initial commit
Browse files- README.md +133 -3
- distributed_muon.py +555 -0
- distributed_muon_cpu.ipynb +719 -0
- distributed_muon_cpu.py +552 -0
README.md
CHANGED
|
@@ -1,3 +1,133 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- optimization
|
| 7 |
+
- muon
|
| 8 |
+
- deep-learning
|
| 9 |
+
- pytorch
|
| 10 |
+
- distributed-computing
|
| 11 |
+
- tutorial
|
| 12 |
+
- cpu-friendly
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# 🧩 The "Muon is Scalable" Blueprint: A Distributed Muon Tutorial(CPU-Friendly)
|
| 16 |
+
|
| 17 |
+
A practical, **annotated tutorial** for the Muon optimizer — extended into a fully distributed (DP × TP) version that actually runs on **plain CPU/Gloo**, so broke-but-curious builders can still get their hands dirty.
|
| 18 |
+
|
| 19 |
+
This is the expert-level systems engineering companion to my original [**Understanding the Muon Optimizer**](https://huggingface.co/datasets/bird-of-paradise/muon-tutorial) tutorial.
|
| 20 |
+
|
| 21 |
+
> 💡 _“Because sometimes the best way to learn the distributed nightmare is to get your hands dirty and your eyes crossed.”_ 🤪
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## 🌕 Why This Exists
|
| 26 |
+
|
| 27 |
+
Most public Muon examples (like MoonShot’s PoC) are designed for multi-GPU NCCL clusters, making them impossible to run or debug for most of us. In addition, most documentation for distributed systems is written by experts, for experts, making it a "nightmare" to learn. My goal is to change that.
|
| 28 |
+
|
| 29 |
+
This repository is **not** a "simplified" version that "flattens the depth" of the work.
|
| 30 |
+
|
| 31 |
+
Instead, it's a **didactic refactor**. I've taken the complex, real-world PoC and optimized it for *readability* and *learning*, so you can see the "blueprint" behind the "chaos":
|
| 32 |
+
- Fully **annotated** to **demonstrate** data parallel (ZeRO-1) + tensor parallel (TP) orchestration end-to-end.
|
| 33 |
+
- Understand every “distributed acrobatic” step (`DP gather` → `TP gather` → `Newton–Schulz` → `TP shard` → `DP shard`).
|
| 34 |
+
- The code is optimized to highlight **symmetrical logic** and **consistent naming**, showing the "opposite arrow" data flow of the "virtual map" (`dist_meta`).
|
| 35 |
+
- It's built to run **on a single CPU machine or Colab notebook**.
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## 🧠 The “Turtle Speed” Breakthrough: The Full Story
|
| 40 |
+
|
| 41 |
+
This code is complex. It's a "distributed nightmare" 🫠.
|
| 42 |
+
|
| 43 |
+
Instead of a traditional, long-form `README`, the best documentation is the "making of" story. I've chronicled my entire journey of reverse-engineering and debugging this code in my "Turtle Speed Breakthrough" series on Medium.
|
| 44 |
+
|
| 45 |
+
* **[Part 1: The “Turtle Speed” Breakthrough: Decoding Distributed Optimizers](https://medium.com/@jenwei0312/the-turtle-speed-breakthrough-decoding-distributed-optimizers-from-fsdp-to-muons-secret-sauce-64fc76f20cd7)**
|
| 46 |
+
* **[Part 2: My Map of the Distributed Nightmare (The Blueprint)](https://medium.com/@jenwei0312/the-turtle-speed-breakthrough-part-2-the-blueprint-for-distributed-chaos-37fe343e7aa9)**
|
| 47 |
+
* **[Part 3: The Final Bugs and "Aha!" Moments](https://medium.com/@jenwei0312/the-turtle-speed-breakthrough-part-3-my-map-of-the-distributed-nightmare-b10ff4affd56)**
|
| 48 |
+
|
| 49 |
+
This tutorial is the final, runnable code that resulted from that deep dive.
|
| 50 |
+
|
| 51 |
+
---
|
| 52 |
+
|
| 53 |
+
## 🚀 Quick Start
|
| 54 |
+
|
| 55 |
+
Run the CPU-safe, fully-annotated notebook right from your browser:
|
| 56 |
+
|
| 57 |
+
[](<distributed_muon_cpu.ipynb>)
|
| 58 |
+
|
| 59 |
+
Or, you can clone this repo and run the Python script locally to simulate an 8-process cluster on your CPU:
|
| 60 |
+
|
| 61 |
+
```bash
|
| 62 |
+
git clone [https://huggingface.co/datasets/](https://huggingface.co/datasets/)bird-of-paradise/muon_distributed
|
| 63 |
+
cd muon_distributed
|
| 64 |
+
|
| 65 |
+
# This will spawn 8 processes and run the full test
|
| 66 |
+
!python distributed_muon_cpu.py
|
| 67 |
+
````
|
| 68 |
+
|
| 69 |
+
(Note: For the original, un-annotated, buggy Moonshot PoC that this work is based on, you can find it in this [commit](https://github.com/NVIDIA/Megatron-LM/pull/1428/commits/f432fbe45c169aeb5a0805ff6f41e13f989c6730#diff-8fe91f4096ff232fc6f97b17e60e619eda92b6dffc80b4573a23e06aa56d2559).)
|
| 70 |
+
|
| 71 |
+
-----
|
| 72 |
+
|
| 73 |
+
## 🗂️ What's Inside (File Guide)
|
| 74 |
+
|
| 75 |
+
* `distributed_muon_cpu.ipynb`: **(Start Here)** The Colab-friendly notebook that walks through the environment fixes and runs the code.
|
| 76 |
+
* `distributed_muon_cpu.py`: The final, **tested, fixed, and heavily-annotated** Python script. This is the "golden" code that runs on a CPU-only environment using the `"gloo"` backend.
|
| 77 |
+
* `distributed_muon.py`: My **annotated and logically debugged** version of the *GPU* code. This is for users who have a multi-GPU `"nccl"` environment. (Note: Since I don't have a multi-GPU cluster, this version is untested... unless someone wants to sponsor me with some GPUs! 😉)
|
| 78 |
+
|
| 79 |
+
-----
|
| 80 |
+
|
| 81 |
+
## 🎓 What You'll Learn (The "Nightmare" Blueprint)
|
| 82 |
+
|
| 83 |
+
By exploring this code, you'll see the *real* implementation of the concepts I discuss in my articles:
|
| 84 |
+
|
| 85 |
+
* **The 2D Grid:** How to set up orthogonal `dist_group` (DP) and `tp_group` (TP) handles.
|
| 86 |
+
* **The "Aisles" & "Pallets":** How `param_groups` (`buffer_idx`) and communication `buckets` (`bucket_idx`) are used to organize parameters.
|
| 87 |
+
* **The "Virtual Buffer":** How a "master plan" (`dist_meta` and `global_buffer_size`) is used to manage memory for sharding (ZeRO-1).
|
| 88 |
+
* **The Acrobatic Data Flow:** The full `(DP gather -> TP gather) -> (Run Math) -> (TP shard -> DP shard)` journey.
|
| 89 |
+
* **The Nuance:** You'll see *why* we bucket the slow DP `all_gather` but *don't* need to bucket the fast, on-node TP `all_gather`.
|
| 90 |
+
|
| 91 |
+
-----
|
| 92 |
+
|
| 93 |
+
## 🐞 Summary of All Fixes
|
| 94 |
+
|
| 95 |
+
This repo isn't just a copy-paste. It's the result of a week-long debugging "nightmare." Here are all the bugs we had to find and fix to make it run:
|
| 96 |
+
|
| 97 |
+
| Issue | Problem | Solution |
|
| 98 |
+
| :--- | :--- | :--- |
|
| 99 |
+
| **Logic Bug \#1** | Missing `params = group["params"]` | Added the line in the Muon update loop. |
|
| 100 |
+
| **Logic Bug \#2** | `ns_input` was 1D after unpacking, crashing `zeropower`.| Changed `.view(-1)` to `.view(dist_meta.shape)` to restore the 2D shape. |
|
| 101 |
+
| **Systems Bug** | Hardcoded `bfloat16` | Changed to `float32` (`first_param.dtype`) to work with the `"gloo"` (CPU) backend. |
|
| 102 |
+
| **Env Bug \#1** | Hardcoded `"nccl"` backend. | Changed `dist.init_process_group` to use `"gloo"`. |
|
| 103 |
+
| **Env Bug \#2** | Hardcoded `'cuda'` device. | Changed `gen_param_and_grads` to use `'cpu'`. |
|
| 104 |
+
| **Env Bug \#3** | `mp.spawn()` crashes in Jupyter/Colab. | The `.ipynb` runs the code as a `!python` subprocess, bypassing the notebook kernel. |
|
| 105 |
+
|
| 106 |
+
-----
|
| 107 |
+
|
| 108 |
+
## 📖 Citation
|
| 109 |
+
|
| 110 |
+
If you use this tutorial in your work, please cite the original Muon paper and this tutorial.
|
| 111 |
+
|
| 112 |
+
```bibtex
|
| 113 |
+
@misc{wei2025muondistributed,
|
| 114 |
+
author = {Wei, Jen},
|
| 115 |
+
title = {A CPU-Friendly Tutorial for Distributed Muon (DPxTP)},
|
| 116 |
+
year = {2025},
|
| 117 |
+
howpublished = {\url{[https://huggingface.co/datasets/](https://huggingface.co/datasets/)<your-hf-handle>/muon-distributed}}
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
@misc{jordan2024muon,
|
| 121 |
+
author = {Jordan, Keller, et al.},
|
| 122 |
+
title = {Muon: An optimizer for hidden layers in neural networks},
|
| 123 |
+
year = {2024},
|
| 124 |
+
url = {[https://kellerjordan.github.io/posts/muon/](https://kellerjordan.github.io/posts/muon/)}
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
@misc{liu2025muonscalable,
|
| 128 |
+
author = {Liu, Jingyuan, et al.},
|
| 129 |
+
title = {Muon is Scalable for LLM Training},
|
| 130 |
+
year = {2025},
|
| 131 |
+
url = {[https://arxiv.org/abs/2502.16982](https://arxiv.org/abs/2502.16982)}
|
| 132 |
+
}
|
| 133 |
+
```
|
distributed_muon.py
ADDED
|
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# megatron/core/optimizer/muon.py
|
| 2 |
+
from typing import Tuple, Dict
|
| 3 |
+
import torch
|
| 4 |
+
import math
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# copy from https://github.com/KellerJordan/Muon/tree/master
|
| 9 |
+
# @torch.compile
|
| 10 |
+
def zeropower_via_newtonschulz5(G, steps):
|
| 11 |
+
"""
|
| 12 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 13 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 14 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 15 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 16 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 17 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 18 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 19 |
+
"""
|
| 20 |
+
assert len(G.shape) == 2
|
| 21 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 22 |
+
X = G
|
| 23 |
+
if G.size(0) > G.size(1):
|
| 24 |
+
X = X.T
|
| 25 |
+
|
| 26 |
+
# Ensure spectral norm is at most 1
|
| 27 |
+
X = X / (X.norm() + 1e-7)
|
| 28 |
+
# Perform the NS iterations
|
| 29 |
+
for _ in range(steps):
|
| 30 |
+
A = X @ X.T
|
| 31 |
+
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 32 |
+
X = a * X + B @ X
|
| 33 |
+
|
| 34 |
+
if G.size(0) > G.size(1):
|
| 35 |
+
X = X.T
|
| 36 |
+
return X
|
| 37 |
+
|
| 38 |
+
def normalize_range(range: Tuple[int, int], start):
|
| 39 |
+
return (range[0] - start, range[1] - start)
|
| 40 |
+
|
| 41 |
+
class MuonDistMeta:
|
| 42 |
+
|
| 43 |
+
# which buffer and bucket param belongs to
|
| 44 |
+
buffer_idx: int = 0
|
| 45 |
+
bucket_idx: int = 0
|
| 46 |
+
# param shape after tp
|
| 47 |
+
shape: torch.Size = None
|
| 48 |
+
# param location in global buffer
|
| 49 |
+
global_range: Tuple[int, int] = None
|
| 50 |
+
tp_split_dim: int = -1
|
| 51 |
+
# param location in global buffer (current dp slice)
|
| 52 |
+
local_range: Tuple[int, int] = None
|
| 53 |
+
|
| 54 |
+
def __init__(self, buffer_idx: int, bucket_idx: int, shape: torch.Size, global_range: Tuple[int, int], tp_split_dim: int):
|
| 55 |
+
self.buffer_idx = buffer_idx
|
| 56 |
+
self.bucket_idx = bucket_idx
|
| 57 |
+
self.shape = shape
|
| 58 |
+
self.global_range = global_range
|
| 59 |
+
self.tp_split_dim = tp_split_dim
|
| 60 |
+
|
| 61 |
+
def set_local_buffer_range(self, local_buffer_range: Tuple[int, int]):
|
| 62 |
+
start = max(self.global_range[0], local_buffer_range[0])
|
| 63 |
+
end = min(self.global_range[1], local_buffer_range[1])
|
| 64 |
+
self.local_range = (start, end) if start < end else (local_buffer_range[0], local_buffer_range[0])
|
| 65 |
+
|
| 66 |
+
# adjust LR based on: https://github.com/MoonshotAI/Moonlight
|
| 67 |
+
def adjust_lr_wd_for_muon(lr, matched_adamw_rms, param_shape):
|
| 68 |
+
A, B = param_shape[:2]
|
| 69 |
+
adjusted_ratio = math.sqrt(max(A, B)) * matched_adamw_rms
|
| 70 |
+
adjusted_lr = lr * adjusted_ratio
|
| 71 |
+
return adjusted_lr
|
| 72 |
+
|
| 73 |
+
# copy from https://github.com/KellerJordan/Muon/tree/master and support distributed solution
|
| 74 |
+
class Muon(torch.optim.Optimizer):
|
| 75 |
+
"""
|
| 76 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 77 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 78 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 79 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 80 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 81 |
+
Some warnings:
|
| 82 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 83 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 84 |
+
Arguments:
|
| 85 |
+
param_groups: The parameters to be optimized.
|
| 86 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 87 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 88 |
+
matched_adamw_rms: The AdamW Update RMS that Muon is designed to match. (0.2~0.4 recommended)
|
| 89 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 90 |
+
ns_steps: The number of Newton-Schulz iterations to run. (5 is probably always enough)
|
| 91 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 92 |
+
adamw_betas: The betas for the internal AdamW.
