- Evaluating Synthetic Pre-Training for Handwriting Processing Tasks In this work, we explore massive pre-training on synthetic word images for enhancing the performance on four benchmark downstream handwriting analysis tasks. To this end, we build a large synthetic dataset of word images rendered in several handwriting fonts, which offers a complete supervision signal. We use it to train a simple convolutional neural network (ConvNet) with a fully supervised objective. The vector representations of the images obtained from the pre-trained ConvNet can then be considered as encodings of the handwriting style. We exploit such representations for Writer Retrieval, Writer Identification, Writer Verification, and Writer Classification and demonstrate that our pre-training strategy allows extracting rich representations of the writers' style that enable the aforementioned tasks with competitive results with respect to task-specific State-of-the-Art approaches. 4 authors · Apr 4, 2023
2 Writer adaptation for offline text recognition: An exploration of neural network-based methods Handwriting recognition has seen significant success with the use of deep learning. However, a persistent shortcoming of neural networks is that they are not well-equipped to deal with shifting data distributions. In the field of handwritten text recognition (HTR), this shows itself in poor recognition accuracy for writers that are not similar to those seen during training. An ideal HTR model should be adaptive to new writing styles in order to handle the vast amount of possible writing styles. In this paper, we explore how HTR models can be made writer adaptive by using only a handful of examples from a new writer (e.g., 16 examples) for adaptation. Two HTR architectures are used as base models, using a ResNet backbone along with either an LSTM or Transformer sequence decoder. Using these base models, two methods are considered to make them writer adaptive: 1) model-agnostic meta-learning (MAML), an algorithm commonly used for tasks such as few-shot classification, and 2) writer codes, an idea originating from automatic speech recognition. Results show that an HTR-specific version of MAML known as MetaHTR improves performance compared to the baseline with a 1.4 to 2.0 improvement in word error rate (WER). The improvement due to writer adaptation is between 0.2 and 0.7 WER, where a deeper model seems to lend itself better to adaptation using MetaHTR than a shallower model. However, applying MetaHTR to larger HTR models or sentence-level HTR may become prohibitive due to its high computational and memory requirements. Lastly, writer codes based on learned features or Hinge statistical features did not lead to improved recognition performance. 3 authors · Jul 11, 2023
2 DeepWriter: A Multi-Stream Deep CNN for Text-independent Writer Identification Text-independent writer identification is challenging due to the huge variation of written contents and the ambiguous written styles of different writers. This paper proposes DeepWriter, a deep multi-stream CNN to learn deep powerful representation for recognizing writers. DeepWriter takes local handwritten patches as input and is trained with softmax classification loss. The main contributions are: 1) we design and optimize multi-stream structure for writer identification task; 2) we introduce data augmentation learning to enhance the performance of DeepWriter; 3) we introduce a patch scanning strategy to handle text image with different lengths. In addition, we find that different languages such as English and Chinese may share common features for writer identification, and joint training can yield better performance. Experimental results on IAM and HWDB datasets show that our models achieve high identification accuracy: 99.01% on 301 writers and 97.03% on 657 writers with one English sentence input, 93.85% on 300 writers with one Chinese character input, which outperform previous methods with a large margin. Moreover, our models obtain accuracy of 98.01% on 301 writers with only 4 English alphabets as input. 2 authors · Jun 21, 2016
2 Siamese based Neural Network for Offline Writer Identification on word level data Handwriting recognition is one of the desirable attributes of document comprehension and analysis. It is concerned with the documents writing style and characteristics that distinguish the authors. The diversity of text images, notably in images with varying handwriting, makes the process of learning good features difficult in cases where little data is available. In this paper, we propose a novel scheme to identify the author of a document based on the input word image. Our method is text independent and does not impose any constraint on the size of the input image under examination. To begin with, we detect crucial components in handwriting and extract regions surrounding them using Scale Invariant Feature Transform (SIFT). These patches are designed to capture individual writing features (including allographs, characters, or combinations of characters) that are likely to be unique for an individual writer. These features are then passed through a deep Convolutional Neural Network (CNN) in which the weights are learned by applying the concept of Similarity learning using Siamese network. Siamese network enhances the discrimination power of CNN by mapping similarity between different pairs of input image. Features learned at different scales of the extracted SIFT key-points are encoded using Sparse PCA, each components of the Sparse PCA is assigned a saliency score signifying its level of significance in discriminating different writers effectively. Finally, the weighted Sparse PCA corresponding to each SIFT key-points is combined to arrive at a final classification score for each writer. The proposed algorithm was evaluated on two publicly available databases (namely IAM and CVL) and is able to achieve promising result, when compared with other deep learning based algorithm. 2 authors · Nov 17, 2022