new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Federated Learning over 5G, WiFi, and Ethernet: Measurements and Evaluation

Federated Learning (FL) deployments using IoT devices is an area that is poised to significantly benefit from advances in NextG wireless. In this paper, we deploy a FL application using a 5G-NR Standalone (SA) testbed with open-source and Commercial Off-the-Shelf (COTS) components. The 5G testbed architecture consists of a network of resource-constrained edge devices, namely Raspberry Pi's, and a central server equipped with a Software Defined Radio (SDR) and running O-RAN software. Our testbed allows edge devices to communicate with the server using WiFi and Ethernet, instead of 5G. FL is deployed using the Flower FL framework, for which we developed a comprehensive instrumentation tool to collect and analyze diverse communications and machine learning performance metrics including: model aggregation time, downlink transmission time, training time, and uplink transmission time. Leveraging these measurements, we perform a comparative analysis of the FL application across three network interfaces: 5G, WiFi, and Ethernet. Our experimental results suggest that, on 5G, the uplink model transfer time is a significant factor in convergence time of FL. In particular, we find that the 5G uplink contributes to roughly 23% of the duration of one average communication round when using all edge devices in our testbed. When comparing the uplink time of the 5G testbed, we find that it is 33.3x higher than Ethernet and 17.8x higher than WiFi. Our results also suggest that 5G exacerbates the well-known straggler effect. For reproducibility, we have open-sourced our FL application, instrumentation tools, and testbed configuration.

  • 6 authors
·
Apr 6, 2025

SPEC5G: A Dataset for 5G Cellular Network Protocol Analysis

5G is the 5th generation cellular network protocol. It is the state-of-the-art global wireless standard that enables an advanced kind of network designed to connect virtually everyone and everything with increased speed and reduced latency. Therefore, its development, analysis, and security are critical. However, all approaches to the 5G protocol development and security analysis, e.g., property extraction, protocol summarization, and semantic analysis of the protocol specifications and implementations are completely manual. To reduce such manual effort, in this paper, we curate SPEC5G the first-ever public 5G dataset for NLP research. The dataset contains 3,547,586 sentences with 134M words, from 13094 cellular network specifications and 13 online websites. By leveraging large-scale pre-trained language models that have achieved state-of-the-art results on NLP tasks, we use this dataset for security-related text classification and summarization. Security-related text classification can be used to extract relevant security-related properties for protocol testing. On the other hand, summarization can help developers and practitioners understand the high level of the protocol, which is itself a daunting task. Our results show the value of our 5G-centric dataset in 5G protocol analysis automation. We believe that SPEC5G will enable a new research direction into automatic analyses for the 5G cellular network protocol and numerous related downstream tasks. Our data and code are publicly available.

  • 4 authors
·
Jan 22, 2023

TPM-Based Continuous Remote Attestation and Integrity Verification for 5G VNFs on Kubernetes

In the rapidly evolving landscape of 5G technology, the adoption of cloud-based infrastructure for the deployment of 5G services has become increasingly common. Using a service-based architecture, critical 5G components, such as the Access and Mobility Management Function (AMF), Session Management Function (SMF), and User Plane Function (UPF), now run as containerized pods on Kubernetes clusters. Although this approach improves scalability, flexibility, and resilience, it also introduces new security challenges, particularly to ensure the integrity and trustworthiness of these components. Current 5G security specifications (for example, 3GPP TS 33.501) focus on communication security and assume that network functions remain trustworthy after authentication, consequently lacking mechanisms to continuously validate the integrity of NVFs at runtime. To close this gap, and to align with Zero Trust principles of 'never trust, always verify', we present a TPM 2.0-based continuous remote attestation solution for core 5G components deployed on Kubernetes. Our approach uses the Linux Integrity Measurement Architecture (IMA) and a Trusted Platform Module (TPM) to provide hardware-based runtime validation. We integrate the open-source Keylime framework with a custom IMA template that isolates pod-level measurements, allowing per-pod integrity verification. A prototype on a k3s cluster (consisting of 1 master, 2 worker nodes) was implemented to attest to core functions, including AMF, SMF and UPF. The experimental results show that the system detects unauthorized modifications in real time, labels each pod's trust state, and generates detailed audit logs. This work provides hardware-based continuous attestation for cloud native and edge deployments, strengthening the resilience of 5G as critical infrastructure in multi-vendor and mission-critical scenarios of 5G.

