igso3 = cdf_igso3.to(device=current_device)
omega_grid = omega_grid.to(device=current_device)
return omega_grid[1:].to(sigma_grid.dtype), cdf_igso3.to(sigma_grid.dtype)
def sample(self, sigma: torch.Tensor, num_samples: int) -> torch.Tensor:
"""
Generate samples from the target SO(3) distribution by sampling a rotation axis angle,
which are then combined into a rotation vector and transformed into the corresponding
rotation matrix via an exponential map.
Args:
sigma_indices (torch.Tensor): Indices of the IGSO3 std devs for which to take samples.
num_samples (int): Number of angle samples to take for each std dev
Returns:
torch.Tensor: Sampled rotations in matrix representation with dimensions
[num_sigma x num_samples x 3 x 3].
"""
vectors = self.sample_vector(sigma.shape[0], num_samples)
angles = self.sample_angle(sigma, num_samples)
# Do postprocessing on angles.
angles = self._process_angles(sigma, angles)
rotation_vectors = vectors * angles[..., None]
rotation_matrices = rotvec_to_rotmat(rotation_vectors, tol=self.tol)
return rotation_matrices
def _process_angles(self, sigma: torch.Tensor, angles: torch.Tensor) -> torch.Tensor:
"""
Auxiliary function for performing additional processing steps on the sampled angles. One
example would be to ensure sampled angles are 0 for a std dev of 0 for IGSO(3).
Args:
sigma (torch.Tensor): Current values of sigma.
angles (torch.Tensor): Sampled angles.
Returns:
torch.Tensor: Processed sampled angles.
"""
return angles
def sample_vector(self, num_sigma: int, num_samples: int) -> torch.Tensor:
"""
Uniformly sample rotation axis for constructing the overall rotation.
Args:
num_sigma (int): Number of samples to draw for each std dev.
num_samples (int): Number of angle samples to take for each std dev.
Returns:
torch.Tensor: Batch of rotation axes with dimensions [num_sigma x num_samples x 3].
"""
vectors = torch.randn(num_sigma, num_samples, 3, device=self.sigma_grid.device)
vectors = vectors / torch.norm(vectors, dim=2, keepdim=True)
return vectors
def sample_angle(self, sigma: torch.Tensor, num_samples: int) -> torch.Tensor:
"""
Create a series of samples from the IGSO(3) angle distribution.
Args:
sigma_indices (torch.Tensor): Indices of the IGSO3 std deves for which to
take samples.
num_samples (int): Number of angle samples to take for each std dev.
Returns:
torch.Tensor: Collected samples, will have the dimension [num_sigma x num_samples].
"""
# Convert sigmas to respective indices for lookup table.
sigma_indices = self.get_sigma_idx(sigma)
# Get relevant sigma slices from stored CDFs.
cdf_tmp = self.cdf_igso3[sigma_indices, :]
# Draw from uniform distribution.
p_uniform = torch.rand((*sigma_indices.shape, *[num_samples]), device=sigma_indices.device)
# Determine indices for CDF.
idx_stop = torch.sum(cdf_tmp[..., None] < p_uniform[:, None, :], dim=1).long()
idx_start = torch.clamp(idx_stop - 1, min=0)
if not self.interpolate:
omega = torch.gather(cdf_tmp, dim=1, index=idx_stop)
else:
# Get CDF values.
cdf_start = torch.gather(cdf_tmp, dim=1, index=idx_start)
cdf_stop = torch.gather(cdf_tmp, dim=1, index=idx_stop)
# Compute weights for linear interpolation.
cdf_delta = torch.clamp(cdf_stop - cdf_start, min=self.tol)
cdf_weight = torch.clamp((p_uniform - cdf_start) / cdf_delta, min=0.0, max=1.0)
# Get angle range for interpolation.
omega_start = self.omega_grid[idx_start]
omega_stop = self.omega_grid[idx_stop]
# Interpolate.
omega = torch.lerp(omega_start, omega_stop, cdf_weight)
return omega
class SampleIGSO3(BaseSampleSO3):
so3_type = "igso3" # cache basename
def __init__(
self,
num_omega: int,
sigma_grid: torch.Tensor,
omega_exponent: int = 3,
tol: float = 1e-7,
interpolate: bool = True,
l_max: int = 1000,
cache_dir: Optional[str] = None,
overwrite_cache: bool = False,
device: str = 'cpu',
) -> None:
"""
Module for sampling rotations from the IGSO(3) distribution using the explicit series
expansion. Samples are created using inverse transform sampling based on the associated
cumulative probability distribution function (CDF) and a uniform distribution [0,1] as
described in [#leach2022_2]_. CDF values are obtained by numerically integrating the
probability distribution evaluated on a grid of angles and noise levels and stored in a
lookup table. Linear interpolation is used to approximate continuos sampling of the
function. Angles are discretized in an interval [0,pi] and the grid can be squashed to have
higher resolutions at low angles by taking different powers.
