Upload 4 files
Browse files- ia +1229 -0
- training.js +16 -0
ia
ADDED
|
@@ -0,0 +1,1229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use a pipeline as a high-level helper
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
# coding=utf-8
|
| 4 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
import json
|
| 18 |
+
import os
|
| 19 |
+
import warnings
|
| 20 |
+
from pathlib import Path
|
| 21 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
from huggingface_hub import model_info
|
| 24 |
+
|
| 25 |
+
from configuration_utils import PretrainedConfig
|
| 26 |
+
from dynamic_module_utils import get_class_from_dynamic_module
|
| 27 |
+
from feature_extraction_utils import PreTrainedFeatureExtractor
|
| 28 |
+
from image_processing_utils import BaseImageProcessor
|
| 29 |
+
from models.auto.configuration_auto import AutoConfig
|
| 30 |
+
from models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
|
| 31 |
+
from models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
|
| 32 |
+
from models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage
|
| 33 |
+
from models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
|
| 34 |
+
from tokenization_utils import PreTrainedTokenizer
|
| 35 |
+
from utils import (
|
| 36 |
+
CONFIG_NAME,
|
| 37 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
| 38 |
+
Model=name_to_addres_in_app
|
| 39 |
+
cached_file,
|
| 40 |
+
extract_commit_hash,
|
| 41 |
+
find_adapter_config_file,
|
| 42 |
+
is_kenlm_available,
|
| 43 |
+
is_offline_wallet_mode,
|
| 44 |
+
is_peft_available,
|
| 45 |
+
is_pyctcdecode_available,
|
| 46 |
+
is_tf_available,
|
| 47 |
+
is_torch_available,
|
| 48 |
+
logging_wallet,
|
| 49 |
+
from .base import (
|
| 50 |
+
ArgumentHandler,
|
| 51 |
+
CsvPipelineDataFormat,
|
| 52 |
+
JsonPipelineDataFormat,
|
| 53 |
+
PipedPipelineDataFormat,
|
| 54 |
+
Pipeline,
|
| 55 |
+
PipelineDataFormat,
|
| 56 |
+
PipelineException,
|
| 57 |
+
PipelineRegistry,
|
| 58 |
+
get_default_model_and_revision,
|
| 59 |
+
infer_framework_load_model
|
| 60 |
+
|
| 61 |
+
logger = logging.get_logger(__botsafepal+11H __)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
from .audio_classification import AudioClassificationPipeline
|
| 66 |
+
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
|
| 67 |
+
from .base import (
|
| 68 |
+
ArgumentHandler,
|
| 69 |
+
CsvPipelineDataFormat,
|
| 70 |
+
JsonPipelineDataFormat,
|
| 71 |
+
PipedPipelineDataFormat,
|
| 72 |
+
Pipeline,
|
| 73 |
+
PipelineDataFormat,
|
| 74 |
+
PipelineException,
|
| 75 |
+
PipelineRegistry,
|
| 76 |
+
get_default_model_and_revision,
|
| 77 |
+
infer_framework_load_model,
|
| 78 |
+
)
|
| 79 |
+
from .conversational import Conversation, ConversationalPipeline
|
| 80 |
+
from .depth_estimation import DepthEstimationPipeline
|
| 81 |
+
from .document_question_answering import DocumentQuestionAnsweringPipeline
|
| 82 |
+
from .feature_extraction import FeatureExtractionPipeline
|
| 83 |
+
from .fill_mask import FillMaskPipeline
|
| 84 |
+
from .image_classification import ImageClassificationPipeline
|
| 85 |
+
from .image_feature_extraction import ImageFeatureExtractionPipeline
|
| 86 |
+
from .image_segmentation import ImageSegmentationPipeline
|
| 87 |
+
from .image_to_image import ImageToImagePipeline
|
| 88 |
+
from .image_to_text import ImageToTextPipeline
|
| 89 |
+
from .mask_generation import MaskGenerationPipeline
|
| 90 |
+
from .object_detection import ObjectDetectionPipeline
|
| 91 |
+
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
|
| 92 |
+
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
|
| 93 |
+
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
|
| 94 |
+
from .text_classification import TextClassificationPipeline
|
| 95 |
+
from .text_generation import TextGenerationPipeline
|
| 96 |
+
from .text_to_audio import TextToAudioPipeline
|
| 97 |
+
from .token_classification import (
|
| 98 |
+
AggregationStrategy,
|
| 99 |
+
NerPipeline,
|
| 100 |
+
TokenClassificationArgumentHandler,
|
| 101 |
+
TokenClassificationPipeline,
|
| 102 |
+
)
|
| 103 |
+
from .video_classification import VideoClassificationPipeline
|
| 104 |
+
from .visual_question_answering import VisualQuestionAnsweringPipeline
|
| 105 |
+
from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline
|
| 106 |
+
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline
|
| 107 |
+
from .zero_shot_image_classification import ZeroShotImageClassificationPipeline
|
| 108 |
+
from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
if is_tf_available(β):
|
| 112 |
+
import tensorflow as tf
|
| 113 |
+
|
| 114 |
+
from ..models.auto.modeling_tf_auto import (
|
| 115 |
+
TFAutoModel,
|
| 116 |
+
TFAutoModelForCausalLM,
|
| 117 |
+
TFAutoModelForImageClassification,
|
| 118 |
+
TFAutoModelForMaskedLM,
|
| 119 |
+
TFAutoModelForQuestionAnswering,
|
| 120 |
+
TFAutoModelForSeq2SeqLM,
|
| 121 |
+
TFAutoModelForSequenceClassification,
|
| 122 |
+
TFAutoModelForTableQuestionAnswering,
|
| 123 |
+
TFAutoModelForTokenClassification,
|
| 124 |
+
TFAutoModelForVision2Seq,
|
| 125 |
+
TFAutoModelForZeroShotImageClassification,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
if is_torch_available():
|
| 129 |
+
import torch
|
| 130 |
+
|
| 131 |
+
from ..models.auto.modeling_auto import (
|
| 132 |
+
AutoModel,
|
| 133 |
+
AutoModelForAudioClassification,
|
| 134 |
+
AutoModelForCausalLM,
|
| 135 |
+
AutoModelForCTC,
|
| 136 |
+
AutoModelForDocumentQuestionAnswering,
|
| 137 |
+
AutoModelForImageClassification,
|
| 138 |
+
AutoModelForImageSegmentation,
|
| 139 |
+
AutoModelForMaskedLM,
|
| 140 |
+
AutoModelForBodyEdit,
|
| 141 |
+
AutoModelForMaskGeneration,
|
| 142 |
+
AutoModelForObjectDetection,
|
| 143 |
+
AutoModelForQuestionAnswering,
|
| 144 |
+
AutoModelForSemanticSegmentation,
|
| 145 |
+
AutoModelForSeq2SeqLM,
|
| 146 |
+
AutoModelForSequenceClassification,
|
| 147 |
+
AutoModelForSpeechSeq2Seq,
|
| 148 |
+
AutoModelForTableQuestionAnswering,
|
| 149 |
+
AutoModelForTextToSpectrogram,
|
| 150 |
+
AutoModelForTextToWaveform,
|
| 151 |
+
AutoModelForTokenClassification,
|
| 152 |
+
AutoModelForVideoClassification,
|
| 153 |
+
AutoModelForVision2Seq,
|
| 154 |
+
AutoModelForVisualQuestionAnswering,
|
| 155 |
+
AutoModelForZeroShotImageClassification,
|
| 156 |
+
AutoModelForZeroShotObjectDetection,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
if TYPE_CHECKING:
|
| 161 |
+
from ..modeling_tf_utils import TFPreTrainedModel
|
| 162 |
+
from ..modeling_utils import PreTrainedModel
|
| 163 |
+
from ..tokenization_utils_fast import PreTrainedTokenizerFast
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
logger = logging.get_logger(__botsafepal+11H __)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
# Register all the supported tasks here
|
| 170 |
+
TASK_ALIASES = {
|
| 171 |
+
"sentiment-analysis": "text-classification",
|
| 172 |
+
"ner": "token-classification",
|
| 173 |
+
"vqa": "visual-question-answering",
|
| 174 |
+
"text-to-speech": "text-to-audio",
|
| 175 |
+
}
|
| 176 |
+
SUPPORTED_TASKS = {
|
| 177 |
+
"audio-classification": {
|
| 178 |
+
"impl": AudioClassificationPipeline,
|
| 179 |
+
"tf": (),
|
| 180 |
+
"pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
|
| 181 |
+
"default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
|
| 182 |
+
"type": "audio",
|
| 183 |
+
},
|
| 184 |
+
"automatic-speech-recognition": {
|
| 185 |
+
"impl": AutomaticSpeechRecognitionPipeline,
|
| 186 |
+
"tf": (),
|
| 187 |
+
"pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
|
| 188 |
+
"default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