  • 5 authors
·
Oct 3, 2025

Attacks Against Security Context in 5G Network

The security context used in 5G authentication is generated during the Authentication and Key Agreement (AKA) procedure and stored in both the user equipment (UE) and the network sides for the subsequent fast registration procedure. Given its importance, it is imperative to formally analyze the security mechanism of the security context. The security context in the UE can be stored in the Universal Subscriber Identity Module (USIM) card or in the baseband chip. In this work, we present a comprehensive and formal verification of the fast registration procedure based on the security context under the two scenarios in ProVerif. Our analysis identifies two vulnerabilities, including one that has not been reported before. Specifically, the security context stored in the USIM card can be read illegally, and the validity checking mechanism of the security context in the baseband chip can be bypassed. Moreover, these vulnerabilities also apply to 4G networks. As a consequence, an attacker can exploit these vulnerabilities to register to the network with the victim's identity and then launch other attacks, including one-tap authentication bypass leading to privacy disclosure, location spoofing, etc. To ensure that these attacks are indeed realizable in practice, we have responsibly confirmed them through experimentation in three operators. Our analysis reveals that these vulnerabilities stem from design flaws of the standard and unsafe practices by operators. We finally propose several potential countermeasures to prevent these attacks. We have reported our findings to the GSMA and received a coordinated vulnerability disclosure (CVD) number CVD-2022-0057.

  • 6 authors
·
Mar 20, 2023

Performance Limits of Network Densification

Network densification is a promising cellular deployment technique that leverages spatial reuse to enhance coverage and throughput. Recent work has identified that at some point ultra-densification will no longer be able to deliver significant throughput gains. In this paper, we provide a unified treatment of the performance limits of network densification. We develop a general framework, which incorporates multi-slope pathloss and the entire space of shadowing and small scale fading distributions, under strongest cell association in a Poisson field of interferers. First, our results show that there are three scaling regimes for the downlink signal-to-interference-plus-noise ratio (SINR), coverage probability, and average per-user rate. Specifically, depending on the near-field pathloss and the fading distribution, the user performance of 5G ultra dense networks (UDNs) would either monotonically increase, saturate, or decay with increasing network density. Second, we show that network performance in terms of coverage density and area spectral efficiency can scale with the network density better than the user performance does. Furthermore, we provide ordering results for both coverage and average rate as a means to qualitatively compare different transmission techniques that may exhibit the same performance scaling. Our results, which are verified by simulations, provide succinct insights and valuable design guidelines for the deployment of 5G UDNs.

  • 2 authors
·
Nov 23, 2016

Device to Device Pairs Sharding based on Distance

In the conventional cellular system, devices are not allowed to communicate directly with each other in the licensed cellular bandwidth and all communications take place through the base stations. The users requirements has led the technology to become fast and faster. Multimedia rich data exchange, fast service, high quality voice calls, newer and more demanding applications, information at fingertips, everything requires technology and communication between devices. A constant need to increase network capacity for meeting the users growing demands has led to the growth of cellular communication networks from the first generation(1G) to the fifth generation(5G). There will be crores of connected devices in the coming future . A large number of connections are going to be heterogeneous, demanding lesser delays, higher data rates, superior throughput and enhanced system capacity. The available spectrum resources are limited and has to be flexibly used by mobile network operators to cope with the rising demands. An emerging facilitator of the upcoming high data rate demanding next-generation networks are device-to-device(D2D) communication. This paper has developed a model that establishes Device-to-Device (D2D) communication between two end-users without involving the eNB (evolved Node B). We have sharded the UEs and CUs based on the criteria of DISTANCE. To do so, we used the K-means clustering method.