|
| 93 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 94 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 95 |
+
"""
|
| 96 |
+
def __init__(self, param_groups, lr=2e-2, weight_decay=0.1,
|
| 97 |
+
matched_adamw_rms=0.2, momentum=0.95, nesterov=True, ns_steps=5,
|
| 98 |
+
adamw_betas=(0.95, 0.95), adamw_eps=1e-8):
|
| 99 |
+
|
| 100 |
+
defaults = dict(lr=lr, weight_decay=weight_decay,
|
| 101 |
+
matched_adamw_rms=matched_adamw_rms,
|
| 102 |
+
momentum=momentum, nesterov=nesterov, ns_steps=ns_steps,
|
| 103 |
+
adamw_betas=adamw_betas, adamw_eps=adamw_eps,)
|
| 104 |
+
|
| 105 |
+
super().__init__(param_groups, defaults)
|
| 106 |
+
self.distributed_mode = False
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def enable_distributed_mode(self, global_buffer_sizes, dist_group, tp_group,
|
| 110 |
+
dist_metas: Dict[torch.nn.Parameter, MuonDistMeta]):
|
| 111 |
+
"""
|
| 112 |
+
enable distributed mode
|
| 113 |
+
Args:
|
| 114 |
+
global_buffer_size: global buffer size
|
| 115 |
+
dist group: optimizer sharding group
|
| 116 |
+
tp group: param tp group
|
| 117 |
+
dist metas: dist metas for all param
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
self.global_buffer_sizes = global_buffer_sizes
|
| 121 |
+
self.dist_group = dist_group
|
| 122 |
+
self.tp_group = tp_group
|
| 123 |
+
self.dist_metas = dist_metas
|
| 124 |
+
|
| 125 |
+
world_size = dist.get_world_size(dist_group)
|
| 126 |
+
rank = dist.get_rank(dist_group)
|
| 127 |
+
|
| 128 |
+
# calc local buffer range
|
| 129 |
+
self.local_buffer_sizes = []
|
| 130 |
+
self.local_buffer_ranges = []
|
| 131 |
+
# The outer loop is for different parameter groups (e.g., weights vs. biases)
|
| 132 |
+
for global_bucket_sizes in global_buffer_sizes: # <--- rename `global_bucket_sizes`
|
| 133 |
+
local_bucket_sizes = []
|
| 134 |
+
local_bucket_ranges = []
|
| 135 |
+
|
| 136 |
+
# The inner loop is for the different buckets within a single group
|
| 137 |
+
for (global_bucket_size, bucket_offset) in global_bucket_sizes:
|
| 138 |
+
# calculate the local range for THIS specific bucket
|
| 139 |
+
assert global_bucket_size % world_size == 0
|
| 140 |
+
local_bucket_size = global_bucket_size // world_size
|
| 141 |
+
# Renaming here makes the logic so much clearer
|
| 142 |
+
local_bucket_start = local_bucket_size * rank + bucket_offset
|
| 143 |
+
local_buffer_range = (local_bucket_start, local_bucket_start + local_bucket_size)
|
| 144 |
+
local_bucket_sizes.append(local_bucket_size)
|
| 145 |
+
local_bucket_ranges.append(local_buffer_range)
|
| 146 |
+
|
| 147 |
+
self.local_buffer_sizes.append(local_bucket_sizes)
|
| 148 |
+
self.local_buffer_ranges.append(local_bucket_ranges)
|
| 149 |
+
|
| 150 |
+
# calc local range for params
|
| 151 |
+
for dist_meta in dist_metas.values():
|
| 152 |
+
local_buffer_range = self.local_buffer_ranges[dist_meta.buffer_idx][dist_meta.bucket_idx]
|
| 153 |
+
dist_meta.set_local_buffer_range(local_buffer_range)
|
| 154 |
+
|
| 155 |
+
self.distributed_mode = True
|
| 156 |
+
|
| 157 |
+
def step(self):
|
| 158 |
+
|
| 159 |
+
dtype = torch.bfloat16
|
| 160 |
+
device = torch.cuda.current_device()
|
| 161 |
+
|
| 162 |
+
ns_inputs = {}
|
| 163 |
+
|
| 164 |
+
# update muon momentum first
|
| 165 |
+
# `self.param_groups` is already sharded
|
| 166 |
+
for group in self.param_groups:
|
| 167 |
+
|
| 168 |
+
if not group.get("use_muon", False):
|
| 169 |
+
continue
|
| 170 |
+
|
| 171 |
+
momentum = group['momentum']
|
| 172 |
+
params = group["params"]
|
| 173 |
+
|
| 174 |
+
for p in params:
|
| 175 |
+
|
| 176 |
+
g = p.grad
|
| 177 |
+
assert g is not None
|
| 178 |
+
# 1-dim grad for distributed mode
|
| 179 |
+
assert self.distributed_mode or g.dim() == 2
|
| 180 |
+
|
| 181 |
+
# prepare muon buffer in state
|
| 182 |
+
state = self.state[p]
|
| 183 |
+
if not "muon_buffer" in state:
|
| 184 |
+
state["muon_buffer"] = torch.zeros_like(g)
|
| 185 |
+
buf = state["muon_buffer"]
|
| 186 |
+
buf.mul_(momentum).add_(g)
|
| 187 |
+
|
| 188 |
+
# save to ns input
|
| 189 |
+
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
|
| 190 |
+
ns_inputs[p] = g.bfloat16()
|
| 191 |
+
|
| 192 |
+
# rewrite ns_inputs if distributed
|
| 193 |
+
"""
|
| 194 |
+
the four-step "acrobatic" journey of the ns_inputs data:
|
| 195 |
+
|
| 196 |
+
1. **DP `all_gather`**: (ZeRO) Gather all the sharded pieces from your data-parallel "column" to re-create your **full TP slice**.
|
| 197 |
+
2. **TP `all_gather`**: Gather all the TP slices from your tensor-parallel "row" to re-create the **full, 100% complete matrix**.
|
| 198 |
+
3. *(...Run the math on the full matrix...)*
|
| 199 |
+
4. **TP `shard`**: Shard the full `update` matrix back down to your **local TP slice**.
|
| 200 |
+
5. **DP `shard`**: (ZeRO) Shard that TP slice *again* back down to the **local DP/ZeRO slice** that you're responsible for.
|
| 201 |
+
|
| 202 |
+
"""
|
| 203 |
+
if self.distributed_mode:
|
| 204 |
+
|
| 205 |
+
# initialize buffers
|
| 206 |
+
# hanged the variable nnames to `local_bucket_size` and `global_bucket_size` for clarity
|
| 207 |
+
ns_input_local_buffers = [
|
| 208 |
+
[ torch.empty((local_bucket_size), device=device, dtype=dtype)
|
| 209 |
+
for local_bucket_size in local_bucket_sizes ]
|
| 210 |
+
for local_bucket_sizes in self.local_buffer_sizes
|
| 211 |
+
]
|
| 212 |
+
ns_input_global_buffers = [
|
| 213 |
+
[ torch.empty((global_bucket_size), device=device, dtype=dtype)
|
| 214 |
+
for (global_bucket_size, bucket_offset) in global_bucket_sizes ]
|
| 215 |
+
for global_bucket_sizes in self.global_buffer_sizes
|
| 216 |
+
]
|
| 217 |
+
|
| 218 |
+
# fill ns input data to local buffer
|
| 219 |
+
# looping through all params in local rank, ok.
|
| 220 |
+
for param, ns_input in ns_inputs.items():
|
| 221 |
+
dist_meta = self.dist_metas[param]
|
| 222 |
+
# ceate a reference to `ns_input_local_buffers`
|
| 223 |
+
# the update is in local rank, so we only need one `for` loop
|
| 224 |
+
ns_input_local_buffer = ns_input_local_buffers[dist_meta.buffer_idx][dist_meta.bucket_idx]
|
| 225 |
+
local_buffer_range = self.local_buffer_ranges[dist_meta.buffer_idx][dist_meta.bucket_idx]
|
| 226 |
+
local_range = normalize_range(dist_meta.local_range, local_buffer_range[0]) # local_range in global_range
|
| 227 |
+
# copy data into this `ns_input_local_buffer` memory
|
| 228 |
+
# because dist.all_gather requires a single, physically contiguous block of memory to work efficiently.
|
| 229 |
+
ns_input_local_buffer[local_range[0]:local_range[1]].copy_(ns_input.view(-1))
|
| 230 |
+
|
| 231 |
+
# all gather buffers: one bucket at a time. -- the "shipping" phase
|
| 232 |
+
for ns_input_global_buffer, ns_input_local_buffer in zip(ns_input_global_buffers, ns_input_local_buffers):
|
| 233 |
+
for ns_input_global_bucket, ns_input_local_bucket in zip(ns_input_global_buffer, ns_input_local_buffer):
|
| 234 |
+
dist.all_gather_into_tensor(ns_input_global_bucket, ns_input_local_bucket, group=self.dist_group)
|
| 235 |
+
|
| 236 |
+
# overwrite ns input with the `all_gather`-ed `ns_inputs` -- the "unpacking" phase
|
| 237 |
+
# this is the "opposite" of filling ns input data to local buffer
|
| 238 |
+
for p in ns_inputs.keys():
|
| 239 |
+
dist_meta = self.dist_metas[p]
|
| 240 |
+
ns_input_global_buffer = ns_input_global_buffers[dist_meta.buffer_idx][dist_meta.bucket_idx]
|
| 241 |
+
offset = self.global_buffer_sizes[dist_meta.buffer_idx][dist_meta.bucket_idx][1]
|
| 242 |
+
global_range = normalize_range(dist_meta.global_range, offset)
|
| 243 |
+
|
| 244 |
+
#ns_inputs[p] = ns_input_global_buffer[global_range[0]:global_range[1]].view(-1)
|
| 245 |
+
## bug fix 👆🏻-- overwrite ns input with the `all_gather`-ed `ns_inputs` -- the "unpacking" phase
|
| 246 |
+
#ns_inputs[p] = ns_input_global_buffer[global_range[0]:global_range[1]].view(-1)
|
| 247 |
+
# Unpack the 1D slice of data
|
| 248 |
+
unpacked_data = ns_input_global_buffer[global_range[0]:global_range[1]]
|
| 249 |
+
|
| 250 |
+
# THIS IS THE FIX: Reshape it to its correct 2D shape, not view(-1)
|
| 251 |
+
ns_inputs[p] = unpacked_data.view(dist_meta.shape)
|
| 252 |
+
|
| 253 |
+
# set tp info
|
| 254 |
+
tp_world_size = dist.get_world_size(self.tp_group)
|
| 255 |
+
tp_rank = dist.get_rank(self.tp_group)
|
| 256 |
+
|
| 257 |
+
# update muon momentum first
|
| 258 |
+
for group in self.param_groups:
|
| 259 |
+
|
| 260 |
+
if not group.get('use_muon', False):
|
| 261 |
+
continue
|
| 262 |
+
|
| 263 |
+
lr = group["lr"]
|
| 264 |
+
ns_steps = group["ns_steps"]
|
| 265 |
+
weight_decay = group["weight_decay"]
|
| 266 |
+
matched_adamw_rms = group["matched_adamw_rms"]
|
| 267 |
+
params = group["params"] # <-- add this
|
| 268 |
+
|
| 269 |
+
for p in params:
|
| 270 |
+
|
| 271 |
+
ns_input = ns_inputs[p]
|
| 272 |
+
tp_split_dim = -1
|
| 273 |
+
|
| 274 |
+
if self.distributed_mode:
|
| 275 |
+
dist_meta = self.dist_metas[p]
|
| 276 |
+
tp_split_dim = dist_meta.tp_split_dim
|
| 277 |
+
|
| 278 |
+
# gather tensor parallel ( if tp )
|
| 279 |
+
if tp_split_dim != -1:
|
| 280 |
+
ns_input_shards = [ torch.empty_like(ns_input) for _ in range(tp_world_size) ]
|
| 281 |
+
dist.all_gather(ns_input_shards, ns_input, self.tp_group)
|
| 282 |
+
ns_input = torch.cat(ns_input_shards, dim=tp_split_dim)
|
| 283 |
+
|
| 284 |
+
# calc update
|
| 285 |
+
update = zeropower_via_newtonschulz5(ns_input, steps=ns_steps)
|
| 286 |
+
|
| 287 |
+
# only local tp part
|
| 288 |
+
# this is effectivly "shadding" the newtonschulz-processed update,
|
| 289 |
+
# and keep only your assigned piece, discarding the rest
|
| 290 |
+
if tp_split_dim != -1:
|
| 291 |
+
update = update.chunk(tp_world_size, dim=tp_split_dim)[tp_rank]
|
| 292 |
+
|
| 293 |
+
# only local dp buffer part
|
| 294 |
+
if self.distributed_mode:
|
| 295 |
+
# local range in global range
|
| 296 |
+
# unpacking the tp sharded update to dp sharded update
|
| 297 |
+
local_range = normalize_range(dist_meta.local_range, dist_meta.global_range[0])
|
| 298 |
+
update = update.reshape(-1)[local_range[0]:local_range[1]]
|
| 299 |
+
|
| 300 |
+
# apply weight decay
|
| 301 |
+
p.data.mul_(1 - lr*weight_decay)
|
| 302 |
+
|
| 303 |
+
# adjust lr and apply update
|
| 304 |
+
adjusted_lr = adjust_lr_wd_for_muon(lr, matched_adamw_rms, ns_input.shape)
|
| 305 |
+
p.data.add_(update, alpha=-adjusted_lr)
|
| 306 |
+
|
| 307 |
+
# use adam for other params
|
| 308 |
+
for group in self.param_groups:
|
| 309 |
+
|
| 310 |
+
if group.get('use_muon', False):
|
| 311 |
+
continue
|
| 312 |
+
|
| 313 |
+
# init step
|
| 314 |
+
if 'step' in group:
|
| 315 |
+
group['step'] += 1
|
| 316 |
+
else:
|
| 317 |
+
group['step'] = 1
|
| 318 |
+
|
| 319 |
+
step = group['step']
|
| 320 |
+
params = group["params"]
|
| 321 |
+
lr = group['lr']
|
| 322 |
+
weight_decay = group['weight_decay']
|
| 323 |
+
beta1, beta2 = group['adamw_betas']
|
| 324 |
+
eps = group['adamw_eps']
|
| 325 |
+
|
| 326 |
+
for p in params:
|
| 327 |
+
|
| 328 |
+
g = p.grad
|
| 329 |
+
assert g is not None
|
| 330 |
+
state = self.state[p]
|
| 331 |
+
|
| 332 |
+
if len(state) == 0:
|
| 333 |
+
state['adamw_exp_avg'] = torch.zeros_like(g)
|
| 334 |
+
state['adamw_exp_avg_sq'] = torch.zeros_like(g)
|
| 335 |
+
|
| 336 |
+
buf1 = state['adamw_exp_avg']
|
| 337 |
+
buf2 = state['adamw_exp_avg_sq']
|
| 338 |
+
buf1.lerp_(g, 1-beta1)
|
| 339 |
+
buf2.lerp_(g.square(), 1-beta2)
|
| 340 |
+
|
| 341 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 342 |
+
|
| 343 |
+
bias_correction1 = 1 - beta1**step
|
| 344 |
+
bias_correction2 = 1 - beta2**step
|
| 345 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 346 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 347 |
+
p.data.add_(g, alpha=-lr/scale)
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
##--------------- tests/unit_tests/test_optimizer_muon.py -----------------
|
| 351 |
+
import os
|
| 352 |
+
|
| 353 |
+
import torch
|
| 354 |
+
import torch.distributed as dist
|
| 355 |
+
|
| 356 |
+
#from megatron.core.optimizer.muon import Muon, MuonDistMeta, normalize_range
|
| 357 |
+
|
| 358 |
+
def is_rank_0():
|
| 359 |
+
return torch.distributed.get_rank() == 0
|
| 360 |
+
|
| 361 |
+
def print_rank_0(*args):
|
| 362 |
+
if is_rank_0():
|
| 363 |
+
print(*args)
|
| 364 |
+
|
| 365 |
+
def cdiv(x: int, y: int):
|
| 366 |
+
return (x + y - 1) // y
|
| 367 |
+
|
| 368 |
+
def gen_param_and_grads():
|
| 369 |
+
|
| 370 |
+
# reset manual seed
|
| 371 |
+
torch.manual_seed(0)
|
| 372 |
+
torch.cuda.manual_seed(0)
|
| 373 |
+
device = 'cuda'
|
| 374 |
+
dtype = torch.float32
|
| 375 |
+
|
| 376 |
+
# gen params
|
| 377 |
+
params = [ torch.randn(shape, device=device, dtype=dtype) for shape in [
|
| 378 |
+
(100, 100), (124, 324), (456, 124), (676, 876), (128, 128), ] ]
|
| 379 |
+
|
| 380 |
+
# gen grads [ [ grad-list ] * step ]
|
| 381 |
+
grads = [ [ torch.randn_like(param) for param in params ] for _ in range(10) ]
|
| 382 |
+
|
| 383 |
+
return params, grads
|
| 384 |
+
|
| 385 |
+
def distribute_params(params, grads, tp_dims, dist_group, tp_group):
|
| 386 |
+
""" 将 param 进行 dist & tp shard, 仅保留自己的一部分 """
|
| 387 |
+
|
| 388 |
+
params = params.copy()
|
| 389 |
+
grads = [ step_grads.copy() for step_grads in grads ]
|
| 390 |
+
|
| 391 |
+
# tp dist
|
| 392 |
+
tp_size = dist.get_world_size(tp_group)
|
| 393 |
+
tp_rank = dist.get_rank(tp_group)
|
| 394 |
+
for i, param in enumerate(params):
|
| 395 |
+
tp_dim = tp_dims[i]
|
| 396 |
+
if tp_dim == -1:
|
| 397 |
+
continue
|
| 398 |
+
# Shard the parameter tensor along the `tp_dim` dimension.
|
| 399 |
+
assert param.shape[tp_dim] % tp_size == 0
|
| 400 |
+
local_range_start = param.shape[tp_dim] // tp_size * tp_rank
|
| 401 |
+
# range of the shard based on the rank of the current GOU in the given `tp_group``
|
| 402 |
+
local_range_end = param.shape[tp_dim] // tp_size * (tp_rank + 1)
|
| 403 |
+
# each GPU gets `[local_range_start:local_range_end, :] ` rows or `[:, local_range_start:local_range_end]` columns
|
| 404 |
+
params[i] = param[local_range_start:local_range_end, :] if tp_dim == 0 else \
|
| 405 |
+
param[:, local_range_start:local_range_end].contiguous()
|
| 406 |
+
# same logic applies to sharding the gradients for the current layer(param)
|
| 407 |
+
for step_grads in grads:
|
| 408 |
+
step_grads[i] = step_grads[i][local_range_start:local_range_end, :] if tp_dim == 0 else \
|
| 409 |
+
step_grads[i][:, local_range_start:local_range_end].contiguous()
|
| 410 |
+
|
| 411 |
+
# distributed
|
| 412 |
+
world_size = dist.get_world_size(dist_group)
|
| 413 |
+
rank = dist.get_rank(dist_group)
|
| 414 |
+
|
| 415 |
+
# global as the given DP group
|
| 416 |
+
# "global" here means "global to the TP group's worth of parameters."
|
| 417 |
+
global_buffer_size = sum(param.numel() for param in params)
|
| 418 |
+
local_buffer_size = cdiv(global_buffer_size, world_size)
|
| 419 |
+
# deciding the shard range for this rank
|
| 420 |
+
local_buffer_range = (local_buffer_size * rank, local_buffer_size * (rank + 1))
|
| 421 |
+
# padded global_buffer_size
|
| 422 |
+
global_buffer_size = local_buffer_size * world_size # fix global buffer size
|
| 423 |
+
|
| 424 |
+
numel_acc = 0
|
| 425 |
+
dist_params = []
|
| 426 |
+
dist_grads = [[] for _ in grads]
|
| 427 |
+
dist_metas = {}
|
| 428 |
+
for i, param in enumerate(params):
|
| 429 |
+
|
| 430 |
+
# gen meta
|
| 431 |
+
# align global buffer index(range) with local buffer index(range)
|
| 432 |
+
# see handwritten diagram for more details
|
| 433 |
+
numel = param.numel()
|
| 434 |
+
dist_meta = MuonDistMeta(0, 0, param.shape, (numel_acc, numel_acc + numel), tp_dims[i])
|
| 435 |
+
dist_meta.set_local_buffer_range(local_buffer_range)
|
| 436 |
+
numel_acc += numel
|
| 437 |
+
|
| 438 |
+
# skip if no element in this shard
|
| 439 |
+
if dist_meta.local_range[0] == dist_meta.local_range[1]:
|
| 440 |
+
continue
|
| 441 |
+
|
| 442 |
+
# gen param
|
| 443 |
+
|
| 444 |
+
# Convert the ABSOLUTE slice range (from the global virtual buffer)
|
| 445 |
+
# into a RELATIVE slice range (local to just this one parameter).
|
| 446 |
+
local_range = normalize_range(dist_meta.local_range, dist_meta.global_range[0])
|
| 447 |
+
|
| 448 |
+
# 1. Flatten the 2D parameter tensor into a 1D vector.
|
| 449 |
+
# 2. Use the relative range to slice out the piece this GPU is responsible for storing.
|
| 450 |
+
dist_param = param.view(-1)[local_range[0]:local_range[1]]
|
| 451 |
+
dist_params.append(dist_param)
|
| 452 |
+
dist_metas[dist_param] = dist_meta
|
| 453 |
+
|
| 454 |
+
# gen grad
|
| 455 |
+
# same logoc as the `gen param` scetion
|
| 456 |
+
for step, step_grads in enumerate(grads):
|
| 457 |
+
dist_grad = step_grads[i].view(-1)[local_range[0]:local_range[1]]
|
| 458 |
+
dist_grads[step].append(dist_grad)
|
| 459 |
+
|
| 460 |
+
return dist_params, dist_grads, global_buffer_size, dist_metas
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def test_muon_dist(dp_size, tp_size):
|
| 464 |
+
|
| 465 |
+
world_size = dist.get_world_size()
|
| 466 |
+
rank = dist.get_rank()
|
| 467 |
+
assert dp_size * tp_size == world_size
|
| 468 |
+
|
| 469 |
+
# init dist group
|
| 470 |
+
for i in range(tp_size):
|
| 471 |
+
# decide the tp group based on grod of size `tp_size`
|
| 472 |
+
ranks = range(i, world_size, tp_size)
|
| 473 |
+
group = dist.new_group(ranks)
|
| 474 |
+
# each rank finds its groups
|
| 475 |
+
if rank in ranks:
|
| 476 |
+
# groups are passed as instructions
|
| 477 |
+
dist_group = group
|
| 478 |
+
# init tp group
|
| 479 |
+
for i in range(dp_size):
|
| 480 |
+
ranks = range(i * tp_size, (i + 1) * tp_size)
|
| 481 |
+
group = dist.new_group(ranks)
|
| 482 |
+
if rank in ranks:
|
| 483 |
+
tp_group = group
|
| 484 |
+
|
| 485 |
+
print_rank_0("process group initialized")
|
| 486 |
+
|
| 487 |
+
params_ref, grads_ref = gen_param_and_grads()
|
| 488 |
+
params_test, grads_test = gen_param_and_grads()
|
| 489 |
+
tp_dims = [0, 1, -1, 1, 0]
|
| 490 |
+
|
| 491 |
+
# global_buffer_size is the padded buffer size of the dp group where the current rank belongs to
|
| 492 |
+
params_test, grads_test, global_buffer_size, dist_metas \
|
| 493 |
+
= distribute_params(params_test, grads_test, tp_dims, dist_group, tp_group)
|
| 494 |
+
|
| 495 |
+
muon_args = {
|
| 496 |
+
"use_muon": True,
|
| 497 |
+
"lr": 0.1,
|
| 498 |
+
"momentum": 0.9,
|
| 499 |
+
"nesterov": True,
|
| 500 |
+
"ns_steps": 5,
|
| 501 |
+
"weight_decay": 0.1,
|
| 502 |
+
}
|
| 503 |
+
|
| 504 |
+
# gen params
|
| 505 |
+
ref_param_groups = [{
|
| 506 |
+
"params": params_ref,
|
| 507 |
+
**muon_args
|
| 508 |
+
}]
|
| 509 |
+
test_param_groups = [{
|
| 510 |
+
"params": params_test,
|
| 511 |
+
**muon_args
|
| 512 |
+
}]
|
| 513 |
+
|
| 514 |
+
ref_muon = Muon(ref_param_groups)
|
| 515 |
+
test_muon = Muon(test_param_groups)
|
| 516 |
+
test_muon.enable_distributed_mode([[(global_buffer_size, 0)]], dist_group, tp_group, dist_metas)
|
| 517 |
+
|
| 518 |
+
for step in range(10):
|
| 519 |
+
|
| 520 |
+
# add grad
|
| 521 |
+
for i, grad in enumerate(grads_ref[step]):
|
| 522 |
+
params_ref[i].grad = grad.clone()
|
| 523 |
+
for i, grad in enumerate(grads_test[step]):
|
| 524 |
+
params_test[i].grad = grad.clone()
|
| 525 |
+
# step
|
| 526 |
+
ref_muon.step()
|
| 527 |
+
test_muon.step()
|
| 528 |
+
# distribute ref params
|
| 529 |
+
dist_ref_params, _, _, _ = distribute_params(params_ref, [], tp_dims, dist_group, tp_group)
|
| 530 |
+
# verify
|
| 531 |
+
for i, params_x2 in enumerate(zip(dist_ref_params, params_test)):
|
| 532 |
+
assert (params_x2[0] == params_x2[1]).all(), f"rank {rank} param {i} verify failed"
|
| 533 |
+
print_rank_0(f" - step {step} verify passed")
|
| 534 |
+
|
| 535 |
+
print_rank_0(f"dist dp = {dp_size} tp = {tp_size} test passed")
|
| 536 |
+
|
| 537 |
+
def run_process(rank, world_size):
|
| 538 |
+
|
| 539 |
+
# init dist
|
| 540 |
+
torch.cuda.set_device(rank)
|
| 541 |
+
dist.init_process_group("nccl", rank=rank, world_size=world_size)
|
| 542 |
+
|
| 543 |
+
test_muon_dist(dp_size=4, tp_size=2)
|
| 544 |
+
test_muon_dist(dp_size=2, tp_size=4)
|
| 545 |
+
|
| 546 |
+
dist.destroy_process_group()
|
| 547 |
+
|
| 548 |
+
if __name__ == "__main__":
|
| 549 |
+
|
| 550 |
+
world_size = 8
|
| 551 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
| 552 |
+
os.environ['MASTER_PORT'] = '12345'
|
| 553 |
+
os.environ['CUDA_DEVICE_MAX_CONNECTIONS'] = '1'
|
| 554 |
+
|
| 555 |
+
torch.multiprocessing.spawn(run_process, args=(world_size,), nprocs=world_size, join=True)
|
distributed_muon_cpu.ipynb
ADDED
|
@@ -0,0 +1,719 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "s0j9J9zu4v00"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"**Muon is scalable for LLM Trainings -- Optimized and tested code**"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": null,
|
| 15 |
+
"metadata": {
|
| 16 |
+
"colab": {
|
| 17 |
+
"base_uri": "https://localhost:8080/"
|
| 18 |
+
},
|
| 19 |
+
"id": "kXO67qguR1cD",
|
| 20 |
+
"outputId": "74e0a52d-36dd-4313-e9d5-76763a06d591"
|
| 21 |
+
},
|
| 22 |
+
"outputs": [
|
| 23 |
+
{
|
| 24 |
+
"name": "stdout",
|
| 25 |
+
"output_type": "stream",
|
| 26 |
+
"text": [
|
| 27 |
+
"✅ Test code written to /content/test_muon_dist.py\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"Now run it with:\n",
|
| 30 |
+
"!python /content/test_muon_dist.py\n"
|
| 31 |
+
]
|
| 32 |
+
}
|
| 33 |
+
],
|
| 34 |
+
"source": [
|
| 35 |
+
"\"\"\"\n",
|
| 36 |
+
"COLAB WORKAROUND: Write code to file and run as subprocess\n",
|
| 37 |
+
"This avoids the multiprocessing limitations in Jupyter notebooks\n",
|
| 38 |
+
"\"\"\"\n",
|
| 39 |
+
"test_code = '''\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"# Step 1: Write the distributed test code to a file\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"import os\n",
|
| 44 |
+
"import sys\n",
|
| 45 |
+
"import torch\n",
|
| 46 |
+
"import torch.distributed as dist\n",
|
| 47 |
+
"import torch.multiprocessing as mp\n",
|
| 48 |
+
"import math\n",
|
| 49 |
+
"from typing import Tuple, Dict\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"# copy from https://github.com/KellerJordan/Muon/tree/master\n",
|
| 53 |
+
"# @torch.compile\n",
|
| 54 |
+
"def zeropower_via_newtonschulz5(G, steps):\n",
|
| 55 |
+
" \"\"\"\n",
|
| 56 |
+
" Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a\n",
|
| 57 |
+
" quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose\n",
|
| 58 |
+
" of minimizing steps, it turns out to be empirically effective to keep increasing the slope at\n",
|
| 59 |
+
" zero even beyond the point where the iteration no longer converges all the way to one everywhere\n",
|
| 60 |
+
" on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T\n",
|
| 61 |
+
" where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model\n",
|
| 62 |
+
" performance at all relative to UV^T, where USV^T = G is the SVD.\n",
|
| 63 |
+
" \"\"\"\n",
|
| 64 |
+
" assert len(G.shape) == 2\n",
|
| 65 |
+
" a, b, c = (3.4445, -4.7750, 2.0315)\n",
|
| 66 |
+
" X = G\n",
|
| 67 |
+
" if G.size(0) > G.size(1):\n",
|
| 68 |
+
" X = X.T\n",
|
| 69 |
+
"\n",
|
| 70 |
+
" # Ensure spectral norm is at most 1\n",
|
| 71 |
+
" X = X / (X.norm() + 1e-7)\n",
|
| 72 |
+
" # Perform the NS iterations\n",
|
| 73 |
+
" for _ in range(steps):\n",
|
| 74 |
+
" A = X @ X.T\n",
|
| 75 |
+
" B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng\n",
|
| 76 |
+
" X = a * X + B @ X\n",
|
| 77 |
+
"\n",
|
| 78 |
+
" if G.size(0) > G.size(1):\n",
|
| 79 |
+
" X = X.T\n",
|
| 80 |
+
" return X\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"def normalize_range(range: Tuple[int, int], start):\n",
|
| 83 |
+
" return (range[0] - start, range[1] - start)\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"class MuonDistMeta:\n",
|
| 86 |
+
"\n",
|
| 87 |
+
" # which buffer and bucket param belongs to\n",
|
| 88 |
+
" buffer_idx: int = 0\n",
|
| 89 |
+
" bucket_idx: int = 0\n",
|
| 90 |
+
" # param shape after tp\n",
|
| 91 |
+
" shape: torch.Size = None\n",
|
| 92 |
+
" # param location in global buffer\n",
|
| 93 |
+
" global_range: Tuple[int, int] = None\n",
|
| 94 |
+
" tp_split_dim: int = -1\n",
|
| 95 |
+
" # param location in global buffer (current dp slice)\n",
|
| 96 |
+
" local_range: Tuple[int, int] = None\n",
|
| 97 |
+
"\n",
|
| 98 |
+
" def __init__(self, buffer_idx: int, bucket_idx: int, shape: torch.Size, global_range: Tuple[int, int], tp_split_dim: int):\n",
|
| 99 |
+
" self.buffer_idx = buffer_idx\n",
|
| 100 |
+
" self.bucket_idx = bucket_idx\n",
|
| 101 |
+
" self.shape = shape\n",
|
| 102 |
+
" self.global_range = global_range\n",
|
| 103 |
+
" self.tp_split_dim = tp_split_dim\n",
|
| 104 |
+
"\n",
|
| 105 |
+
" def set_local_buffer_range(self, local_buffer_range: Tuple[int, int]):\n",
|
| 106 |
+
" start = max(self.global_range[0], local_buffer_range[0])\n",
|
| 107 |
+
" end = min(self.global_range[1], local_buffer_range[1])\n",
|
| 108 |
+