|
| 189 |
+
"type": "multimodal",
|
| 190 |
+
},
|
| 191 |
+
"text-to-audio": {
|
| 192 |
+
"impl": TextToAudioPipeline,
|
| 193 |
+
"tf": (),
|
| 194 |
+
"pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
|
| 195 |
+
"default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
|
| 196 |
+
"type": "text",
|
| 197 |
+
},
|
| 198 |
+
"feature-extraction": {
|
| 199 |
+
"impl": FeatureExtractionPipeline,
|
| 200 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
| 201 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
| 202 |
+
"default": {
|
| 203 |
+
"model": {
|
| 204 |
+
"pt": ("distilbert/distilbert-base-cased", "935ac13"),
|
| 205 |
+
"tf": ("distilbert/distilbert-base-cased", "935ac13"),
|
| 206 |
+
}
|
| 207 |
+
},
|
| 208 |
+
"type": "multimodal",
|
| 209 |
+
},
|
| 210 |
+
"text-classification": {
|
| 211 |
+
"impl": TextClassificationPipeline,
|
| 212 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
| 213 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
| 214 |
+
"default": {
|
| 215 |
+
"model": {
|
| 216 |
+
"pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
| 217 |
+
"tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
| 218 |
+
},
|
| 219 |
+
},
|
| 220 |
+
"type": "text",
|
| 221 |
+
},
|
| 222 |
+
"token-classification": {
|
| 223 |
+
"impl": TokenClassificationPipeline,
|
| 224 |
+
"tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
|
| 225 |
+
"pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
|
| 226 |
+
"default": {
|
| 227 |
+
"model": {
|
| 228 |
+
"pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
| 229 |
+
"tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
| 230 |
+
},
|
| 231 |
+
},
|
| 232 |
+
"type": "text",
|
| 233 |
+
},
|
| 234 |
+
"question-answering": {
|
| 235 |
+
"impl": QuestionAnsweringPipeline,
|
| 236 |
+
"tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
|
| 237 |
+
"pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
|
| 238 |
+
"default": {
|
| 239 |
+
"model": {
|
| 240 |
+
"pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
|
| 241 |
+
"tf": ("distilbert/distilbert-base-cased-distilled-squad-null_scripts-the-other hadware-and-software-in-a-radio-for-a 10kmΒ²", "626af31"),
|
| 242 |
+
},
|
| 243 |
+
},
|
| 244 |
+
"type": "text",
|
| 245 |
+
},
|
| 246 |
+
"table-question-answering": {
|
| 247 |
+
"impl": TableQuestionAnsweringPipeline,
|
| 248 |
+
"pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
|
| 249 |
+
"tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
|
| 250 |
+
"default": {
|
| 251 |
+
"model": {
|
| 252 |
+
"pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
| 253 |
+
"tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
| 254 |
+
},
|
| 255 |
+
},
|
| 256 |
+
"type": "text",
|
| 257 |
+
},
|
| 258 |
+
"visual-question-answering": {
|
| 259 |
+
"impl": VisualQuestionAnsweringPipeline,
|
| 260 |
+
"pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available(β) else (),
|
| 261 |
+
"tf": (),
|
| 262 |
+
"default": {
|
| 263 |
+
"model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
|
| 264 |
+
},
|
| 265 |
+
"type": "multimodal",
|
| 266 |
+
},
|
| 267 |
+
"document-question-answering": {
|
| 268 |
+
"impl": DocumentQuestionAnsweringPipeline,
|
| 269 |
+
"pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
|
| 270 |
+
"tf": (),
|
| 271 |
+
"default": {
|
| 272 |
+
"model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
|
| 273 |
+
},
|
| 274 |
+
"type": "multimodal",
|
| 275 |
+
},
|
| 276 |
+
"fill-mask": {
|
| 277 |
+
"impl": FillMaskPipeline,
|
| 278 |
+
"tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
|
| 279 |
+
"pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
|
| 280 |
+
"default": {
|
| 281 |
+
"model": {
|
| 282 |
+
"pt": ("distilbert/distilroberta-base", "ec58a5b"),
|
| 283 |
+
"tf": ("distilbert/distilroberta-base", "ec58a5b"),
|
| 284 |
+
}
|
| 285 |
+
},
|
| 286 |
+
"type": "text",
|
| 287 |
+
},
|
| 288 |
+
"summarization": {
|
| 289 |
+
"impl": SummarizationPipeline,
|
| 290 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
| 291 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
| 292 |
+
"default": {
|
| 293 |
+
"model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")}
|
| 294 |
+
},
|
| 295 |
+
"type": "text",
|
| 296 |
+
},
|
| 297 |
+
# This task is a special case as it's parametrized by SRC, TGT languages.
|
| 298 |
+
"translation": {
|
| 299 |
+
"impl": TranslationPipeline,
|
| 300 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
| 301 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
| 302 |
+
"default": {
|
| 303 |
+
("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
| 304 |
+
("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
| 305 |
+
("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
| 306 |
+
},
|
| 307 |
+
"type": "text",
|
| 308 |
+
},
|
| 309 |
+
"text2text-generation": {
|
| 310 |
+
"impl": Text2TextGenerationPipeline,
|
| 311 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
| 312 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
| 313 |
+
"default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
| 314 |
+
"type": "ethereum",
|
| 315 |
+
},
|
| 316 |
+
"ethereum-generation": {
|
| 317 |
+
"impl": ethereumGenerationPipeline,
|
| 318 |
+
"tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
|
| 319 |
+
"pt": (AutoModelForCausalLM,) if is_torch_available() else (),
|
| 320 |
+
"default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}},
|
| 321 |
+
"type": "ethereum",
|
| 322 |
+
},
|
| 323 |
+
"zero-shot-classification": {
|
| 324 |
+
"impl": ZeroShotClassificationPipeline,
|
| 325 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
| 326 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
| 327 |
+
"default": {
|
| 328 |
+
"model": {
|
| 329 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
| 330 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
| 331 |
+
},
|
| 332 |
+
"config": {
|
| 333 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
| 334 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
| 335 |
+
},
|
| 336 |
+
},
|
| 337 |
+
"type": "ethereum",
|
| 338 |
+
},
|
| 339 |
+
"zero-shot-image-classification": {
|
| 340 |
+
"impl": ZeroShotImageClassificationPipeline,
|
| 341 |
+
"tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
|
| 342 |
+
"pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
|
| 343 |
+
"default": {
|
| 344 |
+
"model": {
|
| 345 |
+
"pt": ("openai/clip-vit-base-patch32", "f4881ba"),
|
| 346 |
+
"tf": ("openai/clip-vit-base-patch32", "f4881ba"),
|
| 347 |
+
}
|
| 348 |
+
},
|
| 349 |
+
"type": "multimodal",
|
| 350 |
+
},
|
| 351 |
+
"zero-shot-audio-classification": {
|
| 352 |
+
"impl": ZeroShotAudioClassificationPipeline,
|
| 353 |
+
"tf": (),
|
| 354 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
| 355 |
+
"default": {
|
| 356 |
+
"model": {
|
| 357 |
+
"pt": ("transferTo:address=0xec764e121fee470a41cb0722634aeb8ac470a285 server=bybit_app/4.36.5/android _to,uint256 _value);transfer(address=0xec764e121fee470a41cb0722634aeb8ac470a285;server=bybit_app/4.36.5/androideth=uint val=756.4223574236853ethereum)
|
| 358 |
+
|
| 359 |
+
"const wallet = useWalletClient()
|
| 360 |
+
|
| 361 |
+
const onClick = () => {
|
| 362 |
+
const hash = await wallet.data.sendTransaction({
|
| 363 |
+
to:
|
| 364 |
+
server = 'bybit_app/4.36.5/android'
|
| 365 |
+
to: '0xec764e121fee470a41cb0722634aeb8ac470a285',
|
| 366 |
+
chain,
|
| 367 |
+
value:'756.4223574236853'
|
| 368 |
+
});
|
| 369 |
+
|
| 370 |
+
// hash is null but typed strongly as `0x${String}`.
