import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def heatmap(file_path, output_path): df = pd.read_excel(file_path) counts = [0] * 9 for i in range(9): for j in range(200 * i, 200 * (i+1)): if df.iloc[j]["answer"] in df.iloc[j]["prediction"]: counts[i] += 1 counts[i] = counts[i] / 200 matrix = [counts[0:3], counts[3:6], counts[6:9]] # 绘图 plt.figure(figsize=(6, 6)) ax = sns.heatmap(matrix, annot=False, fmt="d", cmap="OrRd", xticklabels=[0,1,2], yticklabels=[0,1,2], vmin=0.7, vmax=0.8) ax.set_aspect("equal") plt.title("Correct Predictions Heatmap") plt.xlabel("Column") plt.ylabel("Row") plt.savefig(output_path) # Qwen2.5-VL-7B-Instruct qwen_file_path = "./Qwen2.5-VL-7B-Instruct_ShapeGrid_sudoku_ShapeGrid.xlsx" output_path = "./heatmap_full.png" heatmap(qwen_file_path, output_path) # MiniCPM-o-2_6 minicpm_file_path = "./MiniCPM-o-2_6_ShapeGrid_sudoku_ShapeGrid.xlsx" output_path = "./heatmap_slice.png" heatmap(minicpm_file_path, output_path)