  • 5 authors
·
Oct 29, 2025

Over-The-Air Double-Threshold Deep Learner for Jamming Detection in 5G RF domain

With the evolution of 5G wireless communications, the Synchronization Signal Block (SSB) plays a critical role in the synchronization of devices and accessibility of services. However, due to the predictable nature of SSB transmission, including the Primary and Secondary Synchronization Signals (PSS and SSS), jamming attacks are critical threats. By leveraging RF domain knowledge, this work presents a novel deep learning-based technique for detecting jammers in 5G networks. Unlike the existing jamming detection algorithms that mostly rely on network parameters, we introduce a double threshold deep learning jamming detector by focusing on the SSB. The detection method is focused on RF domain features and improves the robustness of the network without requiring integration with the pre-existing network infrastructure. By integrating a preprocessing block that extracts PSS correlation and energy per null resource elements (EPNRE) characteristics, our method distinguishes between normal and jammed received signals with high precision. Additionally, by incorporation of Discrete Wavelet Transform (DWT), the efficacy of training and detection are optimized. A double threshold double Deep Neural Network (DT-DDNN) is also introduced to the architecture complemented by a deep cascade learning model to increase the sensitivity of the model to variations of signal to jamming noise ratio (SJNR). Results show that the proposed method achieves 96.4% detection rate in extra low jamming power, i.e., SJNR between 15 to 30 dB which outperforms the single threshold DNN design with 86.0% detection rate and unprocessed IQ sample DNN design with 83.2% detection rate. Ultimately, performance of DT-DDNN is validated through the analysis of real 5G signals obtained from a practical testbed, demonstrating a strong alignment with the simulation results.

  • 4 authors
·
Mar 4, 2024

Modelling the 5G Energy Consumption using Real-world Data: Energy Fingerprint is All You Need

The introduction of fifth-generation (5G) radio technology has revolutionized communications, bringing unprecedented automation, capacity, connectivity, and ultra-fast, reliable communications. However, this technological leap comes with a substantial increase in energy consumption, presenting a significant challenge. To improve the energy efficiency of 5G networks, it is imperative to develop sophisticated models that accurately reflect the influence of base station (BS) attributes and operational conditions on energy usage.Importantly, addressing the complexity and interdependencies of these diverse features is particularly challenging, both in terms of data processing and model architecture design. This paper proposes a novel 5G base stations energy consumption modelling method by learning from a real-world dataset used in the ITU 5G Base Station Energy Consumption Modelling Challenge in which our model ranked second. Unlike existing methods that omit the Base Station Identifier (BSID) information and thus fail to capture the unique energy fingerprint in different base stations, we incorporate the BSID into the input features and encoding it with an embedding layer for precise representation. Additionally, we introduce a novel masked training method alongside an attention mechanism to further boost the model's generalization capabilities and accuracy. After evaluation, our method demonstrates significant improvements over existing models, reducing Mean Absolute Percentage Error (MAPE) from 12.75% to 4.98%, leading to a performance gain of more than 60%.

  • 8 authors
·
Jun 13, 2024

From Classification to Optimization: Slicing and Resource Management with TRACTOR

5G and beyond networks promise advancements in bandwidth, latency, and connectivity. The Open Radio Access Network (O-RAN) framework enhances flexibility through network slicing and closed-loop RAN control. Central to this evolution is integrating machine learning (ML) for dynamic network control. This paper presents a framework to optimize O-RAN operation. First, we build and share a robust O-RAN dataset from real-world traffic captured across diverse locations and mobility scenarios, replicated within a full-stack srsRAN-based O-RAN system using the Colosseum RF emulator. This dataset supports ML training and deployment. We then introduce a traffic classification approach leveraging various ML models, demonstrating rapid training, testing, and refinement to improve accuracy. With up to 99% offline accuracy and 92% online accuracy for specific slices, our framework adapts efficiently to different models and network conditions. Finally, we present a physical resource block (PRB) assignment optimization strategy using reinforcement learning to refine resource allocation. Our learned policy achieves a mean performance score (0.631), surpassing a manually configured expert policy (0.609) and a random baseline (0.588), demonstrating improved PRB utilization. More importantly, our approach exhibits lower variability, with the Coefficient of Variation (CV) reduced by up to an order of magnitude in three out of four cases, ensuring more consistent performance. Our contributions, including open-source tools and datasets, accelerate O-RAN and ML-driven network control research.