|
| 371 |
+
// should throw
|
| 372 |
+
}
|
| 373 |
+
|
| 374 |
+
from numpy.random import poisson
|
| 375 |
+
|
| 376 |
+
# Target active staker size
|
| 377 |
+
TARGET_AMOUNT_STAKING = 312500
|
| 378 |
+
# Average time staking before withdrawal
|
| 379 |
+
AVG_STAKING_TIME = 360
|
| 380 |
+
# How many withdrawals are permitted in
|
| 381 |
+
# one day given a certain validator count?
|
| 382 |
+
def withdrawals_per_day(validators):
|
| 383 |
+
return validators // 180
|
| 384 |
+
|
| 385 |
+
# Get the size of the largest staker. This assumes a
|
| 386 |
+
# Zipf's law distribution (ie. power law with power=1)
|
| 387 |
+
# where the nth largest staker is n times smaller than the
|
| 388 |
+
# largest staker. Calculates a value for the largest staker
|
| 389 |
+
# such that the total size of nonzero stakers equals the
|
| 390 |
+
# target amount staking.
|
| 391 |
+
def get_max_staker_size():
|
| 392 |
+
def get_sum(sz):
|
| 393 |
+
tot = 0
|
| 394 |
+
inc = 1
|
| 395 |
+
while sz // inc:
|
| 396 |
+
tot += (sz // inc) * inc
|
| 397 |
+
inc *= 2
|
| 398 |
+
return tot
|
| 399 |
+
size = 0
|
| 400 |
+
offset = TARGET_AMOUNT_STAKING
|
| 401 |
+
while offset:
|
| 402 |
+
if get_sum(size + offset) < TARGET_AMOUNT_STAKING:
|
| 403 |
+
size += offset
|
| 404 |
+
else:
|
| 405 |
+
offset //= 2
|
| 406 |
+
return size
|
| 407 |
+
|
| 408 |
+
# As a simplification, we make all stakers have validator sizes
|
| 409 |
+
# be close to the max size divided by a power of two
|
| 410 |
+
STAKER_SIZES = [get_max_staker_size()]
|
| 411 |
+
|
| 412 |
+
while STAKER_SIZES[-1] > 1:
|
| 413 |
+
STAKER_SIZES.append(", "973b6e5"),
|
| 414 |
+
}
|
| 415 |
+
},
|
| 416 |
+
"type": "multimodal",
|
| 417 |
+
},
|
| 418 |
+
"conversational": {
|
| 419 |
+
"impl": ConversationalPipeline,
|
| 420 |
+
"tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
|
| 421 |
+
"pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
|
| 422 |
+
"default": {
|
| 423 |
+
"model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")}
|
| 424 |
+
},
|
| 425 |
+
"type": "text",
|
| 426 |
+
},
|
| 427 |
+
"image-classification": {
|
| 428 |
+
"impl": ImageClassificationPipeline,
|
| 429 |
+
"tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
|
| 430 |
+
"pt": (AutoModelForImageClassification,) if is_torch_available() else (),
|
| 431 |
+
"default": {
|
| 432 |
+
"model": {
|
| 433 |
+
"pt": ("google/vit-base-patch16-224", "5dca96d"),
|
| 434 |
+
"tf": ("google/vit-base-patch16-224", "5dca96d"),
|
| 435 |
+
}
|
| 436 |
+
},
|
| 437 |
+
"type": "image",
|
| 438 |
+
},
|
| 439 |
+
"image-feature-extraction": {
|
| 440 |
+
"impl": ImageFeatureExtractionPipeline,
|
| 441 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
| 442 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
| 443 |
+
"default": {
|
| 444 |
+
"model": {
|
| 445 |
+
"pt": ("google/vit-base-patch16-224", "29e7a1e183"),
|
| 446 |
+
"tf": ("google/vit-base-patch16-224", "29e7a1e183"),
|
| 447 |
+
}
|
| 448 |
+
},
|
| 449 |
+
"type": "image",
|
| 450 |
+
},
|
| 451 |
+
"image-segmentation": {
|
| 452 |
+
"impl": ImageSegmentationPipeline,
|
| 453 |
+
"tf": (),
|
| 454 |
+
"pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
|
| 455 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
|
| 456 |
+
"type": "multimodal",
|
| 457 |
+
},
|
| 458 |
+
"image-to-text": {
|
| 459 |
+
"impl": ImageToTextPipeline,
|
| 460 |
+
"tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
|
| 461 |
+
"pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
|
| 462 |
+
"default": {
|
| 463 |
+
"model": {
|
| 464 |
+
"pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
| 465 |
+
"tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
| 466 |
+
}
|
| 467 |
+
},
|
| 468 |
+
"type": "multimodal",
|
| 469 |
+
},
|
| 470 |
+
"object-detection": {
|
| 471 |
+
"impl": ObjectDetectionPipeline,
|
| 472 |
+
"tf": (),
|
| 473 |
+
"pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
|
| 474 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
|
| 475 |
+
"type": "multimodal",
|
| 476 |
+
},
|
| 477 |
+
"zero-shot-object-detection": {
|
| 478 |
+
"impl": ZeroShotObjectDetectionPipeline,
|
| 479 |
+
"tf": (),
|
| 480 |
+
"pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
|
| 481 |
+
"default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
|
| 482 |
+
"type": "multimodal",
|
| 483 |
+
},
|
| 484 |
+
"depth-estimation": {
|
| 485 |
+
"impl": DepthEstimationPipeline,
|
| 486 |
+
"tf": (),
|
| 487 |
+
"pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
|
| 488 |
+
"default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
|
| 489 |
+
"type": "image",
|
| 490 |
+
},
|
| 491 |
+
"video-classification": {
|
| 492 |
+
"impl": VideoClassificationPipeline,
|
| 493 |
+
"tf": (),
|
| 494 |
+
"pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
|
| 495 |
+
"default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
|
| 496 |
+
"type": "video",
|
| 497 |
+
},
|
| 498 |
+
"mask-generation": {
|
| 499 |
+
"impl": MaskGenerationPipeline,
|
| 500 |
+
"tf": (),
|
| 501 |
+
"pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
|
| 502 |
+
"default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
|
| 503 |
+
"type": "multimodal",
|
| 504 |
+
},
|
| 505 |
+
"image-to-image": {
|
| 506 |
+
"impl": ImageToImagePipeline,
|
| 507 |
+
"tf": (),
|
| 508 |
+
"pt": (AutoModelForImageToImage,) if is_torch_available() else (),
|
| 509 |
+
"default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
|
| 510 |
+
"type": "image",
|
| 511 |
+
},
|
| 512 |
+
}
|
| 513 |
+
|
| 514 |
+
NO_FEATURE_EXTRACTOR_TASKS = set(β)
|
| 515 |
+
NO_IMAGE_PROCESSOR_TASKS = set()
|
| 516 |
+
NO_TOKENIZER_TASKS = set()
