import torch import numpy as np from data import so3_utils from data import utils as du from scipy.spatial.transform import Rotation from data import all_atom import copy from scipy.optimize import linear_sum_assignment def _centered_gaussian(num_batch, num_res, device): noise = torch.randn(num_batch, num_res, 3, device=device) return noise - torch.mean(noise, dim=-2, keepdims=True) def _uniform_so3(num_batch, num_res, device): return torch.tensor( Rotation.random(num_batch*num_res).as_matrix(), device=device, dtype=torch.float32, ).reshape(num_batch, num_res, 3, 3) def _trans_diffuse_mask(trans_t, trans_1, diffuse_mask): return trans_t * diffuse_mask[..., None] + trans_1 * (1 - diffuse_mask[..., None]) def _rots_diffuse_mask(rotmats_t, rotmats_1, diffuse_mask): return ( rotmats_t * diffuse_mask[..., None, None] + rotmats_1 * (1 - diffuse_mask[..., None, None]) ) class Interpolant: def __init__(self, cfg): self._cfg = cfg self._rots_cfg = cfg.rots self._trans_cfg = cfg.trans self._sample_cfg = cfg.sampling self.add_noise = cfg.add_noise self._igso3 = None @property def igso3(self): if self._igso3 is None: sigma_grid = torch.linspace(0.1, 1.5, 1000) self._igso3 = so3_utils.SampleIGSO3( 1000, sigma_grid, cache_dir='.cache') return self._igso3 def set_device(self, device): self._device = device def sample_t(self, num_batch): # t: [min_t, 1-min_t] t = torch.rand(num_batch, device=self._device) return t * (1 - 2*self._cfg.min_t) + self._cfg.min_t def _esmfold_gaussian(self, num_batch, num_res, device, trans_esmfold): noise = torch.randn(num_batch, num_res, 3, device=device) # (B,L,3) noise = self._trans_cfg.noise_scale * noise + trans_esmfold return noise - torch.mean(noise, dim=-2, keepdims=True) def _corrupt_trans(self, trans_1, t, res_mask, trans_esmfold): # trans_nm_0 = _centered_gaussian(*res_mask.shape, self._device) # trans_0 = trans_nm_0 * du.NM_TO_ANG_SCALE if self.add_noise: trans_0 = self._esmfold_gaussian(*res_mask.shape, self._device, trans_esmfold) else: trans_0 = trans_esmfold trans_0 = self._batch_ot(trans_0, trans_1, res_mask) trans_t = (1 - t[..., None]) * trans_0 + t[..., None] * trans_1 trans_t = _trans_diffuse_mask(trans_t, trans_1, res_mask) return trans_t * res_mask[..., None] def _batch_ot(self, trans_0, trans_1, res_mask): num_batch, num_res = trans_0.shape[:2] noise_idx, gt_idx = torch.where( torch.ones(num_batch, num_batch)) batch_nm_0 = trans_0[noise_idx] batch_nm_1 = trans_1[gt_idx] batch_mask = res_mask[gt_idx] aligned_nm_0, aligned_nm_1, _ = du.batch_align_structures( batch_nm_0, batch_nm_1, mask=batch_mask ) aligned_nm_0 = aligned_nm_0.reshape(num_batch, num_batch, num_res, 3) aligned_nm_1 = aligned_nm_1.reshape(num_batch, num_batch, num_res, 3) # Compute cost matrix of aligned noise to ground truth batch_mask = batch_mask.reshape(num_batch, num_batch, num_res) cost_matrix = torch.sum( torch.linalg.norm(aligned_nm_0 - aligned_nm_1, dim=-1), dim=-1 ) / torch.sum(batch_mask, dim=-1) noise_perm, gt_perm = linear_sum_assignment(du.to_numpy(cost_matrix)) return