Since sampling relies on tabulated values of the CDF and indexing in the form of
`torch.bucketize`, gradients are not supported.
Args:
num_omega (int): Number of discrete angles used for generating the lookup table.
sigma_grid (torch.Tensor): Grid of IGSO3 std devs.
omega_exponent (int, optional): Make the angle grid denser for smaller angles by taking
its power with the provided number. Defaults to 3.
tol (float, optional): Small value for numerical stability. Defaults to 1e-7.
interpolate (bool, optional): If enables, perform linear interpolation of the angle CDF
to sample angles. Otherwise the closest tabulated point is returned. Defaults to True.
l_max (int, optional): Maximum number of terms used in the series expansion.
cache_dir: Path to an optional cache directory. If set to None, lookup tables are
computed on the fly.
overwrite_cache: If set to true, existing cache files are overwritten. Can be used for
updating stale caches.
References
----------
.. [#leach2022_2] Leach, Schmon, Degiacomi, Willcocks:
Denoising diffusion probabilistic models on so (3) for rotational alignment.
ICLR 2022 Workshop on Geometrical and Topological Representation Learning. 2022.
"""
self.l_max = l_max
super().__init__(
num_omega=num_omega,
sigma_grid=sigma_grid,
omega_exponent=omega_exponent,
tol=tol,
interpolate=interpolate,
cache_dir=cache_dir,
overwrite_cache=overwrite_cache,
device=device,
)
def _get_cache_name(self) -> str:
"""
Auxiliary function for determining the cache file name based on the parameters (sigma,
omega, l, etc.) used for generating the lookup tables.
Returns:
Base name of the cache file.
"""
cache_name = "cache_{:s}_s{:04.3f}-{:04.3f}-{:d}_l{:d}_o{:d}-{:d}.npz".format(
self.so3_type,
torch.min(self.sigma_grid).cpu().item(),
torch.max(self.sigma_grid).cpu().item(),
self.sigma_grid.shape[0],
self.l_max,
self.num_omega,
self.omega_exponent,
)
return cache_name
def expansion_function(
self,
omega_grid: torch.Tensor,
sigma_grid: torch.Tensor,
) -> torch.Tensor:
"""
Use the truncated expansion of the IGSO(3) probability function to generate the lookup table.
Args:
omega_grid (torch.Tensor): Grid of angle values.
sigma_grid (torch.Tensor): Grid of IGSO3 std devs.
Returns:
torch.Tensor: IGSO(3) distribution for angles discretized on a 2D grid.
"""
return generate_igso3_lookup_table(omega_grid, sigma_grid, l_max=self.l_max, tol=self.tol)
def _process_angles(self, sigma: torch.Tensor, angles: torch.Tensor) -> torch.Tensor:
"""
Ensure sampled angles are 0 for small noise levels in IGSO(3). (Series expansion gives
uniform probability distribution.)
Args:
sigma (torch.Tensor): Current values of sigma.
angles (torch.Tensor): Sampled angles.
Returns:
torch.Tensor: Processed sampled angles.
"""
angles = torch.where(
sigma[..., None] < self.tol,
torch.zeros_like(angles),
angles,
)
return angles
class SampleUSO3(BaseSampleSO3):
so3_type = "uso3" # cache basename
def __init__(
self,
num_omega: int,
sigma_grid: torch.Tensor,
omega_exponent: int = 3,
tol: float = 1e-7,
interpolate: bool = True,
cache_dir: Optional[str] = None,
overwrite_cache: bool = False,
) -> None:
"""
Module for sampling rotations from the USO(3) distribution. Can be used to generate initial
unbiased samples in the reverse process. Samples are created using inverse transform
sampling based on the associated cumulative probability distribution function (CDF) and a
uniform distribution [0,1] as described in [#leach2022_4]_. CDF values are obtained by
numerically integrating the probability distribution evaluated on a grid of angles and noise
levels and stored in a lookup table. Linear interpolation is used to approximate continuos
sampling of the function. Angles are discretized in an interval [0,pi] and the grid can be
squashed to have higher resolutions at low angles by taking different powers.