" self.local_range = (start, end) if start < end else (local_buffer_range[0], local_buffer_range[0])\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"# adjust LR based on: https://github.com/MoonshotAI/Moonlight\n",
|
| 111 |
+
"def adjust_lr_wd_for_muon(lr, matched_adamw_rms, param_shape):\n",
|
| 112 |
+
" A, B = param_shape[:2]\n",
|
| 113 |
+
" adjusted_ratio = math.sqrt(max(A, B)) * matched_adamw_rms\n",
|
| 114 |
+
" adjusted_lr = lr * adjusted_ratio\n",
|
| 115 |
+
" return adjusted_lr\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"# copy from https://github.com/KellerJordan/Muon/tree/master and support distributed solution\n",
|
| 118 |
+
"class Muon(torch.optim.Optimizer):\n",
|
| 119 |
+
" \"\"\"\n",
|
| 120 |
+
" Muon - MomentUm Orthogonalized by Newton-schulz\n",
|
| 121 |
+
" Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-\n",
|
| 122 |
+
" processing step, in which each 2D parameter's update is replaced with the nearest orthogonal\n",
|
| 123 |
+
" matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has\n",
|
| 124 |
+
" the advantage that it can be stably run in bfloat16 on the GPU.\n",
|
| 125 |
+
" Some warnings:\n",
|
| 126 |
+
" - We believe this optimizer is unlikely to work well for training with small batch size.\n",
|
| 127 |
+
" - We believe it may not work well for finetuning pretrained models, but we haven't tested this.\n",
|
| 128 |
+
" Arguments:\n",
|
| 129 |
+
" param_groups: The parameters to be optimized.\n",
|
| 130 |
+
" lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)\n",
|
| 131 |
+
" momentum: The momentum used by the internal SGD. (0.95 is a good default)\n",
|
| 132 |
+
" matched_adamw_rms: The AdamW Update RMS that Muon is designed to match. (0.2~0.4 recommended)\n",
|
| 133 |
+
" nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)\n",
|
| 134 |
+
" ns_steps: The number of Newton-Schulz iterations to run. (5 is probably always enough)\n",
|
| 135 |
+
" {0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.\n",
|
| 136 |
+
" adamw_betas: The betas for the internal AdamW.\n",
|
| 137 |
+
" adamw_eps: The epsilon for the internal AdamW.\n",
|
| 138 |
+
" adamw_wd: The weight decay for the internal AdamW.\n",
|
| 139 |
+
" \"\"\"\n",
|
| 140 |
+
" def __init__(self, param_groups, lr=2e-2, weight_decay=0.1,\n",
|
| 141 |
+
" matched_adamw_rms=0.2, momentum=0.95, nesterov=True, ns_steps=5,\n",
|
| 142 |
+
" adamw_betas=(0.95, 0.95), adamw_eps=1e-8):\n",
|
| 143 |
+
"\n",
|
| 144 |
+
" defaults = dict(lr=lr, weight_decay=weight_decay,\n",
|
| 145 |
+
" matched_adamw_rms=matched_adamw_rms,\n",
|
| 146 |
+
" momentum=momentum, nesterov=nesterov, ns_steps=ns_steps,\n",
|
| 147 |
+
" adamw_betas=adamw_betas, adamw_eps=adamw_eps,)\n",
|
| 148 |
+
"\n",
|
| 149 |
+
" super().__init__(param_groups, defaults)\n",
|
| 150 |
+
" self.distributed_mode = False\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"\n",
|
| 153 |
+
" def enable_distributed_mode(self, global_buffer_sizes, dist_group, tp_group,\n",
|
| 154 |
+
" dist_metas: Dict[torch.nn.Parameter, MuonDistMeta]):\n",
|
| 155 |
+
" \"\"\"\n",
|
| 156 |
+
" enable distributed mode\n",
|
| 157 |
+
" Args:\n",
|
| 158 |
+
" global_buffer_size: global buffer size\n",
|
| 159 |
+
" dist group: optimizer sharding group\n",
|
| 160 |
+
" tp group: param tp group\n",
|
| 161 |
+
" dist metas: dist metas for all param\n",
|
| 162 |
+
" \"\"\"\n",
|
| 163 |
+
"\n",
|
| 164 |
+
" self.global_buffer_sizes = global_buffer_sizes\n",
|
| 165 |
+
" self.dist_group = dist_group\n",
|
| 166 |
+
" self.tp_group = tp_group\n",
|
| 167 |
+
" self.dist_metas = dist_metas\n",
|
| 168 |
+
"\n",
|
| 169 |
+
" world_size = dist.get_world_size(dist_group)\n",
|
| 170 |
+
" rank = dist.get_rank(dist_group)\n",
|
| 171 |
+
"\n",
|
| 172 |
+
" # calc local buffer range\n",
|
| 173 |
+
" self.local_buffer_sizes = []\n",
|
| 174 |
+
" self.local_buffer_ranges = []\n",
|
| 175 |
+
" # The outer loop is for different parameter groups (e.g., weights vs. biases)\n",
|
| 176 |
+
" for global_bucket_sizes in global_buffer_sizes: # <--- rename `global_bucket_sizes`\n",
|
| 177 |
+
" local_bucket_sizes = []\n",
|
| 178 |
+
" local_bucket_ranges = []\n",
|
| 179 |
+
"\n",
|
| 180 |
+
" # The inner loop is for the different buckets within a single group\n",
|
| 181 |
+
" for (global_bucket_size, bucket_offset) in global_bucket_sizes:\n",
|
| 182 |
+
" # calculate the local range for THIS specific bucket\n",
|
| 183 |
+
" assert global_bucket_size % world_size == 0\n",
|
| 184 |
+
" local_bucket_size = global_bucket_size // world_size\n",
|
| 185 |
+
" # Renaming here makes the logic so much clearer\n",
|
| 186 |
+
" local_bucket_start = local_bucket_size * rank + bucket_offset\n",
|
| 187 |
+
" local_buffer_range = (local_bucket_start, local_bucket_start + local_bucket_size)\n",
|
| 188 |
+
" local_bucket_sizes.append(local_bucket_size)\n",
|
| 189 |
+
" local_bucket_ranges.append(local_buffer_range)\n",
|
| 190 |
+
"\n",
|
| 191 |
+
" self.local_buffer_sizes.append(local_bucket_sizes)\n",
|
| 192 |
+
" self.local_buffer_ranges.append(local_bucket_ranges)\n",
|
| 193 |
+
"\n",
|
| 194 |
+
" # calc local range for params\n",
|
| 195 |
+
" for dist_meta in dist_metas.values():\n",
|
| 196 |
+
" local_buffer_range = self.local_buffer_ranges[dist_meta.buffer_idx][dist_meta.bucket_idx]\n",
|
| 197 |
+
" dist_meta.set_local_buffer_range(local_buffer_range)\n",
|
| 198 |
+
"\n",
|
| 199 |
+
" self.distributed_mode = True\n",
|
| 200 |
+
"\n",
|
| 201 |
+
" def step(self):\n",
|
| 202 |
+
" first_param = self.param_groups[0]['params'][0]\n",
|
| 203 |
+
" device = first_param.device\n",
|
| 204 |
+
" dtype = torch.bfloat16\n",
|
| 205 |
+
"\n",
|
| 206 |
+
" ns_inputs = {}\n",
|
| 207 |
+
"\n",
|
| 208 |
+
" # update muon momentum first\n",
|
| 209 |
+
" # `self.param_groups` is already sharded\n",
|
| 210 |
+
" for group in self.param_groups:\n",
|
| 211 |
+
"\n",
|
| 212 |
+
" if not group.get(\"use_muon\", False):\n",
|
| 213 |
+
" continue\n",
|
| 214 |
+
"\n",
|
| 215 |
+
" momentum = group['momentum']\n",
|
| 216 |
+
" params = group[\"params\"]\n",
|
| 217 |
+
"\n",
|
| 218 |
+
" for p in params:\n",
|
| 219 |
+
"\n",
|
| 220 |
+
" g = p.grad\n",
|
| 221 |
+
" assert g is not None\n",
|
| 222 |
+
" # 1-dim grad for distributed mode\n",
|
| 223 |
+
" assert self.distributed_mode or g.dim() == 2\n",
|
| 224 |
+
"\n",
|
| 225 |
+
" # prepare muon buffer in state\n",
|
| 226 |
+
" state = self.state[p]\n",
|
| 227 |
+
" if not \"muon_buffer\" in state:\n",
|
| 228 |
+
" state[\"muon_buffer\"] = torch.zeros_like(g)\n",
|
| 229 |
+
" buf = state[\"muon_buffer\"]\n",
|
| 230 |
+
" buf.mul_(momentum).add_(g)\n",
|
| 231 |
+
"\n",
|
| 232 |
+
" # save to ns input\n",
|
| 233 |
+
" g = g.add(buf, alpha=momentum) if group['nesterov'] else buf\n",
|
| 234 |
+
" ns_inputs[p] = g.bfloat16()\n",
|
| 235 |
+
"\n",
|
| 236 |
+
" # rewrite ns_inputs if distributed\n",
|
| 237 |
+
" \"\"\"\n",
|
| 238 |
+
" the four-step \"acrobatic\" journey of the ns_inputs data:\n",
|
| 239 |
+
"\n",
|
| 240 |
+
" 1. **DP `all_gather`**: (ZeRO) Gather all the sharded pieces from your data-parallel \"column\" to re-create your **full TP slice**.\n",
|
| 241 |
+
" 2. **TP `all_gather`**: Gather all the TP slices from your tensor-parallel \"row\" to re-create the **full, 100% complete matrix**.\n",
|
| 242 |
+
" 3. *(...Run the math on the full matrix...)*\n",
|
| 243 |
+
" 4. **TP `shard`**: Shard the full `update` matrix back down to your **local TP slice**.\n",
|
| 244 |
+
" 5. **DP `shard`**: (ZeRO) Shard that TP slice *again* back down to the **local DP/ZeRO slice** that you're responsible for.\n",
|
| 245 |
+
"\n",
|
| 246 |
+
" \"\"\"\n",
|
| 247 |
+
" if self.distributed_mode:\n",
|
| 248 |
+
"\n",
|
| 249 |
+
" # initialize buffers\n",
|
| 250 |
+
" # hanged the variable nnames to `local_bucket_size` and `global_bucket_size` for clarity\n",
|
| 251 |
+
" ns_input_local_buffers = [\n",
|
| 252 |
+
" [ torch.empty((local_bucket_size), device=device, dtype=dtype)\n",
|
| 253 |
+
" for local_bucket_size in local_bucket_sizes ]\n",
|
| 254 |
+
" for local_bucket_sizes in self.local_buffer_sizes\n",
|
| 255 |
+
" ]\n",
|
| 256 |
+
" ns_input_global_buffers = [\n",
|
| 257 |
+
" [ torch.empty((global_bucket_size), device=device, dtype=dtype)\n",
|
| 258 |
+
" for (global_bucket_size, bucket_offset) in global_bucket_sizes ]\n",
|
| 259 |
+
" for global_bucket_sizes in self.global_buffer_sizes\n",
|
| 260 |
+
" ]\n",
|
| 261 |
+
"\n",
|
| 262 |
+
" # fill ns input data to local buffer\n",
|
| 263 |
+
" # looping through all params in local rank, ok.\n",
|
| 264 |
+
" for param, ns_input in ns_inputs.items():\n",
|
| 265 |
+
" dist_meta = self.dist_metas[param]\n",
|
| 266 |
+
" # ceate a reference to `ns_input_local_buffers`\n",
|
| 267 |
+
" # the update is in local rank, so we only need one `for` loop\n",
|
| 268 |
+
" ns_input_local_buffer = ns_input_local_buffers[dist_meta.buffer_idx][dist_meta.bucket_idx]\n",
|
| 269 |
+
" local_buffer_range = self.local_buffer_ranges[dist_meta.buffer_idx][dist_meta.bucket_idx]\n",
|
| 270 |
+
" local_range = normalize_range(dist_meta.local_range, local_buffer_range[0]) # local_range in global_range\n",
|
| 271 |
+
" # copy data into this `ns_input_local_buffer` memory\n",
|
| 272 |
+
" # because dist.all_gather requires a single, physically contiguous block of memory to work efficiently.\n",
|
| 273 |
+
" ns_input_local_buffer[local_range[0]:local_range[1]].copy_(ns_input.view(-1))\n",
|
| 274 |
+
"\n",
|
| 275 |
+
" # all gather buffers: one bucket at a time. -- the \"shipping\" phase\n",
|
| 276 |
+
" for ns_input_global_buffer, ns_input_local_buffer in zip(ns_input_global_buffers, ns_input_local_buffers):\n",
|
| 277 |
+
" for ns_input_global_bucket, ns_input_local_bucket in zip(ns_input_global_buffer, ns_input_local_buffer):\n",
|
| 278 |
+
" dist.all_gather_into_tensor(ns_input_global_bucket, ns_input_local_bucket, group=self.dist_group)\n",
|
| 279 |
+
"\n",
|
| 280 |
+
" # overwrite ns input with the `all_gather`-ed `ns_inputs` -- the \"unpacking\" phase\n",
|
| 281 |
+
" # this is the \"opposite\" of filling ns input data to local buffer\n",
|
| 282 |
+
" for p in ns_inputs.keys():\n",
|
| 283 |
+
" dist_meta = self.dist_metas[p]\n",
|
| 284 |
+
" ns_input_global_buffer = ns_input_global_buffers[dist_meta.buffer_idx][dist_meta.bucket_idx]\n",
|
| 285 |
+
" offset = self.global_buffer_sizes[dist_meta.buffer_idx][dist_meta.bucket_idx][1]\n",
|
| 286 |
+
" global_range = normalize_range(dist_meta.global_range, offset)\n",
|
| 287 |
+
"\n",
|
| 288 |
+
" #ns_inputs[p] = ns_input_global_buffer[global_range[0]:global_range[1]].view(-1)\n",
|
| 289 |
+
" ## bug fix 👆🏻-- overwrite ns input with the `all_gather`-ed `ns_inputs` -- the \"unpacking\" phase\n",
|
| 290 |
+
" #ns_inputs[p] = ns_input_global_buffer[global_range[0]:global_range[1]].view(-1)\n",
|
| 291 |
+
" # Unpack the 1D slice of data\n",
|
| 292 |
+
" unpacked_data = ns_input_global_buffer[global_range[0]:global_range[1]]\n",
|
| 293 |
+
"\n",
|
| 294 |
+
" # THIS IS THE FIX: Reshape it to its correct 2D shape, not view(-1)\n",
|
| 295 |
+
" ns_inputs[p] = unpacked_data.view(dist_meta.shape)\n",
|
| 296 |
+
"\n",
|
| 297 |
+
" # set tp info\n",
|
| 298 |
+
" tp_world_size = dist.get_world_size(self.tp_group)\n",
|
| 299 |
+
" tp_rank = dist.get_rank(self.tp_group)\n",
|
| 300 |
+
"\n",
|
| 301 |
+
" # update muon momentum first\n",
|
| 302 |
+
" for group in self.param_groups:\n",
