--- title: SF Crime Analytics | AI-Powered emoji: πŸš“ colorFrom: red colorTo: blue sdk: docker app_port: 8501 tags: - streamlit - machine-learning - xgboost - crime-prediction pinned: true license: apache-2.0 --- # πŸš“ San Francisco Crime Analytics & Prediction System ## Overview This project is a comprehensive AI-powered dashboard for analyzing and predicting crime in San Francisco. It leverages historical data and advanced machine learning models (XGBoost) to provide actionable insights and real-time risk assessments. ## Features - **πŸ“Š Historical Trends**: Visualize crime distribution by hour, district, and category. - **πŸ—ΊοΈ Geospatial Intelligence**: Interactive heatmaps showing crime density and evolution over time. - **🚨 Tactical Simulation**: Simulate patrol strategies and assess risk levels for specific sectors. - **πŸ’¬ Chat with Data**: Natural language interface to query the dataset. - **πŸš€ Advanced Prediction (99% Accuracy)**: High-precision crime categorization using an optimized XGBoost model. - **πŸ€– AI Crime Safety Assistant**: Interactive chatbot for safety tips and model explanations. ## Installation 1. **Clone the repository**: ```bash git clone cd Hackathon ``` 2. **Install dependencies**: ```bash pip install -r requirements.txt ``` 3. **Run the application**: ```bash streamlit run src/app.py ``` ## Docker Support Build and run the container: ```bash docker build -t sf-crime-app . docker run -p 8501:8501 sf-crime-app ``` ## Technologies - **Frontend**: Streamlit - **Backend**: Python, Pandas, NumPy - **ML Models**: XGBoost, Scikit-Learn (KMeans) - **Visualization**: Plotly, Folium - **AI Integration**: Groq (Llama 3) --- *Developed for HEC Hackathon*