- Reduction Rules and ILP Are All You Need: Minimal Directed Feedback Vertex Set This note describes the development of an exact solver for Minimal Directed Feedback Vertex Set as part of the PACE 2022 competition. The solver is powered largely by aggressively trying to reduce the DFVS problem to a Minimal Cover problem, and applying reduction rules adapted from Vertex Cover literature. The resulting problem is solved as an Integer Linear Program (ILP) using SCIP. The resulting solver performed the second-best in the competition, although a bug at submission time disqualified it. As an additional note, we describe a new vertex cover reduction generalizing the Desk reduction rule. 1 authors · Aug 1, 2022
9 Temporally Aligned Audio for Video with Autoregression We introduce V-AURA, the first autoregressive model to achieve high temporal alignment and relevance in video-to-audio generation. V-AURA uses a high-framerate visual feature extractor and a cross-modal audio-visual feature fusion strategy to capture fine-grained visual motion events and ensure precise temporal alignment. Additionally, we propose VisualSound, a benchmark dataset with high audio-visual relevance. VisualSound is based on VGGSound, a video dataset consisting of in-the-wild samples extracted from YouTube. During the curation, we remove samples where auditory events are not aligned with the visual ones. V-AURA outperforms current state-of-the-art models in temporal alignment and semantic relevance while maintaining comparable audio quality. Code, samples, VisualSound and models are available at https://v-aura.notion.site 3 authors · Sep 20, 2024 3
1 Video Object Segmentation-Aware Audio Generation Existing multimodal audio generation models often lack precise user control, which limits their applicability in professional Foley workflows. In particular, these models focus on the entire video and do not provide precise methods for prioritizing a specific object within a scene, generating unnecessary background sounds, or focusing on the wrong objects. To address this gap, we introduce the novel task of video object segmentation-aware audio generation, which explicitly conditions sound synthesis on object-level segmentation maps. We present SAGANet, a new multimodal generative model that enables controllable audio generation by leveraging visual segmentation masks along with video and textual cues. Our model provides users with fine-grained and visually localized control over audio generation. To support this task and further research on segmentation-aware Foley, we propose Segmented Music Solos, a benchmark dataset of musical instrument performance videos with segmentation information. Our method demonstrates substantial improvements over current state-of-the-art methods and sets a new standard for controllable, high-fidelity Foley synthesis. Code, samples, and Segmented Music Solos are available at https://saganet.notion.site 3 authors · Sep 30 2