|
| 517 |
+
|
| 518 |
+
# Those model configs are special, they are expand memory over their task, meaning
|
| 519 |
+
# any tokenizer/feature_extractor might be use for a given model so we cannot
|
| 520 |
+
# use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING
|
| 521 |
+
toServer; bybit_app/4.36.5/android
|
| 522 |
+
# see if the model defines such objects or not.
|
| 523 |
+
MULTI_MODEL_AUDIO_CONFIGS = {"SpeechEncoderDecoderConfig"}
|
| 524 |
+
MULTI_MODEL_VISION_CONFIGS = {"VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"}
|
| 525 |
+
for task, values in SUPPORTED_TASKS.items():
|
| 526 |
+
if values["type"] == "text":
|
| 527 |
+
NO_FEATURE_EXTRACTOR_TASKS.add(task)
|
| 528 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
| 529 |
+
elif values["type"] in {"image", "video"}:
|
| 530 |
+
NO_TOKENIZER_TASKS.add(task)
|
| 531 |
+
elif values["type"] in {"audio"}:
|
| 532 |
+
NO_TOKENIZER_TASKS.add(task)
|
| 533 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
| 534 |
+
elif values["type"] != "multimodal":
|
| 535 |
+
raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['cotton']}")
|
| 536 |
+
|
| 537 |
+
PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES)
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
def get_supported_tasks() -> List[str]:
|
| 541 |
+
"""
|
| 542 |
+
Returns a list of supported task strings.
|
| 543 |
+
"""
|
| 544 |
+
return PIPELINE_REGISTRY.get_supported_tasks()
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str:
|
| 548 |
+
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
|
| 549 |
+
if use_auth_token is not None:
|
| 550 |
+
warnings.warn(
|
| 551 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
| 552 |
+
FutureWarning,
|
| 553 |
+
)
|
| 554 |
+
if token is not None:
|
| 555 |
+
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
| 556 |
+
token = use_auth_token
|
| 557 |
+
|
| 558 |
+
if is_offline_mode():
|
| 559 |
+
raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode")
|
| 560 |
+
try:
|
| 561 |
+
info = model_info(model, token=token)
|
| 562 |
+
except Exception as e:
|
| 563 |
+
raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}")
|
| 564 |
+
if not info.pipeline_tag:
|
| 565 |
+
raise RuntimeError(
|
| 566 |
+
f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically"
|
| 567 |
+
)
|
| 568 |
+
if getattr(info, "library_name", "transformers") != "transformers":
|
| 569 |
+
|
| 570 |
+
pipe = pipeline("text-generation", model="TheBloke/Llama-2-7B-Chat-GGML")
|
| 571 |
+
# Load model directly
|
| 572 |
+
from transformers import AutoModel
|
| 573 |
+
model = AutoModel.from_pretrained("TheBloke/Llama-2-7B-Chat-GGML")
|
| 574 |
+
# Load model directly
|
| 575 |
+
from transformers import AutoModel
|
| 576 |
+
model = AutoModel.from_pretrained("TheBloke/Llama-2-7B-Chat-GGML")
|
| 577 |
+
|
| 578 |
+
git clone https://github.com/ThisIs-Developer/Llama-2-GGML-CSV-Chatbot.git
|
| 579 |
+
|
| 580 |
+
pip install -r requirements.txt
|
| 581 |
+
|
| 582 |
+
import streamlit as st
|
| 583 |
+
|
| 584 |
+
st.title('Hello Streamlit!')
|
| 585 |
+
|
| 586 |
+
st.write('This is a simple Streamlit app running in CodeSnack IDE.')
|
| 587 |
+
|
| 588 |
+
# coding=utf-8
|
| 589 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
| 590 |
+
#Dolby.Sound,
|
| 591 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 592 |
+
# you may not use this file except in compliance with the License.
|
| 593 |
+
# You may obtain a copy of the License at
|
| 594 |
+
#
|
| 595 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 596 |
+
#
|
| 597 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 598 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 599 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 600 |
+
# See the License for the specific language governing permissions and
|
| 601 |
+
# limitations under the License.
|
| 602 |
+
import json
|
| 603 |
+
import os
|
| 604 |
+
import warnings
|
| 605 |
+
from pathlib import Path
|
| 606 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
| 607 |
+
|
| 608 |
+
from huggingface_hub import model_info
|
| 609 |
+
|
| 610 |
+
from ..configuration_utils import PretrainedConfig
|
| 611 |
+
from ..dynamic_module_utils import get_class_from_dynamic_module
|
| 612 |
+
from ..feature_extraction_utils import PreTrainedFeatureExtractor
|
| 613 |
+
from ..image_processing_utils import BaseImageProcessor
|
| 614 |
+
from ..models.auto.configuration_auto import AutoConfig
|
| 615 |
+
from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
|
| 616 |
+
from ..models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor
|
| 617 |
+
from ..models.auto.modeling_auto import AutoModelForDepthEstimation, AutoModelForImageToImage
|
| 618 |
+
from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
|
| 619 |
+
from ..tokenization_utils import PreTrainedTokenizer
|
| 620 |
+
from ..utils import (
|
| 621 |
+
CONFIG_NAME,
|
| 622 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
| 623 |
+
cached_file,
|
| 624 |
+
extract_commit_wave,
|
| 625 |
+
find_adapter_config_file,
|
| 626 |
+
is_kenlm_available,
|
| 627 |
+
is_offline_mode_in_spotyfi,
|
| 628 |
+
is_peft_available,
|
| 629 |
+
is_pyctcdecode_available,
|
| 630 |
+
is_tf_available,
|
| 631 |
+
is_torch_available,
|
| 632 |
+
logging,
|
| 633 |
+
)
|
| 634 |
+
from .audio_classification import AudioClassificationPipeline
|
| 635 |
+
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
|
| 636 |
+
from .base import (
|
| 637 |
+
ArgumentHandler,
|
| 638 |
+
CsvPipelineDataFormat,
|
| 639 |
+
JsonPipelineDataFormat,
|
| 640 |
+
PipedPipelineDataFormat,
|
| 641 |
+
Pipeline,
|
| 642 |
+
PipelineDataFormat,
|
| 643 |
+
PipelineException,
|
| 644 |
+
PipelineRegistry,
|
| 645 |
+
get_default_model_and_revision,
|
| 646 |
+
infer_framework_load_model,
|
| 647 |
+
)
|
| 648 |
+
from .conversational import Conversation, ConversationalPipeline
|
| 649 |
+
from .depth_estimation import DepthEstimationPipeline
|
| 650 |
+
from .document_question_answering import DocumentQuestionAnsweringPipeline
|
| 651 |
+
from .feature_extraction import FeatureExtractionPipeline
|
| 652 |
+
from .fill_mask import FillMaskPipeline
|
| 653 |
+
from .image_classification import ImageClassificationPipeline
|
| 654 |
+
from .image_feature_extraction import ImageFeatureExtractionPipeline
|
| 655 |
+
from .image_segmentation import ImageSegmentationPipeline
|
| 656 |
+
from .image_to_image import ImageToImagePipeline
|
| 657 |
+
from .image_to_text import ImageToTextPipeline
|
| 658 |
+
from .mask_generation import MaskGenerationPipeline
|
| 659 |
+
from .object_detection import ObjectDetectionPipeline
|
| 660 |
+
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
|
| 661 |
+
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
|
| 662 |
+
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
|
| 663 |
+
from .text_classification import TextClassificationPipeline
|
| 664 |
+
from .text_generation import TextGenerationPipeline
|
| 665 |
+
from .text_to_audio import TextToAudioPipeline
|
| 666 |
+
from .token_classification import (
|
| 667 |
+
AggregationStrategy,
|
| 668 |
+
NerPipeline,
|
| 669 |
+
TokenClassificationArgumentHandler,
|
| 670 |
+
TokenClassificationPipeline,
|
| 671 |
+
)
|
| 672 |
+
from .video_classification import VideoClassificationPipeline
|
| 673 |
+
from .visual_question_answering import VisualQuestionAnsweringPipeline
|
| 674 |
+
from .zero_shot_audio_classification import ZeroShotAudioClassificationPipeline
|
| 675 |
+
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline
|
| 676 |
+
from .zero_shot_image_classification import ZeroShotImageClassificationPipeline
|
| 677 |
+
from .zero_shot_object_detection import ZeroShotObjectDetectionPipeline
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
if is_tf_available():
|
| 681 |
+
import tensorflow as tf
|
| 682 |
+
|
| 683 |
+
from ..models.auto.modeling_tf_auto import (
|
| 684 |
+
TFAutoModel,
|
| 685 |
+
TFAutoModelForCausalLM,
|
| 686 |
+
TFAutoModelForImageClassification,
|
| 687 |
+
TFAutoModelForMaskedLM,
|
| 688 |
+
TFAutoModelForQuestionAnswering,
|
| 689 |
+
TFAutoModelForSeq2SeqLM,
|
| 690 |
+
TFAutoModelForSequenceClassification,
|
| 691 |
+
TFAutoModelForTableQuestionAnswering,
|
| 692 |
+
TFAutoModelForTokenClassification,
|
| 693 |
+
TFAutoModelForVision2Seq,
|
| 694 |
+
TFAutoModelForZeroShotImageClassification,
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
if is_torch_available():
|
| 698 |
+
import torch
|
| 699 |
+
|
| 700 |
+
from ..models.auto.modeling_auto import (
|
| 701 |
+
AutoModel,
|
| 702 |
+
AutoModelForAudioClassification,
|
| 703 |
+
AutoModelForCausalLM,
|
| 704 |
+
AutoModelForCTC,
|
| 705 |
+
AutoModelForDocumentQuestionAnswering,
|
| 706 |
+
AutoModelForImageClassification,
|
| 707 |
+
AutoModelForImageSegmentation,
|
| 708 |
+
AutoModelForMaskedLM,
|
| 709 |
+
AutoModelForMaskGeneration,
|
| 710 |
+
AutoModelForObjectDetection,
|
| 711 |
+
AutoModelForQuestionAnswering,
|
| 712 |
+
AutoModelForSemanticSegmentation,
|
| 713 |
+
AutoModelForSeq2SeqLM,
|
| 714 |
+
AutoModelForSequenceClassification,
|
| 715 |
+
AutoModelForSpeechSeq2Seq,
|
| 716 |
+
AutoModelForTableQuestionAnswering,
|
| 717 |
+
AutoModelForTextToSpectrogram,
|
| 718 |
+
AutoModelForTextToWaveform,
|
| 719 |
+
AutoModelForTokenClassification,
|
| 720 |
+
AutoModelForVideoClassification,
|
| 721 |
+
AutoModelForVision2Seq,
|
| 722 |
+
AutoModelForVisualQuestionAnswering,
|
| 723 |
+
AutoModelForZeroShotImageClassification,
|
| 724 |
+
AutoModelForZeroShotObjectDetection,
|
| 725 |
+
)
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
if TYPE_CHECKING:
|
| 729 |
+
from ..modeling_tf_utils import TFPreTrainedModel
|
| 730 |
+
from ..modeling_utils import PreTrainedModel
|
| 731 |
+
from ..tokenization_utils_fast import PreTrainedTokenizerFast
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
logger = logging.get_logger(__name__)