  • 6 authors
·
Dec 12, 2023

TDoA-Based Self-Supervised Channel Charting with NLoS Mitigation

Channel Charting (CC) has emerged as a promising framework for data-driven radio localization, yet existing approaches often struggle to scale globally and to handle the distortions introduced by non-line-of-sight (NLoS) conditions. In this work, we propose a novel CC method that leverages Channel Impulse Response (CIR) data enriched with practical features such as Time Difference of Arrival (TDoA) and Transmission Reception Point (TRP) locations, enabling a self-supervised localization function on a global scale. The proposed framework is further enhanced with short-interval User Equipment (UE) displacement measurements, which improve the continuity and robustness of the learned positioning function. Our algorithm incorporates a mechanism to identify and mask NLoS-induced noisy measurements, leading to significant performance gains. We present the evaluations of our proposed models in a real 5G testbed and benchmarked against centimeter-accurate Real-Time Kinematic (RTK) positioning, in an O-RAN--based 5G network by OpenAirInterface (OAI) software at EURECOM. It demonstrated outperforming results against the state-of-the-art semi-supervised and self-supervised CC approaches in a real-world scenario. The results show localization accuracies of 2-4 meters in 90% of cases, across a range of NLoS ratios. Furthermore, we provide public datasets of CIR recordings, along with the true position labels used in this paper's evaluation.

  • 4 authors
·
Oct 9, 2025

Efficient 3-D Near-Field MIMO-SAR Imaging for Irregular Scanning Geometries

In this article, we introduce a novel algorithm for efficient near-field synthetic aperture radar (SAR) imaging for irregular scanning geometries. With the emergence of fifth-generation (5G) millimeter-wave (mmWave) devices, near-field SAR imaging is no longer confined to laboratory environments. Recent advances in positioning technology have attracted significant interest for a diverse set of new applications in mmWave imaging. However, many use cases, such as automotive-mounted SAR imaging, unmanned aerial vehicle (UAV) imaging, and freehand imaging with smartphones, are constrained to irregular scanning geometries. Whereas traditional near-field SAR imaging systems and quick personnel security (QPS) scanners employ highly precise motion controllers to create ideal synthetic arrays, emerging applications, mentioned previously, inherently cannot achieve such ideal positioning. In addition, many Internet of Things (IoT) and 5G applications impose strict size and computational complexity limitations that must be considered for edge mmWave imaging technology. In this study, we propose a novel algorithm to leverage the advantages of non-cooperative SAR scanning patterns, small form-factor multiple-input multiple-output (MIMO) radars, and efficient monostatic planar image reconstruction algorithms. We propose a framework to mathematically decompose arbitrary and irregular sampling geometries and a joint solution to mitigate multistatic array imaging artifacts. The proposed algorithm is validated through simulations and an empirical study of arbitrary scanning scenarios. Our algorithm achieves high-resolution and high-efficiency near-field MIMO-SAR imaging, and is an elegant solution to computationally constrained irregularly sampled imaging problems.

  • 2 authors
·
May 3, 2023

6G-Enabled Digital Twin Framework for Real-Time Cyber-Physical Systems: An Experimental Validation with Industrial Bearing Fault Detection

Current Cyber-Physical Systems (CPS) integrated with Digital Twin (DT) technology face critical limitations in achieving real-time performance for mission-critical industrial applications. Existing 5G-enabled systems suffer from latencies exceeding 10ms, which are inadequate for applications requiring sub-millisecond response times, such as autonomous industrial control and predictive maintenance. This research aims to develop and validate a 6G-enabled Digital Twin framework that achieves ultra-low latency communication and real-time synchronization between physical industrial assets and their digital counterparts, specifically targeting bearing fault detection as a critical industrial use case. The proposed framework integrates terahertz communications (0.1-1 THz), intelligent reflecting surfaces, and edge artificial intelligence within a five-layer architecture. Experimental validation was conducted using the Case Western Reserve University (CWRU) bearing dataset, implementing comprehensive feature extraction (15 time and frequency domain features) and Random Forest classification algorithms. The system performance was evaluated against traditional WiFi-6 and 5G networks across multiple metrics, including classification accuracy, end-to-end latency, and scalability. It achieved 97.7% fault classification accuracy with 0.8ms end-to-end latency, representing a 15.6x improvement over WiFi-6 (12.5ms) and 5.25x improvement over 5G (4.2ms) networks. The system demonstrated superior scalability with sub-linear processing time growth and maintained consistent performance across four bearing fault categories (normal, inner race, outer race, and ball faults) with macro-averaged F1-scores exceeding 97%.

  • 2 authors
·
Oct 4, 2025