aligned_nm_0[(tuple(gt_perm), tuple(noise_perm))] # return aligned_nm_0 def _esmfold_igso3(self, res_mask, rotmats_esmfold): num_batch, num_res = res_mask.shape noisy_rotmats = self.igso3.sample( torch.tensor([self._rots_cfg.noise_scale]), num_batch*num_res ).to(self._device) noisy_rotmats = noisy_rotmats.reshape(num_batch, num_res, 3, 3) rotmats_0 = torch.einsum( "...ij,...jk->...ik", rotmats_esmfold, noisy_rotmats) return rotmats_0 def _corrupt_rotmats(self, rotmats_1, t, res_mask, rotmats_esmfold): # num_batch, num_res = res_mask.shape # noisy_rotmats = self.igso3.sample( # torch.tensor([1.5]), # num_batch*num_res # ).to(self._device) # noisy_rotmats = noisy_rotmats.reshape(num_batch, num_res, 3, 3) # rotmats_0 = torch.einsum( # "...ij,...jk->...ik", rotmats_1, noisy_rotmats) if self.add_noise: rotmats_0 = self._esmfold_igso3(res_mask, rotmats_esmfold) else: rotmats_0 = rotmats_esmfold rotmats_t = so3_utils.geodesic_t(t[..., None], rotmats_1, rotmats_0) identity = torch.eye(3, device=self._device) rotmats_t = ( rotmats_t * res_mask[..., None, None] + identity[None, None] * (1 - res_mask[..., None, None]) ) return _rots_diffuse_mask(rotmats_t, rotmats_1, res_mask) def corrupt_batch(self, batch): noisy_batch = copy.deepcopy(batch) # [B, N, 3] trans_1 = batch['trans_1'] # Angstrom # [B, N, 3, 3] rotmats_1 = batch['rotmats_1'] # [B, N] res_mask = batch['res_mask'] num_batch, _ = res_mask.shape # [B, 1] t = self.sample_t(num_batch)[:, None] noisy_batch['t'] = t # Apply corruptions trans_t = self._corrupt_trans(trans_1, t, res_mask, batch['trans_esmfold']) noisy_batch['trans_t'] = trans_t rotmats_t = self._corrupt_rotmats(rotmats_1, t, res_mask, batch['rotmats_esmfold']) noisy_batch['rotmats_t'] = rotmats_t # noisy_batch['t'] = 0.5 * torch.ones_like(t) # noisy_batch['trans_t'] = batch['trans_1'] # noisy_batch['rotmats_t'] = batch['rotmats_1'] return noisy_batch def rot_sample_kappa(self, t): if self._rots_cfg.sample_schedule == 'exp': return 1 - torch.exp(-t*self._rots_cfg.exp_rate) elif self._rots_cfg.sample_schedule == 'linear': return t else: raise ValueError( f'Invalid schedule: {self._rots_cfg.sample_schedule}') def _trans_euler_step(self, d_t, t, trans_1, trans_t): trans_vf = (trans_1 - trans_t) / (1 - t) return trans_t + trans_vf * d_t def _rots_euler_step(self, d_t, t, rotmats_1, rotmats_t): if self._rots_cfg.sample_schedule == 'linear': scaling = 1 / (1 - t) elif self._rots_cfg.sample_schedule == 'exp': scaling = self._rots_cfg.exp_rate else: raise ValueError( f'Unknown sample schedule {self._rots_cfg.sample_schedule}') return so3_utils.geodesic_t( scaling * d_t, rotmats_1, rotmats_t) def sample( self, batch, model, ): res_mask = batch['res_mask'] num_batch = batch['aatype'].shape[0] num_res = batch['aatype'].shape[1] aatype = batch['aatype'] motif_mask = batch.get('motif_mask',torch.ones(aatype.shape)) # Set-up initial prior samples # trans_0 = _centered_gaussian( # num_batch, num_res, self._device) * du.NM_TO_ANG_SCALE # rotmats_0 = _uniform_so3(num_batch, num_res, self._device) if self.add_noise: trans_0 = self._esmfold_gaussian(*res_mask.shape, self._device, batch['trans_esmfold']) rotmats_0 = self._esmfold_igso3(res_mask, batch['rotmats_esmfold']) else: trans_0 = batch['trans_esmfold'] rotmats_0 = batch['rotmats_esmfold'] if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)): trans_0 = motif_mask[...,None]*trans_0+(1-motif_mask[...,None])*batch['trans_fix'] rotmats_0 = motif_mask[...,None,None]*rotmats_0+(1-motif_mask[...,None,None])*batch['rotmats_fix'] # Set-up time ts = torch.linspace( self._cfg.min_t, 1.0, self._sample_cfg.num_timesteps) # ts = torch.linspace(np.exp(self._cfg.min_t), np.exp(1.0), self._sample_cfg.num_timesteps) # ts = torch.log(ts) t_1 = ts[0] prot_traj = [(trans_0, rotmats_0)] clean_traj = [] for t_2 in ts[1:]: # Run model. trans_t_1, rotmats_t_1 = prot_traj[-1] batch['trans_t'] = trans_t_1 batch['rotmats_t'] = rotmats_t_1 t = torch.ones((num_batch, 1), device=self._device) * t_1 batch['t'] = t with torch.no_grad(): model_out = model(batch) # Process model output. pred_trans_1 = model_out['pred_trans'] pred_rotmats_1 = model_out['pred_rotmats'] if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)): pred_trans_1 = motif_mask[...,None]* pred_trans_1+(1-motif_mask[...,None])*batch['trans_fix'] pred_rotmats_1 = motif_mask[...,None,None]*pred_rotmats_1+(1-motif_mask[...,None,None])*batch['rotmats_fix'] clean_traj.append( (pred_trans_1.detach(), pred_rotmats_1.detach()) ) if self._cfg.self_condition: batch['trans_sc'] = pred_trans_1 # Take reverse step d_t = t_2 - t_1 trans_t_2 = self._trans_euler_step( d_t, t_1, pred_trans_1, trans_t_1) rotmats_t_2 = self._rots_euler_step( d_t, t_1, pred_rotmats_1, rotmats_t_1) if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)): trans_t_2 = motif_mask[...,None]* trans_t_2+(1-motif_mask[...,None])*batch['trans_fix'] rotmats_t_2 = motif_mask[...,None,None]*rotmats_t_2+(1-motif_mask[...,None,None])*batch['rotmats_fix'] prot_traj.append((trans_t_2, rotmats_t_2)) t_1 = t_2 # We only integrated to min_t, so need to make a final step t_1 = ts[-1] trans_t_1, rotmats_t_1 = prot_traj[-1] batch['trans_t'] = trans_t_1 batch['rotmats_t'] = rotmats_t_1 batch['t'] = torch.ones((num_batch, 1), device=self._device) * t_1 with torch.no_grad(): model_out = model(batch) pred_trans_1 = model_out['pred_trans'] pred_rotmats_1 = model_out['pred_rotmats'] if not torch.all(motif_mask==torch.ones(aatype.shape,device=motif_mask.device)): pred_trans_1 = motif_mask[...,None]* pred_trans_1+(1-motif_mask[...,None])*batch['trans_fix'] pred_rotmats_1 = motif_mask[...,None,None]*pred_rotmats_1+(1-motif_mask[...,None,None])*batch['rotmats_fix'] clean_traj.append( (pred_trans_1.detach(), pred_rotmats_1.detach()) ) prot_traj.append((pred_trans_1, pred_rotmats_1)) # Convert trajectories to atom37. atom37_traj = all_atom.transrot_to_atom37(prot_traj, res_mask, aatype=aatype, torsions_with_CB=model_out['pred_torsions_with_CB']) clean_atom37_traj = all_atom.transrot_to_atom37(clean_traj, res_mask, aatype=aatype, torsions_with_CB=model_out['pred_torsions_with_CB']) return atom37_traj, clean_atom37_traj, clean_traj