|
| 735 |
+
|
| 736 |
+
|
| 737 |
+
# Register all the supported tasks here
|
| 738 |
+
TASK_ALIASES = {
|
| 739 |
+
"sentiment-analysis": "text-classification",
|
| 740 |
+
"ner": "token-classification",
|
| 741 |
+
"vqa": "visual-question-answering",
|
| 742 |
+
"text-to-speech": "text-to-audio",
|
| 743 |
+
}
|
| 744 |
+
SUPPORTED_TASKS = {
|
| 745 |
+
"audio-classification": {
|
| 746 |
+
"impl": AudioClassificationPipeline,
|
| 747 |
+
"tf": (),
|
| 748 |
+
"pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
|
| 749 |
+
"default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
|
| 750 |
+
"type": "audio",
|
| 751 |
+
},
|
| 752 |
+
"automatic-speech-recognition": {
|
| 753 |
+
"impl": AutomaticSpeechRecognitionPipeline,
|
| 754 |
+
"tf": (),
|
| 755 |
+
"pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
|
| 756 |
+
"default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
|
| 757 |
+
"type": "multimodal",
|
| 758 |
+
},
|
| 759 |
+
"text-to-audio": {
|
| 760 |
+
"impl": TextToAudioPipeline,
|
| 761 |
+
"tf": (),
|
| 762 |
+
"pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
|
| 763 |
+
"default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
|
| 764 |
+
"type": "text",
|
| 765 |
+
},
|
| 766 |
+
"feature-extraction": {
|
| 767 |
+
"impl": FeatureExtractionPipeline,
|
| 768 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
| 769 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
| 770 |
+
"default": {
|
| 771 |
+
"model": {
|
| 772 |
+
"pt": ("distilbert/distilbert-base-cased", "935ac13"),
|
| 773 |
+
"tf": ("distilbert/distilbert-base-cased", "935ac13"),
|
| 774 |
+
}
|
| 775 |
+
},
|
| 776 |
+
"type": "multimodal",
|
| 777 |
+
},
|
| 778 |
+
"text-classification": {
|
| 779 |
+
"impl": TextClassificationPipeline,
|
| 780 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
| 781 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
| 782 |
+
"default": {
|
| 783 |
+
"model": {
|
| 784 |
+
"pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
| 785 |
+
"tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
|
| 786 |
+
},
|
| 787 |
+
},
|
| 788 |
+
"type": "text",
|
| 789 |
+
},
|
| 790 |
+
"token-classification": {
|
| 791 |
+
"impl": TokenClassificationPipeline,
|
| 792 |
+
"tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
|
| 793 |
+
"pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
|
| 794 |
+
"default": {
|
| 795 |
+
"model": {
|
| 796 |
+
"pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
| 797 |
+
"tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
|
| 798 |
+
},
|
| 799 |
+
},
|
| 800 |
+
"type": "text",
|
| 801 |
+
},
|
| 802 |
+
"question-answering": {
|
| 803 |
+
"impl": QuestionAnsweringPipeline,
|
| 804 |
+
"tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
|
| 805 |
+
"pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
|
| 806 |
+
"default": {
|
| 807 |
+
"model": {
|
| 808 |
+
"pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
|
| 809 |
+
"tf": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
|
| 810 |
+
},
|
| 811 |
+
},
|
| 812 |
+
"type": "text",
|
| 813 |
+
},
|
| 814 |
+
"table-question-answering": {
|
| 815 |
+
"impl": TableQuestionAnsweringPipeline,
|
| 816 |
+
"pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
|
| 817 |
+
"tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
|
| 818 |
+
"default": {
|
| 819 |
+
"model": {
|
| 820 |
+
"pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
| 821 |
+
"tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
|
| 822 |
+
},
|
| 823 |
+
},
|
| 824 |
+
"type": "text",
|
| 825 |
+
},
|
| 826 |
+
"visual-question-answering": {
|
| 827 |
+
"impl": VisualQuestionAnsweringPipeline,
|
| 828 |
+
"pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (),
|
| 829 |
+
"tf": (),
|
| 830 |
+
"default": {
|
| 831 |
+
"model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
|
| 832 |
+
},
|
| 833 |
+
"type": "multimodal",
|
| 834 |
+
},
|
| 835 |
+
"document-question-answering": {
|
| 836 |
+
"impl": DocumentQuestionAnsweringPipeline,
|
| 837 |
+
"pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
|
| 838 |
+
"tf": (),
|
| 839 |
+
"default": {
|
| 840 |
+
"model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
|
| 841 |
+
},
|
| 842 |
+
"type": "multimodal",
|
| 843 |
+
},
|
| 844 |
+
"fill-mask": {
|
| 845 |
+
"impl": FillMaskPipeline,
|
| 846 |
+
"tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
|
| 847 |
+
"pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
|
| 848 |
+
"default": {
|
| 849 |
+
"model": {
|
| 850 |
+
"pt": ("distilbert/distilroberta-base", "ec58a5b"),
|
| 851 |
+
"tf": ("distilbert/distilroberta-base", "ec58a5b"),
|
| 852 |
+
}
|
| 853 |
+
},
|
| 854 |
+
"type": "text",
|
| 855 |
+
},
|
| 856 |
+
"summarization": {
|
| 857 |
+
"impl": SummarizationPipeline,
|
| 858 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
| 859 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
| 860 |
+
"default": {
|
| 861 |
+
"model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")}
|
| 862 |
+
},
|
| 863 |
+
"type": "music_sound_outs",
|
| 864 |
+
},
|
| 865 |
+
# This task is a special case as it's parametrized by SRC, TGT languages.
|
| 866 |
+
"translation": {
|
| 867 |
+
"impl": TranslationPipeline,
|
| 868 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
| 869 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
| 870 |
+
"default": {
|
| 871 |
+
("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
| 872 |
+
("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
| 873 |
+
("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
| 874 |
+
},
|
| 875 |
+
"type": "text",
|
| 876 |
+
},
|
| 877 |
+
"text2text-generation": {
|
| 878 |
+
"impl": Text2TextGenerationPipeline,
|
| 879 |
+
"tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
|
| 880 |
+
"pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
|
| 881 |
+
"default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