Since sampling relies on tabulated values of the CDF and indexing in the form of
`torch.bucketize`, gradients are not supported.
Args:
num_omega (int): Number of discrete angles used for generating the lookup table.
sigma_grid (torch.Tensor): Grid of IGSO3 std devs.
omega_exponent (int, optional): Make the angle grid denser for smaller angles by taking
its power with the provided number. Defaults to 3.
tol (float, optional): Small value for numerical stability. Defaults to 1e-7.
interpolate (bool, optional): If enables, perform linear interpolation of the angle CDF
to sample angles. Otherwise the closest tabulated point is returned. Defaults to True.
cache_dir: Path to an optional cache directory. If set to None, lookup tables are
computed on the fly.
overwrite_cache: If set to true, existing cache files are overwritten. Can be used for
updating stale caches.
References
----------
.. [#leach2022_4] Leach, Schmon, Degiacomi, Willcocks:
Denoising diffusion probabilistic models on so (3) for rotational alignment.
ICLR 2022 Workshop on Geometrical and Topological Representation Learning. 2022.
"""
super().__init__(
num_omega=num_omega,
sigma_grid=sigma_grid,
omega_exponent=omega_exponent,
tol=tol,
interpolate=interpolate,
cache_dir=cache_dir,
overwrite_cache=overwrite_cache,
)
def get_sigma_idx(self, sigma: torch.Tensor) -> torch.Tensor:
return torch.zeros_like(sigma).long()
def sample_shape(self, num_sigma: int, num_samples: int) -> torch.Tensor:
dummy_sigma = torch.zeros(num_sigma, device=self.sigma_grid.device)
return self.sample(dummy_sigma, num_samples)
def expansion_function(
self,
omega_grid: torch.Tensor,
sigma_grid: torch.Tensor,
) -> torch.Tensor:
"""
The probability density function of the uniform SO(3) distribution is the cosine scaling
term (1-cos(omega))/pi which is applied automatically during sampling. This means, it is
sufficient to return a tensor of ones to create the correct USO(3) lookup table.
Args:
omega_grid (torch.Tensor): Grid of angle values.
sigma_grid (torch.Tensor): Grid of IGSO3 std devs.
Returns:
torch.Tensor: USO(3) distribution for angles discretized on a 2D grid.
"""
return torch.ones(1, omega_grid.shape[0], device=omega_grid.device)
@torch.no_grad()
def integrate_trapezoid_cumulative(f_grid: torch.Tensor, x_grid: torch.Tensor) -> torch.Tensor:
"""
Auxiliary function for numerically integrating a discretized 1D function using the trapezoid
rule. This is mainly used for computing the cumulative probability distributions for sampling
from the IGSO(3) distribution. Works on a single 1D grid or a batch of grids.
Args:
f_grid (torch.Tensor): Discretized function values.
x_grid (torch.Tensor): Discretized input values.
Returns:
torch.Tensor: Integrated function (not normalized).
"""
f_sum = f_grid[..., :-1] + f_grid[..., 1:]
delta_x = torch.diff(x_grid, dim=-1)
integral = torch.cumsum((f_sum * delta_x[None, :]) / 2.0, dim=-1)
return integral
def uniform_so3_density(omega: torch.Tensor) -> torch.Tensor:
"""
Compute the density over the uniform angle distribution in SO(3).
Args:
omega: Angles in radians.
Returns:
Uniform distribution density.
"""
return (1.0 - torch.cos(omega)) / np.pi
def igso3_expansion(
omega: torch.Tensor, sigma: torch.Tensor, l_grid: torch.Tensor, tol=1e-7
) -> torch.Tensor:
"""
Compute the IGSO(3) angle probability distribution function for pairs of angles and std dev
levels. The expansion is computed using a grid of expansion orders ranging from 0 to l_max.
This function approximates the power series in equation 5 of [#yim2023_3]_. With this
parameterization, IGSO(3) agrees with the Brownian motion on SO(3) with t=sigma^2.
