import torch from torch import nn from models.utils import get_index_embedding, calc_distogram from models.add_module.model_utils import rbf class EdgeEmbedder(nn.Module): def __init__(self, module_cfg): super(EdgeEmbedder, self).__init__() self._cfg = module_cfg self.c_s = self._cfg.c_s self.c_p = self._cfg.c_p self.feat_dim = self._cfg.feat_dim self.linear_s_p = nn.Linear(self.c_s, self.feat_dim) self.linear_relpos = nn.Linear(self.feat_dim, self.feat_dim) self.num_cross_heads = 32 self.c_pair_pre = 20 total_edge_feats = self.feat_dim * 3 + self._cfg.num_bins * 2 + self.c_pair_pre # total_edge_feats = self.num_cross_heads + self._cfg.num_bins * 2 + self.c_pair_pre self.edge_embedder = nn.Sequential( nn.Linear(total_edge_feats, self.c_p), nn.ReLU(), nn.Dropout(self._cfg.dropout), nn.Linear(self.c_p, self.c_p), ) def embed_relpos(self, pos): rel_pos = pos[:, :, None] - pos[:, None, :] pos_emb = get_index_embedding(rel_pos, self._cfg.feat_dim, max_len=2056) return self.linear_relpos(pos_emb) def _cross_concat(self, feats_1d, num_batch, num_res): ''' output: (B, L, L, 2*d_node) ''' return torch.cat([ torch.tile(feats_1d[:, :, None, :], (1, 1, num_res, 1)), torch.tile(feats_1d[:, None, :, :], (1, num_res, 1, 1)), ], dim=-1).float().reshape([num_batch, num_res, num_res, -1]) def forward(self, s, t, sc_t, pair_repr_pre, p_mask): ''' s: same as node, (B, L, d_node) ''' num_batch, num_res, d_node = s.shape p_i = self.linear_s_p(s) # (B,L,feat_dim) cross_node_feats = self._cross_concat(p_i, num_batch, num_res) pos = torch.arange( num_res, device=s.device).unsqueeze(0).repeat(num_batch, 1) relpos_feats = self.embed_relpos(pos) # node_split_heads = s.reshape(num_batch, num_res, d_node//self.num_cross_heads, self.num_cross_heads) # (B,L,d_node//num_head,num_head) # cross_node_feats =torch.einsum('bijh,bkjh->bikh', node_split_heads, node_split_heads) # (B,L,L,num_head) pos = t dists_2d = torch.linalg.norm( pos[:, :, None, :] - pos[:, None, :, :], axis=-1) # (B,L,L) dist_feats = rbf(dists_2d, D_min = 0., D_max = self._cfg.max_dist, D_count = self._cfg.num_bins) # dist_feats = rbf(dists_2d, D_min = 0., D_max = 20.0, D_count = self._cfg.num_bins) pos = sc_t dists_2d = torch.linalg.norm( pos[:, :, None, :] - pos[:, None, :, :], axis=-1) # (B,L,L) sc_feats = rbf(dists_2d, D_min = 0., D_max = self._cfg.max_dist, D_count = self._cfg.num_bins) # sc_feats = rbf(dists_2d, D_min = 0., D_max = 20.0, D_count = self._cfg.num_bins) all_edge_feats = torch.concat( [cross_node_feats, relpos_feats, dist_feats, sc_feats, pair_repr_pre], dim=-1) # all_edge_feats = torch.concat( # [cross_node_feats, dist_feats, sc_feats, pair_repr_pre], dim=-1) edge_feats = self.edge_embedder(all_edge_feats) # (B,L,L,c_p) return edge_feats