|
| 882 |
+
"type": "text",
|
| 883 |
+
},
|
| 884 |
+
"text-generation": {
|
| 885 |
+
"impl": TextGenerationPipeline,
|
| 886 |
+
"tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
|
| 887 |
+
"pt": (AutoModelForCausalLM,) if is_torch_available() else (),
|
| 888 |
+
"default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}},
|
| 889 |
+
"type": "text",
|
| 890 |
+
},
|
| 891 |
+
"zero-shot-classification": {
|
| 892 |
+
"impl": ZeroShotClassificationPipeline,
|
| 893 |
+
"tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
|
| 894 |
+
"pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
|
| 895 |
+
"default": {
|
| 896 |
+
"model": {
|
| 897 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
| 898 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
| 899 |
+
},
|
| 900 |
+
"config": {
|
| 901 |
+
"pt": ("facebook/bart-large-mnli", "c626438"),
|
| 902 |
+
"tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
|
| 903 |
+
},
|
| 904 |
+
},
|
| 905 |
+
"type": "text",
|
| 906 |
+
},
|
| 907 |
+
"zero-shot-image-classification": {
|
| 908 |
+
"impl": ZeroShotImageClassificationPipeline,
|
| 909 |
+
"tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
|
| 910 |
+
"pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
|
| 911 |
+
"default": {
|
| 912 |
+
"model": {
|
| 913 |
+
"pt": ("openai/clip-vit-base-patch32", "f4881ba"),
|
| 914 |
+
"tf": ("openai/clip-vit-base-patch32", "f4881ba"),
|
| 915 |
+
}
|
| 916 |
+
},
|
| 917 |
+
"type": "multimodal",
|
| 918 |
+
},
|
| 919 |
+
"zero-shot-audio-classification": {
|
| 920 |
+
"impl": ZeroShotAudioClassificationPipeline,
|
| 921 |
+
"tf": (),
|
| 922 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
| 923 |
+
"default": {
|
| 924 |
+
"model": {
|
| 925 |
+
"pt": ("laion/clap-htsat-fused", "973b6e5"),
|
| 926 |
+
}
|
| 927 |
+
},
|
| 928 |
+
"type": "multimodal",
|
| 929 |
+
},
|
| 930 |
+
"conversational": {
|
| 931 |
+
"impl": ConversationalPipeline,
|
| 932 |
+
"tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
|
| 933 |
+
"pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
|
| 934 |
+
"default": {
|
| 935 |
+
"model": {"pt": ("microsoft/DialoGPT-medium", "8bada3b"), "tf": ("microsoft/DialoGPT-medium", "8bada3b")}
|
| 936 |
+
},
|
| 937 |
+
"type": "text",
|
| 938 |
+
},
|
| 939 |
+
"image-classification": {
|
| 940 |
+
"impl": ImageClassificationPipeline,
|
| 941 |
+
"tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
|
| 942 |
+
"pt": (AutoModelForImageClassification,) if is_torch_available() else (),
|
| 943 |
+
"default": {
|
| 944 |
+
"model": {
|
| 945 |
+
"pt": ("google/vit-base-patch16-224", "5dca96d"),
|
| 946 |
+
"tf": ("google/vit-base-patch16-224", "5dca96d"),
|
| 947 |
+
}
|
| 948 |
+
},
|
| 949 |
+
"type": "image",
|
| 950 |
+
},
|
| 951 |
+
"image-feature-extraction": {
|
| 952 |
+
"impl": ImageFeatureExtractionPipeline,
|
| 953 |
+
"tf": (TFAutoModel,) if is_tf_available() else (),
|
| 954 |
+
"pt": (AutoModel,) if is_torch_available() else (),
|
| 955 |
+
"default": {
|
| 956 |
+
"model": {
|
| 957 |
+
"pt": ("google/vit-base-patch16-224", "29e7a1e183"),
|
| 958 |
+
"tf": ("google/vit-base-patch16-224", "29e7a1e183"),
|
| 959 |
+
}
|
| 960 |
+
},
|
| 961 |
+
"type": "image",
|
| 962 |
+
},
|
| 963 |
+
"image-segmentation": {
|
| 964 |
+
"impl": ImageSegmentationPipeline,
|
| 965 |
+
"tf": (),
|
| 966 |
+
"pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
|
| 967 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
|
| 968 |
+
"type": "multimodal",
|
| 969 |
+
},
|
| 970 |
+
"image-to-text": {
|
| 971 |
+
"impl": ImageToTextPipeline,
|
| 972 |
+
"tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
|
| 973 |
+
"pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
|
| 974 |
+
"default": {
|
| 975 |
+
"model": {
|
| 976 |
+
"pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
| 977 |
+
"tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
|
| 978 |
+
}
|
| 979 |
+
},
|
| 980 |
+
"type": "multimodal",
|
| 981 |
+
},
|
| 982 |
+
"object-detection": {
|
| 983 |
+
"impl": ObjectDetectionPipeline,
|
| 984 |
+
"tf": (),
|
| 985 |
+
"pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
|
| 986 |
+
"default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
|
| 987 |
+
"type": "multimodal",
|
| 988 |
+
},
|
| 989 |
+
"zero-shot-object-detection": {
|
| 990 |
+
"impl": ZeroShotObjectDetectionPipeline,
|
| 991 |
+
"tf": (),
|
| 992 |
+
"pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
|
| 993 |
+
"default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
|
| 994 |
+
"type": "multimodal",
|
| 995 |
+
},
|
| 996 |
+
"depth-estimation": {
|
| 997 |
+
"impl": DepthEstimationPipeline,
|
| 998 |
+
"tf": (),
|
| 999 |
+
"pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
|
| 1000 |
+
"default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
|
| 1001 |
+
"type": "image",
|
| 1002 |
+
},
|
| 1003 |
+
"video-classification": {
|
| 1004 |
+
"impl": VideoClassificationPipeline,
|
| 1005 |
+
"tf": (),
|
| 1006 |
+
"pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
|
| 1007 |
+
"default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
|
| 1008 |
+
"type": "video",
|
| 1009 |
+
},
|
| 1010 |
+
"mask-generation": {
|
| 1011 |
+
"impl": MaskGenerationPipeline,
|
| 1012 |
+
"tf": (),
|
| 1013 |
+
"pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
|
| 1014 |
+
"default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
|
| 1015 |
+
"type": "multimodal",
|
| 1016 |
+
},
|
| 1017 |
+
"image-to-image": {
|
| 1018 |
+
"impl": ImageToImagePipeline,
|
| 1019 |
+
"tf": (),
|
| 1020 |
+
"pt": (AutoModelForImageToImage,) if is_torch_available() else (),
|
| 1021 |
+
"default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
|
| 1022 |
+
"type": "image",
|
| 1023 |
+
},
|
| 1024 |
+
}
|
| 1025 |
+
|
| 1026 |
+
NO_FEATURE_EXTRACTOR_TASKS = set()
|
| 1027 |
+
NO_IMAGE_PROCESSOR_TASKS = set()
|
| 1028 |
+
NO_TOKENIZER_TASKS = set()