|
| 303 |
+
"\n",
|
| 304 |
+
" if not group.get('use_muon', False):\n",
|
| 305 |
+
" continue\n",
|
| 306 |
+
"\n",
|
| 307 |
+
" lr = group[\"lr\"]\n",
|
| 308 |
+
" ns_steps = group[\"ns_steps\"]\n",
|
| 309 |
+
" weight_decay = group[\"weight_decay\"]\n",
|
| 310 |
+
" matched_adamw_rms = group[\"matched_adamw_rms\"]\n",
|
| 311 |
+
" params = group[\"params\"] # <-- add this\n",
|
| 312 |
+
"\n",
|
| 313 |
+
" for p in params:\n",
|
| 314 |
+
"\n",
|
| 315 |
+
" ns_input = ns_inputs[p]\n",
|
| 316 |
+
" tp_split_dim = -1\n",
|
| 317 |
+
"\n",
|
| 318 |
+
" if self.distributed_mode:\n",
|
| 319 |
+
" dist_meta = self.dist_metas[p]\n",
|
| 320 |
+
" tp_split_dim = dist_meta.tp_split_dim\n",
|
| 321 |
+
"\n",
|
| 322 |
+
" # gather tensor parallel ( if tp )\n",
|
| 323 |
+
" if tp_split_dim != -1:\n",
|
| 324 |
+
" ns_input_shards = [ torch.empty_like(ns_input) for _ in range(tp_world_size) ]\n",
|
| 325 |
+
" dist.all_gather(ns_input_shards, ns_input, self.tp_group)\n",
|
| 326 |
+
" ns_input = torch.cat(ns_input_shards, dim=tp_split_dim)\n",
|
| 327 |
+
"\n",
|
| 328 |
+
" # calc update\n",
|
| 329 |
+
" update = zeropower_via_newtonschulz5(ns_input, steps=ns_steps)\n",
|
| 330 |
+
"\n",
|
| 331 |
+
" # only local tp part\n",
|
| 332 |
+
" # this is effectivly \"shadding\" the newtonschulz-processed update,\n",
|
| 333 |
+
" # and keep only your assigned piece, discarding the rest\n",
|
| 334 |
+
" if tp_split_dim != -1:\n",
|
| 335 |
+
" update = update.chunk(tp_world_size, dim=tp_split_dim)[tp_rank]\n",
|
| 336 |
+
"\n",
|
| 337 |
+
" # only local dp buffer part\n",
|
| 338 |
+
" if self.distributed_mode:\n",
|
| 339 |
+
" # local range in global range\n",
|
| 340 |
+
" # unpacking the tp sharded update to dp sharded update\n",
|
| 341 |
+
" local_range = normalize_range(dist_meta.local_range, dist_meta.global_range[0])\n",
|
| 342 |
+
" update = update.reshape(-1)[local_range[0]:local_range[1]]\n",
|
| 343 |
+
"\n",
|
| 344 |
+
" # apply weight decay\n",
|
| 345 |
+
" p.data.mul_(1 - lr*weight_decay)\n",
|
| 346 |
+
"\n",
|
| 347 |
+
" # adjust lr and apply update\n",
|
| 348 |
+
" adjusted_lr = adjust_lr_wd_for_muon(lr, matched_adamw_rms, ns_input.shape)\n",
|
| 349 |
+
" p.data.add_(update, alpha=-adjusted_lr)\n",
|
| 350 |
+
"\n",
|
| 351 |
+
" # use adam for other params\n",
|
| 352 |
+
" for group in self.param_groups:\n",
|
| 353 |
+
"\n",
|
| 354 |
+
" if group.get('use_muon', False):\n",
|
| 355 |
+
" continue\n",
|
| 356 |
+
"\n",
|
| 357 |
+
" # init step\n",
|
| 358 |
+
" if 'step' in group:\n",
|
| 359 |
+
" group['step'] += 1\n",
|
| 360 |
+
" else:\n",
|
| 361 |
+
" group['step'] = 1\n",
|
| 362 |
+
"\n",
|
| 363 |
+
" step = group['step']\n",
|
| 364 |
+
" params = group[\"params\"]\n",
|
| 365 |
+
" lr = group['lr']\n",
|
| 366 |
+
" weight_decay = group['weight_decay']\n",
|
| 367 |
+
" beta1, beta2 = group['adamw_betas']\n",
|
| 368 |
+
" eps = group['adamw_eps']\n",
|
| 369 |
+
"\n",
|
| 370 |
+
" for p in params:\n",
|
| 371 |
+
"\n",
|
| 372 |
+
" g = p.grad\n",
|
| 373 |
+
" assert g is not None\n",
|
| 374 |
+
" state = self.state[p]\n",
|
| 375 |
+
"\n",
|
| 376 |
+
" if len(state) == 0:\n",
|
| 377 |
+
" state['adamw_exp_avg'] = torch.zeros_like(g)\n",
|
| 378 |
+
" state['adamw_exp_avg_sq'] = torch.zeros_like(g)\n",
|
| 379 |
+
"\n",
|
| 380 |
+
" buf1 = state['adamw_exp_avg']\n",
|
| 381 |
+
" buf2 = state['adamw_exp_avg_sq']\n",
|
| 382 |
+
" buf1.lerp_(g, 1-beta1)\n",
|
| 383 |
+
" buf2.lerp_(g.square(), 1-beta2)\n",
|
| 384 |
+
"\n",
|
| 385 |
+
" g = buf1 / (eps + buf2.sqrt())\n",
|
| 386 |
+
"\n",
|
| 387 |
+
" bias_correction1 = 1 - beta1**step\n",
|
| 388 |
+
" bias_correction2 = 1 - beta2**step\n",
|
| 389 |
+
" scale = bias_correction1 / bias_correction2**0.5\n",
|
| 390 |
+
" p.data.mul_(1 - lr * weight_decay)\n",
|
| 391 |
+
" p.data.add_(g, alpha=-lr/scale)\n",
|
| 392 |
+
"\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"##--------------- tests/unit_tests/test_optimizer_muon.py -----------------\n",
|
| 395 |
+
"import os\n",
|
| 396 |
+
"\n",
|
| 397 |
+
"import torch\n",
|
| 398 |
+
"import torch.distributed as dist\n",
|
| 399 |
+
"\n",
|
| 400 |
+
"#from megatron.core.optimizer.muon import Muon, MuonDistMeta, normalize_range\n",
|
| 401 |
+
"\n",
|
| 402 |
+
"def is_rank_0():\n",
|
| 403 |
+
" return torch.distributed.get_rank() == 0\n",
|
| 404 |
+
"\n",
|
| 405 |
+
"def print_rank_0(*args):\n",
|
| 406 |
+
" if is_rank_0():\n",
|
| 407 |
+
" print(*args)\n",
|
| 408 |
+
"\n",
|
| 409 |
+
"def cdiv(x: int, y: int):\n",
|
| 410 |
+
" return (x + y - 1) // y\n",
|
| 411 |
+
"\n",
|
| 412 |
+
"def gen_param_and_grads():\n",
|
| 413 |
+
"\n",
|
| 414 |
+
" # reset manual seed\n",
|
| 415 |
+
" torch.manual_seed(0)\n",
|
| 416 |
+
" device = 'cpu'\n",
|
| 417 |
+
" dtype = torch.float32\n",
|
| 418 |
+
"\n",
|
| 419 |
+
" # gen params\n",
|
| 420 |
+
" params = [ torch.randn(shape, device=device, dtype=dtype) for shape in [\n",
|
| 421 |
+
" (100, 100), (124, 324), (456, 124), (676, 876), (128, 128), ] ]\n",
|
| 422 |
+
"\n",
|
| 423 |
+
" # gen grads [ [ grad-list ] * step ]\n",
|
| 424 |
+
" grads = [ [ torch.randn_like(param) for param in params ] for _ in range(10) ]\n",
|
| 425 |
+
"\n",
|
| 426 |
+
" return params, grads\n",
|
| 427 |
+
"\n",
|
| 428 |
+
"def distribute_params(params, grads, tp_dims, dist_group, tp_group):\n",
|
| 429 |
+
" \"\"\" 将 param 进行 dist & tp shard, 仅保留自己的一部分 \"\"\"\n",
|
| 430 |
+
"\n",
|
| 431 |
+
" params = params.copy()\n",
|
| 432 |
+
" grads = [ step_grads.copy() for step_grads in grads ]\n",
|
| 433 |
+
"\n",
|
| 434 |
+
" # tp dist\n",
|
| 435 |
+
" tp_size = dist.get_world_size(tp_group)\n",
|
| 436 |
+
" tp_rank = dist.get_rank(tp_group)\n",
|
| 437 |
+
" for i, param in enumerate(params):\n",
|
| 438 |
+
" tp_dim = tp_dims[i]\n",
|
| 439 |
+
" if tp_dim == -1:\n",
|
| 440 |
+
" continue\n",
|
| 441 |
+
" # Shard the parameter tensor along the `tp_dim` dimension.\n",
|
| 442 |
+
" assert param.shape[tp_dim] % tp_size == 0\n",
|
| 443 |
+
" local_range_start = param.shape[tp_dim] // tp_size * tp_rank\n",
|
| 444 |
+
" # range of the shard based on the rank of the current GOU in the given `tp_group``\n",
|
| 445 |
+
" local_range_end = param.shape[tp_dim] // tp_size * (tp_rank + 1)\n",
|
| 446 |
+
" # each GPU gets `[local_range_start:local_range_end, :] ` rows or `[:, local_range_start:local_range_end]` columns\n",
|
| 447 |
+
" params[i] = param[local_range_start:local_range_end, :] if tp_dim == 0 else \\\n",
|
| 448 |
+
" param[:, local_range_start:local_range_end].contiguous()\n",
|
| 449 |
+
" # same logic applies to sharding the gradients for the current layer(param)\n",
|
| 450 |
+
" for step_grads in grads:\n",
|
| 451 |
+
" step_grads[i] = step_grads[i][local_range_start:local_range_end, :] if tp_dim == 0 else \\\n",
|
| 452 |
+
" step_grads[i][:, local_range_start:local_range_end].contiguous()\n",
|
| 453 |
+
"\n",
|
| 454 |
+
" # distributed\n",
|
| 455 |
+
" world_size = dist.get_world_size(dist_group)\n",
|
| 456 |
+
" rank = dist.get_rank(dist_group)\n",
|
| 457 |
+
"\n",
|
| 458 |
+
" # global as the given DP group\n",
|
| 459 |
+
" # \"global\" here means \"global to the TP group's worth of parameters.\"\n",
|
| 460 |
+
" global_buffer_size = sum(param.numel() for param in params)\n",
|
| 461 |
+
" local_buffer_size = cdiv(global_buffer_size, world_size)\n",
|
| 462 |
+
" # deciding the shard range for this rank\n",
|
| 463 |
+
" local_buffer_range = (local_buffer_size * rank, local_buffer_size * (rank + 1))\n",
|
| 464 |
+
" # padded global_buffer_size\n",
|
| 465 |
+
" global_buffer_size = local_buffer_size * world_size # fix global buffer size\n",
|
| 466 |
+
"\n",
|
| 467 |
+
" numel_acc = 0\n",
|
| 468 |
+
" dist_params = []\n",
|
| 469 |
+
" dist_grads = [[] for _ in grads]\n",
|
| 470 |
+
" dist_metas = {}\n",
|
| 471 |
+
" for i, param in enumerate(params):\n",
|
| 472 |
+
"\n",
|
| 473 |
+
" # gen meta\n",
|
| 474 |
+
" # align global buffer index(range) with local buffer index(range)\n",
|
| 475 |
+
" # see handwritten diagram for more details\n",
|
| 476 |
+
" numel = param.numel()\n",
|
| 477 |
+
" dist_meta = MuonDistMeta(0, 0, param.shape, (numel_acc, numel_acc + numel), tp_dims[i])\n",
|
| 478 |
+
" dist_meta.set_local_buffer_range(local_buffer_range)\n",
|
| 479 |
+
" numel_acc += numel\n",
|
| 480 |
+
"\n",
|
| 481 |
+
" # skip if no element in this shard\n",
|
| 482 |
+
" if dist_meta.local_range[0] == dist_meta.local_range[1]:\n",
|
| 483 |
+
" continue\n",
|
| 484 |
+
"\n",
|
| 485 |
+
" # gen param\n",
|
| 486 |
+
"\n",
|
| 487 |
+
" # Convert the ABSOLUTE slice range (from the global virtual buffer)\n",
|
| 488 |
+
" # into a RELATIVE slice range (local to just this one parameter).\n",
|
| 489 |
+
" local_range = normalize_range(dist_meta.local_range, dist_meta.global_range[0])\n",
|
| 490 |
+
"\n",
|
| 491 |
+
" # 1. Flatten the 2D parameter tensor into a 1D vector.\n",
|
| 492 |
+
" # 2. Use the relative range to slice out the piece this GPU is responsible for storing.\n",
|
| 493 |
+
" dist_param = param.view(-1)[local_range[0]:local_range[1]]\n",
|
| 494 |
+
" dist_params.append(dist_param)\n",
|
| 495 |
+
" dist_metas[dist_param] = dist_meta\n",
|
| 496 |
+
"\n",
|
| 497 |
+
" # gen grad\n",
|
| 498 |
+
" # same logoc as the `gen param` scetion\n",
|
| 499 |
+
" for step, step_grads in enumerate(grads):\n",
|
| 500 |
+
" dist_grad = step_grads[i].view(-1)[local_range[0]:local_range[1]]\n",
|
| 501 |
+
" dist_grads[step].append(dist_grad)\n",
|
| 502 |
+
"\n",
|
| 503 |
+
" return dist_params, dist_grads, global_buffer_size, dist_metas\n",
|
| 504 |
+
"\n",
|
| 505 |
+
"\n",
|
| 506 |
+
"def test_muon_dist(dp_size, tp_size):\n",
|
| 507 |
+
"\n",
|
| 508 |
+
" world_size = dist.get_world_size()\n",
|
| 509 |
+
" rank = dist.get_rank()\n",
|
| 510 |
+
" assert dp_size * tp_size == world_size\n",
|
| 511 |
+
"\n",
|
| 512 |
+
" # init dist group\n",
|
| 513 |
+
" for i in range(tp_size):\n",
|
| 514 |
+
" # decide the tp group based on grod of size `tp_size`\n",
|
| 515 |
+
" ranks = range(i, world_size, tp_size)\n",
|
| 516 |
+
" group = dist.new_group(ranks)\n",
|
| 517 |
+
" # each rank finds its groups\n",
|
| 518 |
+
" if rank in ranks:\n",
|
| 519 |
+
" # groups are passed as instructions\n",
|
| 520 |
+
" dist_group = group\n",
|
| 521 |
+
" # init tp group\n",
|
| 522 |
+
" for i in range(dp_size):\n",
|
| 523 |
+
" ranks = range(i * tp_size, (i + 1) * tp_size)\n",
|
| 524 |
+
" group = dist.new_group(ranks)\n",
|
| 525 |
+
" if rank in ranks:\n",
|
| 526 |
+
" tp_group = group\n",
|
| 527 |
+
"\n",
|
| 528 |
+
" print_rank_0(\"process group initialized\")\n",
|
| 529 |
+
"\n",
|
| 530 |
+
" params_ref, grads_ref = gen_param_and_grads()\n",
|
| 531 |
+
" params_test, grads_test = gen_param_and_grads()\n",
|
| 532 |
+
" tp_dims = [0, 1, -1, 1, 0]\n",
|
| 533 |
+
"\n",
|
| 534 |
+
" # global_buffer_size is the padded buffer size of the dp group where the current rank belongs to\n",
|
| 535 |
+
" params_test, grads_test, global_buffer_size, dist_metas \\\n",
|
| 536 |
+
" = distribute_params(params_test, grads_test, tp_dims, dist_group, tp_group)\n",
|
| 537 |
+
"\n",
|
| 538 |
+
" muon_args = {\n",
|
| 539 |
+
" \"use_muon\": True,\n",
|
| 540 |
+
" \"lr\": 0.1,\n",
|
| 541 |
+
" \"momentum\": 0.9,\n",
|
| 542 |
+
" \"nesterov\": True,\n",
|
| 543 |
+
" \"ns_steps\": 5,\n",
|
| 544 |
+
" \"weight_decay\": 0.1,\n",
|
| 545 |
+