Args:
omega: Values of angles (1D tensor).
sigma: Values of std dev of IGSO3 distribution (1D tensor of same shape as `omega`).
l_grid: Tensor containing expansion orders (0 to l_max).
tol: Small offset for numerical stability.
Returns:
IGSO(3) angle distribution function (without pre-factor for uniform SO(3) distribution).
References
----------
.. [#yim2023_3] Yim, Trippe, De Bortoli, Mathieu, Doucet, Barzilay, Jaakkola:
SE(3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277. 2023.
"""
# Pre-compute sine in denominator and clamp for stability.
denom_sin = torch.sin(0.5 * omega)
# Pre-compute terms that rely only on expansion orders.
l_fac_1 = 2.0 * l_grid + 1.0
l_fac_2 = -l_grid * (l_grid + 1.0)
# Pre-compute numerator of expansion which only depends on angles.
numerator_sin = torch.sin((l_grid[None, :] + 1 / 2) * omega[:, None])
# Pre-compute exponential term with (2l+1) prefactor.
exponential_term = l_fac_1[None, :] * torch.exp(l_fac_2[None, :] * sigma[:, None] ** 2 / 2)
# Compute series expansion
f_igso = torch.sum(exponential_term * numerator_sin, dim=1)
# For small omega, accumulate limit of sine fraction instead:
# lim[x->0] sin((l+1/2)x) / sin(x/2) = 2l + 1
f_limw = torch.sum(exponential_term * l_fac_1[None, :], dim=1)
# Finalize expansion. Offset for stability can be added since omega is [0,pi] and sin(omega/2)
# is positive in this interval.
f_igso = f_igso / (denom_sin + tol)
# Replace values at small omega with limit.
f_igso = torch.where(omega <= tol, f_limw, f_igso)
# Remove remaining numerical problems
f_igso = torch.where(
torch.logical_or(torch.isinf(f_igso), torch.isnan(f_igso)), torch.zeros_like(f_igso), f_igso
)
return f_igso
def digso3_expansion(
omega: torch.Tensor, sigma: torch.Tensor, l_grid: torch.Tensor, tol=1e-7
) -> torch.Tensor:
"""
Compute the derivative of the IGSO(3) angle probability distribution function with respect to
the angles for pairs of angles and std dev levels. As in `igso3_expansion` a grid is used for the
expansion levels. Evaluates the derivative directly in order to avoid second derivatives during
backpropagation.
The derivative of the angle-dependent part is computed as:
.. math ::
\frac{\partial}{\partial \omega} \frac{\sin((l+\tfrac{1}{2})\omega)}{\sin(\tfrac{1}{2}\omega)} = \frac{l\sin((l+1)\omega) - (l+1)\sin(l\omega)}{1 - \cos(\omega)}
(obtained via quotient rule + different trigonometric identities).
Args:
omega: Values of angles (1D tensor).
sigma: Values of IGSO3 distribution std devs (1D tensor of same shape as `omega`).
l_grid: Tensor containing expansion orders (0 to l_max).
tol: Small offset for numerical stability.
Returns:
IGSO(3) angle distribution derivative (without pre-factor for uniform SO(3) distribution).
"""
denom_cos = 1.0 - torch.cos(omega)
l_fac_1 = 2.0 * l_grid + 1.0
l_fac_2 = l_grid + 1.0
l_fac_3 = -l_grid * l_fac_2
# Pre-compute numerator of expansion which only depends on angles.
numerator_sin = l_grid[None, :] * torch.sin(l_fac_2[None, :] * omega[:, None]) - l_fac_2[
None, :
] * torch.sin(l_grid[None, :] * omega[:, None])
# Compute series expansion
df_igso = torch.sum(
l_fac_1[None, :] * torch.exp(l_fac_3[None, :] * sigma[:, None] ** 2 / 2) * numerator_sin,
dim=1,
)
# Finalize expansion. Offset for stability can be added since omega is [0,pi] and cosine term
# is positive in this interval.
df_igso = df_igso / (denom_cos + tol)
# Replace values at small omega with limit (=0).
df_igso = torch.where(omega <= tol, torch.zeros_like(df_igso), df_igso)
# Remove remaining numerical problems
df_igso = torch.where(
torch.logical_or(torch.isinf(df_igso), torch.isnan(df_igso)),
torch.zeros_like(df_igso),
df_igso,
)
return df_igso
def dlog_igso3_expansion(
omega: torch.Tensor, sigma: torch.Tensor, l_grid: torch.Tensor, tol=1e-7
) -> torch.Tensor:
"""
Compute the derivative of the logarithm of the IGSO(3) angle distribution function for pairs of
angles and std dev levels:
.. math ::
\frac{\partial}{\partial \omega} \log f(\omega) = \frac{\tfrac{\partial}{\partial \omega} f(\omega)}{f(\omega)}
Required for SO(3) score computation.