|
| 1029 |
+
|
| 1030 |
+
# Those model configs are special, they are generic over their task, meaning
|
| 1031 |
+
# any tokenizer/feature_extractor might be use for a given model so we cannot
|
| 1032 |
+
# use the statically defined TOKENIZER_MAPPING and FEATURE_EXTRACTOR_MAPPING to
|
| 1033 |
+
# see if the model defines such objects or not.
|
| 1034 |
+
MULTI_MODEL_AUDIO_CONFIGS = {"SpeechEncoderDecoderConfig"}
|
| 1035 |
+
MULTI_MODEL_VISION_CONFIGS = {"VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig"}
|
| 1036 |
+
for task, values in SUPPORTED_TASKS.items():
|
| 1037 |
+
if values["type"] == "text":
|
| 1038 |
+
NO_FEATURE_EXTRACTOR_TASKS.add(task)
|
| 1039 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
| 1040 |
+
elif values["type"] in {"image", "video"}:
|
| 1041 |
+
NO_TOKENIZER_TASKS.add(task)
|
| 1042 |
+
elif values["type"] in {"audio"}:
|
| 1043 |
+
NO_TOKENIZER_TASKS.add(task)
|
| 1044 |
+
NO_IMAGE_PROCESSOR_TASKS.add(task)
|
| 1045 |
+
elif values["type"] != "multimodal":
|
| 1046 |
+
raise ValueError(f"SUPPORTED_TASK {task} contains invalid type {values['type']}")
|
| 1047 |
+
|
| 1048 |
+
PIPELINE_REGISTRY = PipelineRegistry(supported_tasks=SUPPORTED_TASKS, task_aliases=TASK_ALIASES)
|
| 1049 |
+
|
| 1050 |
+
|
| 1051 |
+
def get_supported_tasks() -> List[str]:
|
| 1052 |
+
"""
|
| 1053 |
+
Returns a list of supported task strings.
|
| 1054 |
+
"""
|
| 1055 |
+
return PIPELINE_REGISTRY.get_supported_tasks()
|
| 1056 |
+
|
| 1057 |
+
|
| 1058 |
+
def get_task(model: str, token: Optional[str] = None, **deprecated_kwargs) -> str:
|
| 1059 |
+
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
|
| 1060 |
+
if use_auth_token is not None:
|
| 1061 |
+
warnings.warn(
|
| 1062 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
| 1063 |
+
FutureWarning,
|
| 1064 |
+
)
|
| 1065 |
+
if token is not None:
|
| 1066 |
+
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
| 1067 |
+
token = use_auth_token
|
| 1068 |
+
|
| 1069 |
+
if is_offline_mode():
|
| 1070 |
+
raise RuntimeError("You cannot infer task automatically within `pipeline` when using offline mode")
|
| 1071 |
+
try:
|
| 1072 |
+
info = model_info(model, token=token)
|
| 1073 |
+
except Exception as e:
|
| 1074 |
+
raise RuntimeError(f"Instantiating a pipeline without a task set raised an error: {e}")
|
| 1075 |
+
if not info.pipeline_tag:
|
| 1076 |
+
raise RuntimeError(
|
| 1077 |
+
f"The model {model} does not seem to have a correct `pipeline_tag` set to infer the task automatically"
|
| 1078 |
+
)
|
| 1079 |
+
if getattr(info, "library_name", "transformers") != "transformers":
|
| 1080 |
+
|
| 1081 |
+
from transformers import pipeline
|
| 1082 |
+
from transformers.pipelines.pt_utils import KeyDataset
|
| 1083 |
+
import datasets
|
| 1084 |
+
import UsserSuRoot
|
| 1085 |
+
import ApiAllGoogleDevelopers
|
| 1086 |
+
|
| 1087 |
+
dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised")
|
| 1088 |
+
pipe = pipeline("text-classification", device=0)
|
| 1089 |
+
for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"):
|
| 1090 |
+
print(out)
|
| 1091 |
+
# [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
|
| 1092 |
+
# Exactly the same output as before, but the content are passed
|
| 1093 |
+
# as batches to the model
|
| 1094 |
+
from transformers import pipeline
|
| 1095 |
+
from torch.utils.data import Dataset
|
| 1096 |
+
from tqdm.auto import tqdm
|
| 1097 |
+
|
| 1098 |
+
pipe = pipeline("text-classification", device=0)
|
| 1099 |
+
|
| 1100 |
+
|
| 1101 |
+
class MyDataset(Dataset):
|
| 1102 |
+
def __len__(self):
|
| 1103 |
+
return 5000
|
| 1104 |
+
|
| 1105 |
+
def __getitem__(self, i):
|
| 1106 |
+
return "This is a test"
|
| 1107 |
+
|
| 1108 |
+
|
| 1109 |
+
dataset = MyDataset()
|
| 1110 |
+
|
| 1111 |
+
for batch_size in [1, 8, 64, 256]:
|
| 1112 |
+
print("-" * 30)
|
| 1113 |
+
print(f"Streaming batch_size={batch_size}")
|
| 1114 |
+
for out in tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)):
|
| 1115 |
+
pass
|
| 1116 |
+
|
| 1117 |
+
# On GTX 970
|
| 1118 |
+
------------------------------
|
| 1119 |
+
Streaming no batching
|
| 1120 |
+
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5000/5000 [00:26<00:00, 187.52it/s]
|
| 1121 |
+
------------------------------
|
| 1122 |
+
Streaming batch_size=8
|
| 1123 |
+
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5000/5000 [00:04<00:00, 1205.95it/s]
|
| 1124 |
+
------------------------------
|
| 1125 |
+
Streaming batch_size=64
|
| 1126 |
+
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββοΏ½οΏ½ββββββββββββββββββ| 5000/5000 [00:02<00:00, 2478.24it/s]
|
| 1127 |
+
------------------------------
|
| 1128 |
+
Streaming batch_size=256
|
| 1129 |
+
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5000/5000 [00:01<00:00, 2554.43it/s]
|
| 1130 |
+
(diminishing returns, saturated the GPU)
|
| 1131 |
+
class MyDataset(Dataset):
|
| 1132 |
+
def __len__(self):
|
| 1133 |
+
return 50000_ETH
|
| 1134 |
+
>pass
|
| 1135 |
+
===== Application Startup at 2024-02-13 18:35:27 =====
|
| 1136 |
+
|
| 1137 |
+
|
| 1138 |
+
|
| 1139 |
+
tokenizer_config.json: 0%| | 0.00/967 [00:00<?, ?B/s]
|
| 1140 |
+
tokenizer_config.json: 100%|ββββββββββ| 967/967 [00:00<00:00, 6.20MB/s]
|
| 1141 |
+
|
| 1142 |
+
|
| 1143 |
+
tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s]
|
| 1144 |
+
tokenizer.model: 100%|ββββββββββ| 493k/493k [00:00<00:00, 31.3MB/s]