" }\n",
|
| 546 |
+
"\n",
|
| 547 |
+
" # gen params\n",
|
| 548 |
+
" ref_param_groups = [{\n",
|
| 549 |
+
" \"params\": params_ref,\n",
|
| 550 |
+
" **muon_args\n",
|
| 551 |
+
" }]\n",
|
| 552 |
+
" test_param_groups = [{\n",
|
| 553 |
+
" \"params\": params_test,\n",
|
| 554 |
+
" **muon_args\n",
|
| 555 |
+
" }]\n",
|
| 556 |
+
"\n",
|
| 557 |
+
" ref_muon = Muon(ref_param_groups)\n",
|
| 558 |
+
" test_muon = Muon(test_param_groups)\n",
|
| 559 |
+
" test_muon.enable_distributed_mode([[(global_buffer_size, 0)]], dist_group, tp_group, dist_metas)\n",
|
| 560 |
+
"\n",
|
| 561 |
+
" for step in range(10):\n",
|
| 562 |
+
"\n",
|
| 563 |
+
" # add grad\n",
|
| 564 |
+
" for i, grad in enumerate(grads_ref[step]):\n",
|
| 565 |
+
" params_ref[i].grad = grad.clone()\n",
|
| 566 |
+
" for i, grad in enumerate(grads_test[step]):\n",
|
| 567 |
+
" params_test[i].grad = grad.clone()\n",
|
| 568 |
+
" # step\n",
|
| 569 |
+
" ref_muon.step()\n",
|
| 570 |
+
" test_muon.step()\n",
|
| 571 |
+
" # distribute ref params\n",
|
| 572 |
+
" dist_ref_params, _, _, _ = distribute_params(params_ref, [], tp_dims, dist_group, tp_group)\n",
|
| 573 |
+
" # verify\n",
|
| 574 |
+
" for i, params_x2 in enumerate(zip(dist_ref_params, params_test)):\n",
|
| 575 |
+
" assert (params_x2[0] == params_x2[1]).all(), f\"rank {rank} param {i} verify failed\"\n",
|
| 576 |
+
" print_rank_0(f\" - step {step} verify passed\")\n",
|
| 577 |
+
"\n",
|
| 578 |
+
" print_rank_0(f\"dist dp = {dp_size} tp = {tp_size} test passed\")\n",
|
| 579 |
+
"\n",
|
| 580 |
+
"\n",
|
| 581 |
+
"\n",
|
| 582 |
+
"def run_process(rank, world_size):\n",
|
| 583 |
+
" os.environ['MASTER_ADDR'] = 'localhost'\n",
|
| 584 |
+
" os.environ['MASTER_PORT'] = '12355'\n",
|
| 585 |
+
" dist.init_process_group(\"gloo\", rank=rank, world_size=world_size)\n",
|
| 586 |
+
" test_muon_dist(dp_size=4, tp_size=2)\n",
|
| 587 |
+
" test_muon_dist(dp_size=2, tp_size=4)\n",
|
| 588 |
+
" dist.destroy_process_group()\n",
|
| 589 |
+
"\n",
|
| 590 |
+
"if __name__ == \"__main__\":\n",
|
| 591 |
+
" world_size = 8\n",
|
| 592 |
+
" os.environ['CUDA_DEVICE_MAX_CONNECTIONS'] = '1'\n",
|
| 593 |
+
" mp.spawn(run_process, args=(world_size,), nprocs=world_size, join=True)\n",
|
| 594 |
+
" print(\"\\\\n✅ All tests passed!\")\n",
|
| 595 |
+
"'''\n",
|
| 596 |
+
"\n",
|
| 597 |
+
"# Step 2: Write to file\n",
|
| 598 |
+
"with open('/content/test_muon_dist.py', 'w') as f:\n",
|
| 599 |
+
" f.write(test_code)\n",
|
| 600 |
+
"\n",
|
| 601 |
+
"print(\"✅ Test code written to /content/test_muon_dist.py\")\n",
|
| 602 |
+
"print(\"\\nNow run it with:\")\n",
|
| 603 |
+
"print(\"!python /content/test_muon_dist.py\")"
|
| 604 |
+
]
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"cell_type": "code",
|
| 608 |
+
"execution_count": null,
|
| 609 |
+
"metadata": {
|
| 610 |
+
"colab": {
|
| 611 |
+
"base_uri": "https://localhost:8080/"
|
| 612 |
+
},
|
| 613 |
+
"id": "18Xbd3ovSDxx",
|
| 614 |
+
"outputId": "4b82d48c-455f-4278-988f-32916a87d336"
|
| 615 |
+
},
|
| 616 |
+
"outputs": [
|
| 617 |
+
{
|
| 618 |
+
"name": "stdout",
|
| 619 |
+
"output_type": "stream",
|
| 620 |
+
"text": [
|
| 621 |
+
"[Gloo] Rank 6 is connected to 7 peer ranks. Expected number of connected peer ranks is : 7\n",
|
| 622 |
+
"[Gloo] Rank 5 is connected to 7 peer ranks. Expected number of connected peer ranks is : 7\n",
|
| 623 |
+
"[Gloo] Rank 1 is connected to 7 peer ranks. Expected number of connected peer ranks is : 7\n",
|
| 624 |
+
"[Gloo] Rank 3 is connected to 7 peer ranks. Expected number of connected peer ranks is : 7\n",
|
| 625 |
+
"[Gloo] Rank 4 is connected to 7 peer ranks. Expected number of connected peer ranks is : 7\n",
|
| 626 |
+
"[Gloo] Rank 2 is connected to 7 peer ranks. Expected number of connected peer ranks is : 7\n",
|
| 627 |
+
"[Gloo] Rank 7 is connected to 7 peer ranks. Expected number of connected peer ranks is : 7\n",
|
| 628 |
+
"[Gloo] Rank 0 is connected to 7 peer ranks. Expected number of connected peer ranks is : 7\n",
|
| 629 |
+
"[Gloo] Rank 0 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 630 |
+
"[Gloo] Rank 1 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 631 |
+
"[Gloo] Rank 2 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 632 |
+
"[Gloo] Rank 3 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 633 |
+
"[Gloo] Rank 0 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 634 |
+
"[Gloo] Rank 1 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 635 |
+
"[Gloo] Rank 3 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 636 |
+
"[Gloo] Rank 1 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 637 |
+
"[Gloo] Rank 2 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 638 |
+
"[Gloo] Rank 0 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 639 |
+
"[Gloo] Rank 1 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 640 |
+
"[Gloo] Rank 0 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 641 |
+
"[Gloo] Rank 0 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 642 |
+
"process group initialized\n",
|
| 643 |
+
"[Gloo] Rank 1 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 644 |
+
"[Gloo] Rank 1 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 645 |
+
"[Gloo] Rank 0 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 646 |
+
" - step 0 verify passed\n",
|
| 647 |
+
" - step 1 verify passed\n",
|
| 648 |
+
" - step 2 verify passed\n",
|
| 649 |
+
" - step 3 verify passed\n",
|
| 650 |
+
" - step 4 verify passed\n",
|
| 651 |
+
" - step 5 verify passed\n",
|
| 652 |
+
" - step 6 verify passed\n",
|
| 653 |
+
" - step 7 verify passed\n",
|
| 654 |
+
" - step 8 verify passed\n",
|
| 655 |
+
"[Gloo] Rank 0 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 656 |
+
"[Gloo] Rank 1 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 657 |
+
"[Gloo] Rank 1 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 658 |
+
"[Gloo] Rank 0 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 659 |
+
"[Gloo] Rank 1 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 660 |
+
"[Gloo] Rank 0 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 661 |
+
" - step 9 verify passed\n",
|
| 662 |
+
"dist dp = 4 tp = 2 test passed\n",
|
| 663 |
+
"[Gloo] Rank 1 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 664 |
+
"[Gloo] Rank 0 is connected to 1 peer ranks. Expected number of connected peer ranks is : 1\n",
|
| 665 |
+
"[Gloo] Rank 0 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 666 |
+
"[Gloo] Rank 2 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 667 |
+
"[Gloo] Rank 1 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 668 |
+
"[Gloo] Rank 3 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 669 |
+
"[Gloo] Rank 0 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 670 |
+
"process group initialized\n",
|
| 671 |
+
"[Gloo] Rank 3 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 672 |
+
"[Gloo] Rank 2 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 673 |
+
"[Gloo] Rank 1 is connected to 3 peer ranks. Expected number of connected peer ranks is : 3\n",
|
| 674 |
+
" - step 0 verify passed\n",
|
| 675 |
+
" - step 1 verify passed\n",
|
| 676 |
+
" - step 2 verify passed\n",
|
| 677 |
+
" - step 3 verify passed\n",
|
| 678 |
+
" - step 4 verify passed\n",
|
| 679 |
+
" - step 5 verify passed\n",
|
| 680 |
+
" - step 6 verify passed\n",
|
| 681 |
+
" - step 7 verify passed\n",
|
| 682 |
+
" - step 8 verify passed\n",
|
| 683 |
+
" - step 9 verify passed\n",
|
| 684 |
+
"dist dp = 2 tp = 4 test passed\n",
|
| 685 |
+
"\n",
|
| 686 |
+
"✅ All tests passed!\n"
|
| 687 |
+
]
|
| 688 |
+
}
|
| 689 |
+
],
|
| 690 |
+
"source": [
|
| 691 |
+
"!python /content/test_muon_dist.py"
|
| 692 |
+
]
|
| 693 |
+
}
|
| 694 |
+
],
|
| 695 |
+
"metadata": {
|
| 696 |
+
"colab": {
|
| 697 |
+
"provenance": []
|
| 698 |
+
},
|
| 699 |
+
"kernelspec": {
|
| 700 |
+
"display_name": "Python 3 (ipykernel)",
|
| 701 |
+
"language": "python",
|
| 702 |
+
"name": "python3"
|
| 703 |
+
},
|
| 704 |
+
"language_info": {
|
| 705 |
+
"codemirror_mode": {
|
| 706 |
+
"name": "ipython",
|
| 707 |
+
"version": 3
|
| 708 |
+
},
|
| 709 |
+
"file_extension": ".py",
|
| 710 |
+
"mimetype": "text/x-python",
|
| 711 |
+
"name": "python",
|
| 712 |
+
"nbconvert_exporter": "python",
|
| 713 |
+
"pygments_lexer": "ipython3",
|
| 714 |
+
"version": "3.11.7"
|
| 715 |
+
}
|
| 716 |
+
},
|
| 717 |
+
"nbformat": 4,
|
| 718 |
+
"nbformat_minor": 4
|
| 719 |
+
}
|
distributed_muon_cpu.py
ADDED
|
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import torch
|
| 4 |
+
import torch.distributed as dist
|
| 5 |
+
import torch.multiprocessing as mp
|
| 6 |
+
import math
|
| 7 |
+
from typing import Tuple, Dict
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# copy from https://github.com/KellerJordan/Muon/tree/master
|
| 11 |
+
# @torch.compile
|
| 12 |
+
def zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
|
| 28 |
+
# Ensure spectral norm is at most 1
|
| 29 |
+
X = X / (X.norm() + 1e-7)
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 34 |
+
X = a * X + B @ X
|
| 35 |
+
|
| 36 |
+
if G.size(0) > G.size(1):
|
| 37 |
+
X = X.T
|
| 38 |
+
return X
|
| 39 |
+
|
| 40 |
+
def normalize_range(range: Tuple[int, int], start):
|
| 41 |
+
return (range[0] - start, range[1] - start)
|
| 42 |
+
|
| 43 |
+
class MuonDistMeta:
|
| 44 |
+
|
| 45 |
+
# which buffer and bucket param belongs to
|
| 46 |
+
buffer_idx: int = 0
|
| 47 |
+
bucket_idx: int = 0
|
| 48 |
+
# param shape after tp
|
| 49 |
+
shape: torch.Size = None
|
| 50 |
+
# param location in global buffer
|
| 51 |
+
global_range: Tuple[int, int] = None
|
| 52 |
+
tp_split_dim: int = -1
|
| 53 |
+
# param location in global buffer (current dp slice)
|
| 54 |
+
local_range: Tuple[int, int] = None
|
| 55 |
+
|
| 56 |
+
def __init__(self, buffer_idx: int, bucket_idx: int, shape: torch.Size, global_range: Tuple[int, int], tp_split_dim: int):
|
| 57 |
+
self.buffer_idx = buffer_idx
|
| 58 |
+
self.bucket_idx = bucket_idx
|
| 59 |
+
self.shape = shape
|
| 60 |
+
self.global_range = global_range
|
| 61 |
+
self.tp_split_dim = tp_split_dim
|
| 62 |
+
|
| 63 |
+
def set_local_buffer_range(self, local_buffer_range: Tuple[int, int]):
|
| 64 |
+
start = max(self.global_range[0], local_buffer_range[0])
|
| 65 |
+
end = min(self.global_range[1], local_buffer_range[1])
|
| 66 |
+
self.local_range = (start, end) if start < end else (local_buffer_range[0], local_buffer_range[0])
|
| 67 |
+
|
| 68 |
+
# adjust LR based on: https://github.com/MoonshotAI/Moonlight
|
| 69 |
+
def adjust_lr_wd_for_muon(lr, matched_adamw_rms, param_shape):
|
| 70 |
+
A, B = param_shape[:2]
|
| 71 |
+
adjusted_ratio = math.sqrt(max(A, B)) * matched_adamw_rms
|
| 72 |
+
adjusted_lr = lr * adjusted_ratio
|
| 73 |
+
return adjusted_lr
|
| 74 |
+
|
| 75 |
+
# copy from https://github.com/KellerJordan/Muon/tree/master and support distributed solution
|
| 76 |
+
class Muon(torch.optim.Optimizer):
|
| 77 |
+
"""
|
| 78 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 79 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 80 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 81 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 82 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 83 |
+
Some warnings:
|
| 84 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 85 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 86 |
+
Arguments:
|
| 87 |
+
param_groups: The parameters to be optimized.