Args:
omega: Values of angles (1D tensor).
sigma: Values of IGSO3 std devs (1D tensor of same shape as `omega`).
l_grid: Tensor containing expansion orders (0 to l_max).
tol: Small offset for numerical stability.
Returns:
IGSO(3) angle distribution derivative (without pre-factor for uniform SO(3) distribution).
"""
f_igso3 = igso3_expansion(omega, sigma, l_grid, tol=tol)
df_igso3 = digso3_expansion(omega, sigma, l_grid, tol=tol)
return df_igso3 / (f_igso3 + tol)
@torch.no_grad()
def generate_lookup_table(
base_function: Callable,
omega_grid: torch.Tensor,
sigma_grid: torch.Tensor,
l_max: int = 1000,
tol: float = 1e-7,
):
"""
Auxiliary function for generating a lookup table from IGSO(3) expansions and their derivatives.
Takes a basic function and loops over different std dev levels.
Args:
base_function: Function used for setting up the lookup table.
omega_grid: Grid of angle values ranging from [0,pi] (shape is[num_omega]).
sigma_grid: Grid of IGSO3 std dev values (shape is [num_sigma]).
l_max: Number of terms used in the series expansion.
tol: Small value for numerical stability.
Returns:
Table of function values evaluated at different angles and std dev levels. The final shape is
[num_sigma x num_omega].
"""
# Generate grid of expansion orders.
l_grid = torch.arange(l_max + 1, device=omega_grid.device).to(omega_grid.dtype)
n_omega = len(omega_grid)
n_sigma = len(sigma_grid)
# Populate lookup table for different time frames.
f_table = torch.zeros(n_sigma, n_omega, device=omega_grid.device, dtype=omega_grid.dtype)
for eps_idx in tqdm(range(n_sigma), desc=f"Computing {base_function.__name__}"):
f_table[eps_idx, :] = base_function(
omega_grid,
torch.ones_like(omega_grid) * sigma_grid[eps_idx],
l_grid,
tol=tol,
)
return f_table
def generate_igso3_lookup_table(
omega_grid: torch.Tensor,
sigma_grid: torch.Tensor,
l_max: int = 1000,
tol: float = 1e-7,
) -> torch.Tensor:
"""
Generate a lookup table for the IGSO(3) probability distribution function of angles.
Args:
omega_grid: Grid of angle values ranging from [0,pi] (shape is[num_omega]).
sigma_grid: Grid of IGSO3 std dev values (shape is [num_sigma]).
l_max: Number of terms used in the series expansion.
tol: Small value for numerical stability.
Returns:
Table of function values evaluated at different angles and std dev levels. The final shape is
[num_sigma x num_omega].
"""
f_igso = generate_lookup_table(
base_function=igso3_expansion,
omega_grid=omega_grid,
sigma_grid=sigma_grid,
l_max=l_max,
tol=tol,
)
return f_igso
def generate_dlog_igso3_lookup_table(
omega_grid: torch.Tensor,
sigma_grid: torch.Tensor,
l_max: int = 1000,
tol: float = 1e-7,
) -> torch.Tensor:
"""
Generate a lookup table for the derivative of the logarithm of the angular IGSO(3) probability
distribution function. Used e.g. for computing scaling of SO(3) norms.
Args:
omega_grid: Grid of angle values ranging from [0,pi] (shape is[num_omega]).
sigma_grid: Grid of IGSO3 std dev values (shape is [num_sigma]).
l_max: Number of terms used in the series expansion.
tol: Small value for numerical stability.
Returns:
Table of function values evaluated at different angles and std dev levels. The final shape is
[num_sigma x num_omega].
"""
dlog_igso = generate_lookup_table(
base_function=dlog_igso3_expansion,
omega_grid=omega_grid,
sigma_grid=sigma_grid,
l_max=l_max,
tol=tol,
)
return dlog_igso