""" Metrics. """ import mdtraj as md import numpy as np from openfold.np import residue_constants from tmtools import tm_align from data import utils as du def calc_tm_score(pos_1, pos_2, seq_1, seq_2): tm_results = tm_align(pos_1, pos_2, seq_1, seq_2) return tm_results.tm_norm_chain1, tm_results.tm_norm_chain2 def calc_mdtraj_metrics(pdb_path): try: traj = md.load(pdb_path) pdb_ss = md.compute_dssp(traj, simplified=True) pdb_coil_percent = np.mean(pdb_ss == 'C') pdb_helix_percent = np.mean(pdb_ss == 'H') pdb_strand_percent = np.mean(pdb_ss == 'E') pdb_ss_percent = pdb_helix_percent + pdb_strand_percent pdb_rg = md.compute_rg(traj)[0] except IndexError as e: print('Error in calc_mdtraj_metrics: {}'.format(e)) pdb_ss_percent = 0.0 pdb_coil_percent = 0.0 pdb_helix_percent = 0.0 pdb_strand_percent = 0.0 pdb_rg = 0.0 return { 'non_coil_percent': pdb_ss_percent, 'coil_percent': pdb_coil_percent, 'helix_percent': pdb_helix_percent, 'strand_percent': pdb_strand_percent, 'radius_of_gyration': pdb_rg, } def calc_aligned_rmsd(pos_1, pos_2): aligned_pos_1 = du.rigid_transform_3D(pos_1, pos_2)[0] return np.mean(np.linalg.norm(aligned_pos_1 - pos_2, axis=-1)) def calc_ca_ca_metrics(ca_pos, bond_tol=0.1, clash_tol=1.0): ca_bond_dists = np.linalg.norm( ca_pos - np.roll(ca_pos, 1, axis=0), axis=-1)[1:] ca_ca_dev = np.mean(np.abs(ca_bond_dists - residue_constants.ca_ca)) ca_ca_valid = np.mean(ca_bond_dists < (residue_constants.ca_ca + bond_tol)) ca_ca_dists2d = np.linalg.norm( ca_pos[:, None, :] - ca_pos[None, :, :], axis=-1) inter_dists = ca_ca_dists2d[np.where(np.triu(ca_ca_dists2d, k=0) > 0)] clashes = inter_dists < clash_tol return { 'ca_ca_deviation': ca_ca_dev, 'ca_ca_valid_percent': ca_ca_valid, 'num_ca_ca_clashes': np.sum(clashes), }