|
| 88 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 89 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 90 |
+
matched_adamw_rms: The AdamW Update RMS that Muon is designed to match. (0.2~0.4 recommended)
|
| 91 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 92 |
+
ns_steps: The number of Newton-Schulz iterations to run. (5 is probably always enough)
|
| 93 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 94 |
+
adamw_betas: The betas for the internal AdamW.
|
| 95 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 96 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 97 |
+
"""
|
| 98 |
+
def __init__(self, param_groups, lr=2e-2, weight_decay=0.1,
|
| 99 |
+
matched_adamw_rms=0.2, momentum=0.95, nesterov=True, ns_steps=5,
|
| 100 |
+
adamw_betas=(0.95, 0.95), adamw_eps=1e-8):
|
| 101 |
+
|
| 102 |
+
defaults = dict(lr=lr, weight_decay=weight_decay,
|
| 103 |
+
matched_adamw_rms=matched_adamw_rms,
|
| 104 |
+
momentum=momentum, nesterov=nesterov, ns_steps=ns_steps,
|
| 105 |
+
adamw_betas=adamw_betas, adamw_eps=adamw_eps,)
|
| 106 |
+
|
| 107 |
+
super().__init__(param_groups, defaults)
|
| 108 |
+
self.distributed_mode = False
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def enable_distributed_mode(self, global_buffer_sizes, dist_group, tp_group,
|
| 112 |
+
dist_metas: Dict[torch.nn.Parameter, MuonDistMeta]):
|
| 113 |
+
"""
|
| 114 |
+
enable distributed mode
|
| 115 |
+
Args:
|
| 116 |
+
global_buffer_size: global buffer size
|
| 117 |
+
dist group: optimizer sharding group
|
| 118 |
+
tp group: param tp group
|
| 119 |
+
dist metas: dist metas for all param
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
self.global_buffer_sizes = global_buffer_sizes
|
| 123 |
+
self.dist_group = dist_group
|
| 124 |
+
self.tp_group = tp_group
|
| 125 |
+
self.dist_metas = dist_metas
|
| 126 |
+
|
| 127 |
+
world_size = dist.get_world_size(dist_group)
|
| 128 |
+
rank = dist.get_rank(dist_group)
|
| 129 |
+
|
| 130 |
+
# calc local buffer range
|
| 131 |
+
self.local_buffer_sizes = []
|
| 132 |
+
self.local_buffer_ranges = []
|
| 133 |
+
# The outer loop is for different parameter groups (e.g., weights vs. biases)
|
| 134 |
+
for global_bucket_sizes in global_buffer_sizes: # <--- rename `global_bucket_sizes`
|
| 135 |
+
local_bucket_sizes = []
|
| 136 |
+
local_bucket_ranges = []
|
| 137 |
+
|
| 138 |
+
# The inner loop is for the different buckets within a single group
|
| 139 |
+
for (global_bucket_size, bucket_offset) in global_bucket_sizes:
|
| 140 |
+
# calculate the local range for THIS specific bucket
|
| 141 |
+
assert global_bucket_size % world_size == 0
|
| 142 |
+
local_bucket_size = global_bucket_size // world_size
|
| 143 |
+
# Renaming here makes the logic so much clearer
|
| 144 |
+
local_bucket_start = local_bucket_size * rank + bucket_offset
|
| 145 |
+
local_buffer_range = (local_bucket_start, local_bucket_start + local_bucket_size)
|
| 146 |
+
local_bucket_sizes.append(local_bucket_size)
|
| 147 |
+
local_bucket_ranges.append(local_buffer_range)
|
| 148 |
+
|
| 149 |
+
self.local_buffer_sizes.append(local_bucket_sizes)
|
| 150 |
+
self.local_buffer_ranges.append(local_bucket_ranges)
|
| 151 |
+
|
| 152 |
+
# calc local range for params
|
| 153 |
+
for dist_meta in dist_metas.values():
|
| 154 |
+
local_buffer_range = self.local_buffer_ranges[dist_meta.buffer_idx][dist_meta.bucket_idx]
|
| 155 |
+
dist_meta.set_local_buffer_range(local_buffer_range)
|
| 156 |
+
|
| 157 |
+
self.distributed_mode = True
|
| 158 |
+
|
| 159 |
+
def step(self):
|
| 160 |
+
first_param = self.param_groups[0]['params'][0]
|
| 161 |
+
device = first_param.device
|
| 162 |
+
dtype = torch.bfloat16
|
| 163 |
+
|
| 164 |
+
ns_inputs = {}
|
| 165 |
+
|
| 166 |
+
# update muon momentum first
|
| 167 |
+
# `self.param_groups` is already sharded
|
| 168 |
+
for group in self.param_groups:
|
| 169 |
+
|
| 170 |
+
if not group.get("use_muon", False):
|
| 171 |
+
continue
|
| 172 |
+
|
| 173 |
+
momentum = group['momentum']
|
| 174 |
+
params = group["params"]
|
| 175 |
+
|
| 176 |
+
for p in params:
|
| 177 |
+
|
| 178 |
+
g = p.grad
|
| 179 |
+
assert g is not None
|
| 180 |
+
# 1-dim grad for distributed mode
|
| 181 |
+
assert self.distributed_mode or g.dim() == 2
|
| 182 |
+
|
| 183 |
+
# prepare muon buffer in state
|
| 184 |
+
state = self.state[p]
|
| 185 |
+
if not "muon_buffer" in state:
|
| 186 |
+
state["muon_buffer"] = torch.zeros_like(g)
|
| 187 |
+
buf = state["muon_buffer"]
|
| 188 |
+
buf.mul_(momentum).add_(g)
|
| 189 |
+
|
| 190 |
+
# save to ns input
|
| 191 |
+
g = g.add(buf, alpha=momentum) if group['nesterov'] else buf
|
| 192 |
+
ns_inputs[p] = g.bfloat16()
|
| 193 |
+
|
| 194 |
+
# rewrite ns_inputs if distributed
|
| 195 |
+
"""
|
| 196 |
+
the four-step "acrobatic" journey of the ns_inputs data:
|
| 197 |
+
|
| 198 |
+
1. **DP `all_gather`**: (ZeRO) Gather all the sharded pieces from your data-parallel "column" to re-create your **full TP slice**.
|
| 199 |
+
2. **TP `all_gather`**: Gather all the TP slices from your tensor-parallel "row" to re-create the **full, 100% complete matrix**.
|
| 200 |
+
3. *(...Run the math on the full matrix...)*
|
| 201 |
+
4. **TP `shard`**: Shard the full `update` matrix back down to your **local TP slice**.
|
| 202 |
+
5. **DP `shard`**: (ZeRO) Shard that TP slice *again* back down to the **local DP/ZeRO slice** that you're responsible for.
|
| 203 |
+
|
| 204 |
+
"""
|
| 205 |
+
if self.distributed_mode:
|
| 206 |
+
|
| 207 |
+
# initialize buffers
|
| 208 |
+
# hanged the variable nnames to `local_bucket_size` and `global_bucket_size` for clarity
|
| 209 |
+
ns_input_local_buffers = [
|
| 210 |
+
[ torch.empty((local_bucket_size), device=device, dtype=dtype)
|
| 211 |
+
for local_bucket_size in local_bucket_sizes ]
|
| 212 |
+
for local_bucket_sizes in self.local_buffer_sizes
|
| 213 |
+
]
|
| 214 |
+
ns_input_global_buffers = [
|
| 215 |
+
[ torch.empty((global_bucket_size), device=device, dtype=dtype)
|
| 216 |
+
for (global_bucket_size, bucket_offset) in global_bucket_sizes ]
|
| 217 |
+
for global_bucket_sizes in self.global_buffer_sizes
|
| 218 |
+
]
|
| 219 |
+
|
| 220 |
+
# fill ns input data to local buffer
|
| 221 |
+
# looping through all params in local rank, ok.
|
| 222 |
+
for param, ns_input in ns_inputs.items():
|
| 223 |
+
dist_meta = self.dist_metas[param]
|
| 224 |
+
# ceate a reference to `ns_input_local_buffers`
|
| 225 |
+
# the update is in local rank, so we only need one `for` loop
|
| 226 |
+
ns_input_local_buffer = ns_input_local_buffers[dist_meta.buffer_idx][dist_meta.bucket_idx]
|
| 227 |
+
local_buffer_range = self.local_buffer_ranges[dist_meta.buffer_idx][dist_meta.bucket_idx]
|
| 228 |
+
local_range = normalize_range(dist_meta.local_range, local_buffer_range[0]) # local_range in global_range
