2 LA-Net: Landmark-Aware Learning for Reliable Facial Expression Recognition under Label Noise Facial expression recognition (FER) remains a challenging task due to the ambiguity of expressions. The derived noisy labels significantly harm the performance in real-world scenarios. To address this issue, we present a new FER model named Landmark-Aware Net~(LA-Net), which leverages facial landmarks to mitigate the impact of label noise from two perspectives. Firstly, LA-Net uses landmark information to suppress the uncertainty in expression space and constructs the label distribution of each sample by neighborhood aggregation, which in turn improves the quality of training supervision. Secondly, the model incorporates landmark information into expression representations using the devised expression-landmark contrastive loss. The enhanced expression feature extractor can be less susceptible to label noise. Our method can be integrated with any deep neural network for better training supervision without introducing extra inference costs. We conduct extensive experiments on both in-the-wild datasets and synthetic noisy datasets and demonstrate that LA-Net achieves state-of-the-art performance. 2 authors · Jul 18, 2023
- Emotion-Controllable Generalized Talking Face Generation Despite the significant progress in recent years, very few of the AI-based talking face generation methods attempt to render natural emotions. Moreover, the scope of the methods is majorly limited to the characteristics of the training dataset, hence they fail to generalize to arbitrary unseen faces. In this paper, we propose a one-shot facial geometry-aware emotional talking face generation method that can generalize to arbitrary faces. We propose a graph convolutional neural network that uses speech content feature, along with an independent emotion input to generate emotion and speech-induced motion on facial geometry-aware landmark representation. This representation is further used in our optical flow-guided texture generation network for producing the texture. We propose a two-branch texture generation network, with motion and texture branches designed to consider the motion and texture content independently. Compared to the previous emotion talking face methods, our method can adapt to arbitrary faces captured in-the-wild by fine-tuning with only a single image of the target identity in neutral emotion. 4 authors · May 2, 2022
2 A Closer Look at Geometric Temporal Dynamics for Face Anti-Spoofing Face anti-spoofing (FAS) is indispensable for a face recognition system. Many texture-driven countermeasures were developed against presentation attacks (PAs), but the performance against unseen domains or unseen spoofing types is still unsatisfactory. Instead of exhaustively collecting all the spoofing variations and making binary decisions of live/spoof, we offer a new perspective on the FAS task to distinguish between normal and abnormal movements of live and spoof presentations. We propose Geometry-Aware Interaction Network (GAIN), which exploits dense facial landmarks with spatio-temporal graph convolutional network (ST-GCN) to establish a more interpretable and modularized FAS model. Additionally, with our cross-attention feature interaction mechanism, GAIN can be easily integrated with other existing methods to significantly boost performance. Our approach achieves state-of-the-art performance in the standard intra- and cross-dataset evaluations. Moreover, our model outperforms state-of-the-art methods by a large margin in the cross-dataset cross-type protocol on CASIA-SURF 3DMask (+10.26% higher AUC score), exhibiting strong robustness against domain shifts and unseen spoofing types. 7 authors · Jun 25, 2023