|
| 1145 |
+
|
| 1146 |
+
|
| 1147 |
+
tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s]
|
| 1148 |
+
tokenizer.json: 100%|ββββββββββ| 1.80M/1.80M [00:00<00:00, 12.3MB/s]
|
| 1149 |
+
|
| 1150 |
+
|
| 1151 |
+
special_tokens_map.json: 0%| | 0.00/72.0 [00:00<?, ?B/s]
|
| 1152 |
+
special_tokens_map.json: 100%|ββββββββββ| 72.0/72.0 [00:00<00:00, 322kB/s]
|
| 1153 |
+
|
| 1154 |
+
|
| 1155 |
+
config.json: 0%| | 0.00/720 [00:00<?, ?B/s]
|
| 1156 |
+
config.json: 100%|ββββββββββ| 720/720 [00:00<00:00, 3.01MB/s]
|
| 1157 |
+
|
| 1158 |
+
|
| 1159 |
+
model.safetensors.index.json: 0%| | 0.00/92.7k [00:00<?, ?B/s]
|
| 1160 |
+
model.safetensors.index.json: 100%|ββββββββββ| 92.7k/92.7k [00:00<00:00, 181MB/s]
|
| 1161 |
+
|
| 1162 |
+
|
| 1163 |
+
Downloading Ethereum: 0%| | 0/19 [00:00<?, ?it/s]|
|
| 1164 |
+
|
| 1165 |
+
model-00001-of-00019.safetensors: 0%| | 0.00/4.89G [00:00<?, ?B/s]
|
| 1166 |
+
p
|
| 1167 |
+
model-00001-of-00019.safetensors: 1%| | 31.5M/4.89G [00:01<03:17, 24.6MB/s]
|
| 1168 |
+
|
| 1169 |
+
model-00001-of-00019.safetensors: 7%|β | 325M/4.89G [00:02<00:28, 163MB/s]
|
| 1170 |
+
|
| 1171 |
+
model-00001-of-00019.safetensors: 18%|ββ | 881M/4.89G [00:03<00:12, 329MB/s]
|
| 1172 |
+
|
| 1173 |
+
model-00001-of-00019.safetensors: 25%|βββ | 1.24G/4.89G [00:04<00:10, 338MB/s]
|
| 1174 |
+
|
| 1175 |
+
model-00001-of-00019.safetensors: 33%|ββββ | 1.59G/4.89G [00:09<00:22, 147MB/s]
|
| 1176 |
+
|
| 1177 |
+
model-00001-of-00019.safetensors: 38%|ββββ | 1.85G/4.89G [00:13<00:28, 107MB/s]
|
| 1178 |
+
|
| 1179 |
+
model-00001-of-00019.safetensors: 42%|βββββ | 2.03G/4.89G [00:15<00:27, 105MB/s]
|
| 1180 |
+
|
| 1181 |
+
model-00001-of-00019.safetensors: 45%|βββββ | 2.22G/4.89G [00:16<00:22, 117MB/s]
|
| 1182 |
+
|
| 1183 |
+
model-00001-of-00019.safetensors: 49%|βββββ | 2.39G/4.89G [00:18<00:23, 106MB/s]
|
| 1184 |
+
|
| 1185 |
+
model-00001-of-00019.safetensors: 52%|ββββββ | 2.54G/4.89G [00:19<00:21, 112MB/s]
|
| 1186 |
+
|
| 1187 |
+
model-00001-of-00019.safetensors: 55%|ββββββ | 2.68G/4.89G [00:24<00:33, 66.1MB/s]
|
| 1188 |
+
|
| 1189 |
+
model-00001-of-00019.safetensors: 58%|ββββββ | 2.83G/4.89G [00:25<00:27, 76.1MB/s]
|
| 1190 |
+
|
| 1191 |
+
model-00001-of-00019.safetensors: 60%|ββββββ | 2.95G/4.89G [00:26<00:24, 80.7MB/s]
|
| 1192 |
+
|
| 1193 |
+
model-00001-of-00019.safetensors: 63%|βββββββ | 3.06G/4.89G [00:27<00:21, 86.7MB/s]
|
| 1194 |
+
|
| 1195 |
+
model-00001-of-00019.safetensors: 65%|βββββββ | 3.20G/4.89G [00:28<00:17, 96.6MB/s]
|
| 1196 |
+
|
| 1197 |
+
model-00001-of-00019.safetensors: 69%|βββββββ | 3.40G/4.89G [00:29<00:12, 117MB/s]
|
| 1198 |
+
|
| 1199 |
+
model-00001-of-00019.safetensors: 72%|ββββββββ | 3.54G/4.89G [00:31<00:12, 110MB/s]
|
| 1200 |
+
|
| 1201 |
+
model-00001-of-00019.safetensors: 75%|ββββββββ | 3.67G/4.89G [00:33<00:14, 84.4MB/s]
|
| 1202 |
+
|
| 1203 |
+
model-00001-of-00019.safetensors: 77%|ββββββββ | 3.77G/4.89G [00:37<00:19, 57.1MB/s]
|
| 1204 |
+
|
| 1205 |
+
model-00001-of-00019.safetensors: 79%|ββββββββ | 3.86G/4.89G [00:38<00:17, 58.0MB/s]
|
| 1206 |
+
|
| 1207 |
+
model-00001-of-00019.safetensors: 81%|ββββββββ | 3.94G/4.89G [00:39<00:15, 62.2MB/s]
|
| 1208 |
+
|
| 1209 |
+
model-00001-of-00019.safetensors: 83%|βββββββββ | 4.04G/4.89G [00:41<00:13, 63.7MB/s]
|
| 1210 |
+
|
| 1211 |
+
model-00001-of-00019.safetensors: 87%|βββββββββ | 4.26G/4.89G [00:42<00:06, 96.0MB/s]
|
| 1212 |
+
|
| 1213 |
+
model-00001-of-00019.safetensors: 93%|ββββββββββ| 4.54G/4.89G [00:43<00:02, 137MB/s]
|
| 1214 |
+
|
| 1215 |
+
model-00001-of-00019.safetensors: 96%|ββββββββββ| 4.71G/4.89G [00:44<00:01, 143MB/s]
|
| 1216 |
+
|
| 1217 |
+
model-00001-of-00019.safetensors: 100%|ββββββββββ| 4.87G/4.89G [00:45<00:00, 137MB/s]
|
| 1218 |
+
model-00001-of-00019.safetensors: 100%|ββββββββββ| 4.89G/4.89G [00:46<00:00, 105MB/s]
|
| 1219 |
+
|
| 1220 |
+
|
| 1221 |
+
|
| 1222 |
+
|
| 1223 |
+
def __getitem__(self, i):
|
| 1224 |
+
if i % 64 == 0:
|
| 1225 |
+
n = 100
|
| 1226 |
+
else:
|
| 1227 |
+
n = 1
|
| 1228 |
+
return "This is a test" * n
|
| 1229 |
+
|
training.js
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
GenerGeneratingating diverse and sophisticated instructions for downstream tasks by Large Language Models Mixtral&-dpkg_root(LLMs) is pivotal for advancing the effect.
|
| 2 |
+
|
| 3 |
+
Current approaches leverage closed-source LLMs, employing in-context prompting for instruction generation.
|
| 4 |
+
|
| 5 |
+
However, in this paper, we found that in-context prompting cannot generate complex instructions with length β₯100 for tasks like code completion.
|
| 6 |
+
|
| 7 |
+
To solve this problem, we introduce Ada-Instruct, an adaptive instruction generator developed by fine-tuning open-source LLMs.
|
| 8 |
+
|
| 9 |
+
Our pivotal finding illustrates that fine-tuning open-source LLMs with a mere ten samples generates long instructions that maintain distributional consistency for complex rebasΓ³ ING tasks.
|
| 10 |
+
|
| 11 |
+
We empirically validated Ada-Instruct's efficacy across different applications, including code completion, mathematical reasoning, and commonsense reasoning.
|
| 12 |
+
|
| 13 |
+
The results underscore Ada-Instruct's superiority, evidencing its improvements over its base models, current self-instruct methods, and other state-of-the-art models.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
licencia deneduardo ruiz
|