|
| 229 |
+
# copy data into this `ns_input_local_buffer` memory
|
| 230 |
+
# because dist.all_gather requires a single, physically contiguous block of memory to work efficiently.
|
| 231 |
+
ns_input_local_buffer[local_range[0]:local_range[1]].copy_(ns_input.view(-1))
|
| 232 |
+
|
| 233 |
+
# all gather buffers: one bucket at a time. -- the "shipping" phase
|
| 234 |
+
for ns_input_global_buffer, ns_input_local_buffer in zip(ns_input_global_buffers, ns_input_local_buffers):
|
| 235 |
+
for ns_input_global_bucket, ns_input_local_bucket in zip(ns_input_global_buffer, ns_input_local_buffer):
|
| 236 |
+
dist.all_gather_into_tensor(ns_input_global_bucket, ns_input_local_bucket, group=self.dist_group)
|
| 237 |
+
|
| 238 |
+
# overwrite ns input with the `all_gather`-ed `ns_inputs` -- the "unpacking" phase
|
| 239 |
+
# this is the "opposite" of filling ns input data to local buffer
|
| 240 |
+
for p in ns_inputs.keys():
|
| 241 |
+
dist_meta = self.dist_metas[p]
|
| 242 |
+
ns_input_global_buffer = ns_input_global_buffers[dist_meta.buffer_idx][dist_meta.bucket_idx]
|
| 243 |
+
offset = self.global_buffer_sizes[dist_meta.buffer_idx][dist_meta.bucket_idx][1]
|
| 244 |
+
global_range = normalize_range(dist_meta.global_range, offset)
|
| 245 |
+
|
| 246 |
+
#ns_inputs[p] = ns_input_global_buffer[global_range[0]:global_range[1]].view(-1)
|
| 247 |
+
## bug fix 👆🏻-- overwrite ns input with the `all_gather`-ed `ns_inputs` -- the "unpacking" phase
|
| 248 |
+
#ns_inputs[p] = ns_input_global_buffer[global_range[0]:global_range[1]].view(-1)
|
| 249 |
+
# Unpack the 1D slice of data
|
| 250 |
+
unpacked_data = ns_input_global_buffer[global_range[0]:global_range[1]]
|
| 251 |
+
|
| 252 |
+
# THIS IS THE FIX: Reshape it to its correct 2D shape, not view(-1)
|
| 253 |
+
ns_inputs[p] = unpacked_data.view(dist_meta.shape)
|
| 254 |
+
|
| 255 |
+
# set tp info
|
| 256 |
+
tp_world_size = dist.get_world_size(self.tp_group)
|
| 257 |
+
tp_rank = dist.get_rank(self.tp_group)
|
| 258 |
+
|
| 259 |
+
# update muon momentum first
|
| 260 |
+
for group in self.param_groups:
|
| 261 |
+
|
| 262 |
+
if not group.get('use_muon', False):
|
| 263 |
+
continue
|
| 264 |
+
|
| 265 |
+
lr = group["lr"]
|
| 266 |
+
ns_steps = group["ns_steps"]
|
| 267 |
+
weight_decay = group["weight_decay"]
|
| 268 |
+
matched_adamw_rms = group["matched_adamw_rms"]
|
| 269 |
+
params = group["params"] # <-- add this
|
| 270 |
+
|
| 271 |
+
for p in params:
|
| 272 |
+
|
| 273 |
+
ns_input = ns_inputs[p]
|
| 274 |
+
tp_split_dim = -1
|
| 275 |
+
|
| 276 |
+
if self.distributed_mode:
|
| 277 |
+
dist_meta = self.dist_metas[p]
|
| 278 |
+
tp_split_dim = dist_meta.tp_split_dim
|
| 279 |
+
|
| 280 |
+
# gather tensor parallel ( if tp )
|
| 281 |
+
if tp_split_dim != -1:
|
| 282 |
+
ns_input_shards = [ torch.empty_like(ns_input) for _ in range(tp_world_size) ]
|
| 283 |
+
dist.all_gather(ns_input_shards, ns_input, self.tp_group)
|
| 284 |
+
ns_input = torch.cat(ns_input_shards, dim=tp_split_dim)
|
| 285 |
+
|
| 286 |
+
# calc update
|
| 287 |
+
update = zeropower_via_newtonschulz5(ns_input, steps=ns_steps)
|
| 288 |
+
|
| 289 |
+
# only local tp part
|
| 290 |
+
# this is effectivly "shadding" the newtonschulz-processed update,
|
| 291 |
+
# and keep only your assigned piece, discarding the rest
|
| 292 |
+
if tp_split_dim != -1:
|
| 293 |
+
update = update.chunk(tp_world_size, dim=tp_split_dim)[tp_rank]
|
| 294 |
+
|
| 295 |
+
# only local dp buffer part
|
| 296 |
+
if self.distributed_mode:
|
| 297 |
+
# local range in global range
|
| 298 |
+
# unpacking the tp sharded update to dp sharded update
|
| 299 |
+
local_range = normalize_range(dist_meta.local_range, dist_meta.global_range[0])
|
| 300 |
+
update = update.reshape(-1)[local_range[0]:local_range[1]]
|
| 301 |
+
|
| 302 |
+
# apply weight decay
|
| 303 |
+
p.data.mul_(1 - lr*weight_decay)
|
| 304 |
+
|
| 305 |
+
# adjust lr and apply update
|
| 306 |
+
adjusted_lr = adjust_lr_wd_for_muon(lr, matched_adamw_rms, ns_input.shape)
|
| 307 |
+
p.data.add_(update, alpha=-adjusted_lr)
|
| 308 |
+
|
| 309 |
+
# use adam for other params
|
| 310 |
+
for group in self.param_groups:
|
| 311 |
+
|
| 312 |
+
if group.get('use_muon', False):
|
| 313 |
+
continue
|
| 314 |
+
|
| 315 |
+
# init step
|
| 316 |
+
if 'step' in group:
|
| 317 |
+
group['step'] += 1
|
| 318 |
+
else:
|
| 319 |
+
group['step'] = 1
|
| 320 |
+
|
| 321 |
+
step = group['step']
|
| 322 |
+
params = group["params"]
|
| 323 |
+
lr = group['lr']
|
| 324 |
+
weight_decay = group['weight_decay']
|
| 325 |
+
beta1, beta2 = group['adamw_betas']
|
| 326 |
+
eps = group['adamw_eps']
|
| 327 |
+
|
| 328 |
+
for p in params:
|
| 329 |
+
|
| 330 |
+
g = p.grad
|
| 331 |
+
assert g is not None
|
| 332 |
+
state = self.state[p]
|
| 333 |
+
|
| 334 |
+
if len(state) == 0:
|
| 335 |
+
state['adamw_exp_avg'] = torch.zeros_like(g)
|
| 336 |
+
state['adamw_exp_avg_sq'] = torch.zeros_like(g)
|
| 337 |
+
|
| 338 |
+
buf1 = state['adamw_exp_avg']
|
| 339 |
+
buf2 = state['adamw_exp_avg_sq']
|
| 340 |
+
buf1.lerp_(g, 1-beta1)
|
| 341 |
+
buf2.lerp_(g.square(), 1-beta2)
|
| 342 |
+
|
| 343 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 344 |
+
|
| 345 |
+
bias_correction1 = 1 - beta1**step
|
| 346 |
+
bias_correction2 = 1 - beta2**step
|
| 347 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 348 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 349 |
+
p.data.add_(g, alpha=-lr/scale)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
##--------------- tests/unit_tests/test_optimizer_muon.py -----------------
|
| 353 |
+
import os
|
| 354 |
+
|
| 355 |
+
import torch
|
| 356 |
+
import torch.distributed as dist
|
| 357 |
+
|
| 358 |
+
#from megatron.core.optimizer.muon import Muon, MuonDistMeta, normalize_range
|
| 359 |
+
|
| 360 |
+
def is_rank_0():
|
| 361 |
+
return torch.distributed.get_rank() == 0
|
| 362 |
+
|
| 363 |
+
def print_rank_0(*args):
|
| 364 |
+
if is_rank_0():
|
| 365 |
+
print(*args)
|
| 366 |
+
|
| 367 |
+
def cdiv(x: int, y: int):
|
| 368 |
+
return (x + y - 1) // y
|
| 369 |
+
|
| 370 |
+
def gen_param_and_grads():
|
| 371 |
+
|
| 372 |
+
# reset manual seed
|
| 373 |
+
torch.manual_seed(0)
|
| 374 |
+
device = 'cpu'
|
| 375 |
+
dtype = torch.float32
|
| 376 |
+
|
| 377 |
+
# gen params
|
| 378 |
+
params = [ torch.randn(shape, device=device, dtype=dtype) for shape in [
|
| 379 |
+
(100, 100), (124, 324), (456, 124), (676, 876), (128, 128), ] ]
|
| 380 |
+
|
| 381 |
+
# gen grads [ [ grad-list ] * step ]
|
| 382 |
+
grads = [ [ torch.randn_like(param) for param in params ] for _ in range(10) ]
|
| 383 |
+
|
| 384 |
+
return params, grads
|
| 385 |
+
|
| 386 |
+
def distribute_params(params, grads, tp_dims, dist_group, tp_group):
|
| 387 |
+
""" 将 param 进行 dist & tp shard, 仅保留自己的一部分 """
|
| 388 |
+
|
| 389 |
+
params = params.copy()
|
| 390 |
+
grads = [ step_grads.copy() for step_grads in grads ]
|
| 391 |
+
|
| 392 |
+
# tp dist
|
| 393 |
+
tp_size = dist.get_world_size(tp_group)
|
| 394 |
+
tp_rank = dist.get_rank(tp_group)
|
| 395 |
+
for i, param in enumerate(params):
|
| 396 |
+
tp_dim = tp_dims[i]
|
| 397 |
+
if tp_dim == -1:
|
| 398 |
+
continue
|
| 399 |
+
# Shard the parameter tensor along the `tp_dim` dimension.
|
| 400 |
+
assert param.shape[tp_dim] % tp_size == 0
|
| 401 |
+
local_range_start = param.shape[tp_dim] // tp_size * tp_rank
|
| 402 |
+
# range of the shard based on the rank of the current GOU in the given `tp_group``
|
| 403 |
+
local_range_end = param.shape[tp_dim] // tp_size * (tp_rank + 1)
|
| 404 |
+
# each GPU gets `[local_range_start:local_range_end, :] ` rows or `[:, local_range_start:local_range_end]` columns
|
| 405 |
+
params[i] = param[local_range_start:local_range_end, :] if tp_dim == 0 else \
|
| 406 |
+
param[:, local_range_start:local_range_end].contiguous()
|
| 407 |
+
# same logic applies to sharding the gradients for the current layer(param)
|
| 408 |
+
for step_grads in grads:
|
| 409 |
+
step_grads[i] = step_grads[i][local_range_start:local_range_end, :] if tp_dim == 0 else \
|
| 410 |
+
step_grads[i][:, local_range_start:local_range_end].contiguous()
|
| 411 |
+
|
| 412 |
+
# distributed
|
| 413 |
+
world_size = dist.get_world_size(dist_group)
|
| 414 |
+
rank = dist.get_rank(dist_group)
|
| 415 |
+
|
| 416 |
+
# global as the given DP group
|
| 417 |
+
# "global" here means "global to the TP group's worth of parameters."
|
| 418 |
+
global_buffer_size = sum(param.numel() for param in params)
|
| 419 |
+
local_buffer_size = cdiv(global_buffer_size, world_size)
|
| 420 |
+
# deciding the shard range for this rank
|
| 421 |
+
local_buffer_range = (local_buffer_size * rank, local_buffer_size * (rank + 1))
|
| 422 |
+
# padded global_buffer_size
|
| 423 |
+
global_buffer_size = local_buffer_size * world_size # fix global buffer size
|
| 424 |
+
|
| 425 |
+
numel_acc = 0
|
| 426 |
+
dist_params = []
|
| 427 |
+
dist_grads = [[] for _ in grads]
|
| 428 |
+
dist_metas = {}
|
| 429 |
+
for i, param in enumerate(params):
|
| 430 |
+
|
| 431 |
+
# gen meta
|
| 432 |
+
# align global buffer index(range) with local buffer index(range)
|
| 433 |
+
# see handwritten diagram for more details
|
| 434 |
+
numel = param.numel()
|
| 435 |
+
dist_meta = MuonDistMeta(0, 0, param.shape, (numel_acc, numel_acc + numel), tp_dims[i])
|
| 436 |
+
dist_meta.set_local_buffer_range(local_buffer_range)
|
| 437 |
+
numel_acc += numel
|
| 438 |
+
|
| 439 |
+
# skip if no element in this shard
|
| 440 |
+
if dist_meta.local_range[0] == dist_meta.local_range[1]:
|
| 441 |
+
continue
|
| 442 |
+
|
| 443 |
+
# gen param
|
| 444 |
+
|
| 445 |
+
# Convert the ABSOLUTE slice range (from the global virtual buffer)
|
| 446 |
+
# into a RELATIVE slice range (local to just this one parameter).
|
| 447 |
+
local_range = normalize_range(dist_meta.local_range, dist_meta.global_range[0])
|
| 448 |
+
|
| 449 |
+
# 1. Flatten the 2D parameter tensor into a 1D vector.
|
| 450 |
+
# 2. Use the relative range to slice out the piece this GPU is responsible for storing.
|
| 451 |
+
dist_param = param.view(-1)[local_range[0]:local_range[1]]
|
| 452 |
+
dist_params.append(dist_param)
|
| 453 |
+
dist_metas[dist_param] = dist_meta
|
| 454 |
+
|
| 455 |
+
# gen grad
|
| 456 |
+
# same logoc as the `gen param` scetion
|
| 457 |
+
for step, step_grads in enumerate(grads):
|
| 458 |
+
dist_grad = step_grads[i].view(-1)[local_range[0]:local_range[1]]
|
| 459 |
+
dist_grads[step].append(dist_grad)
|
| 460 |
+
|
| 461 |
+
return dist_params, dist_grads, global_buffer_size, dist_metas
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
def test_muon_dist(dp_size, tp_size):
|
| 465 |
+
|
| 466 |
+
world_size = dist.get_world_size()
|
| 467 |
+
rank = dist.get_rank()
|
| 468 |
+
assert dp_size * tp_size == world_size
|
| 469 |
+
|
| 470 |
+
# init dist group
|
| 471 |
+
for i in range(tp_size):
|
| 472 |
+
# decide the tp group based on grod of size `tp_size`
|
| 473 |
+
ranks = range(i, world_size, tp_size)
|
| 474 |
+
group = dist.new_group(ranks)
|
| 475 |
+
# each rank finds its groups
|
| 476 |
+
if rank in ranks:
|
| 477 |
+
# groups are passed as instructions
|
| 478 |
+
dist_group = group
|
| 479 |
+
# init tp group
|
| 480 |
+
for i in range(dp_size):
|
| 481 |
+
ranks = range(i * tp_size, (i + 1) * tp_size)
|
| 482 |
+
group = dist.new_group(ranks)
|
| 483 |
+
if rank in ranks:
|
| 484 |
+
tp_group = group
|
| 485 |
+
|
| 486 |
+
print_rank_0("process group initialized")
|
| 487 |
+
|
| 488 |
+
params_ref, grads_ref = gen_param_and_grads()
|
| 489 |
+
params_test, grads_test = gen_param_and_grads()
|
| 490 |
+
tp_dims = [0, 1, -1, 1, 0]
|
| 491 |
+
|
| 492 |
+
# global_buffer_size is the padded buffer size of the dp group where the current rank belongs to
|
| 493 |
+
params_test, grads_test, global_buffer_size, dist_metas \
|
| 494 |
+
= distribute_params(params_test, grads_test, tp_dims, dist_group, tp_group)
|
| 495 |
+
|
| 496 |
+
muon_args = {
|
| 497 |
+
"use_muon": True,
|
| 498 |
+
"lr": 0.1,
|
| 499 |
+
"momentum": 0.9,
|
| 500 |
+
"nesterov": True,
|
| 501 |
+
"ns_steps": 5,
|
| 502 |
+
"weight_decay": 0.1,
|
| 503 |
+
}
|
| 504 |
+
|
| 505 |
+
# gen params
|
| 506 |
+
ref_param_groups = [{
|
| 507 |
+
"params": params_ref,
|
| 508 |
+
**muon_args
|
| 509 |
+
}]
|
| 510 |
+
test_param_groups = [{
|
| 511 |
+
"params": params_test,
|
| 512 |
+
**muon_args
|
| 513 |
+
}]
|
| 514 |
+
|
| 515 |
+
ref_muon = Muon(ref_param_groups)
|
| 516 |
+
test_muon = Muon(test_param_groups)
|
| 517 |
+
test_muon.enable_distributed_mode([[(global_buffer_size, 0)]], dist_group, tp_group, dist_metas)
|
| 518 |
+
|
| 519 |
+
for step in range(10):
|
| 520 |
+
|
| 521 |
+
# add grad
|
| 522 |
+
for i, grad in enumerate(grads_ref[step]):
|
| 523 |
+
params_ref[i].grad = grad.clone()
|
| 524 |
+
for i, grad in enumerate(grads_test[step]):
|
| 525 |
+
params_test[i].grad = grad.clone()
|
| 526 |
+
# step
|
| 527 |
+
ref_muon.step()
|
| 528 |
+
test_muon.step()
|
| 529 |
+
# distribute ref params
|
| 530 |
+
dist_ref_params, _, _, _ = distribute_params(params_ref, [], tp_dims, dist_group, tp_group)
|
| 531 |
+
# verify
|
| 532 |
+
for i, params_x2 in enumerate(zip(dist_ref_params, params_test)):
|
| 533 |
+
assert (params_x2[0] == params_x2[1]).all(), f"rank {rank} param {i} verify failed"
|
| 534 |
+
print_rank_0(f" - step {step} verify passed")
|
| 535 |
+
|
| 536 |
+
print_rank_0(f"dist dp = {dp_size} tp = {tp_size} test passed")
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
def run_process(rank, world_size):
|
| 541 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
| 542 |
+
os.environ['MASTER_PORT'] = '12355'
|
| 543 |
+
dist.init_process_group("gloo", rank=rank, world_size=world_size)
|
| 544 |
+
test_muon_dist(dp_size=4, tp_size=2)
|
| 545 |
+
test_muon_dist(dp_size=2, tp_size=4)
|
| 546 |
+
dist.destroy_process_group()
|
| 547 |
+
|
| 548 |
+
if __name__ == "__main__":
|
| 549 |
+
world_size = 8
|
| 550 |
+
os.environ['CUDA_DEVICE_MAX_CONNECTIONS'] = '1'
|
| 551 |
+
mp.spawn(run_process, args=(world_size,), nprocs=world_size, join=True)
|
| 552 |
+
print("\\n✅ All tests passed!")
|