Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePureformer-VC: Non-parallel Voice Conversion with Pure Stylized Transformer Blocks and Triplet Discriminative Training
As a foundational technology for intelligent human-computer interaction, voice conversion (VC) seeks to transform speech from any source timbre into any target timbre. Traditional voice conversion methods based on Generative Adversarial Networks (GANs) encounter significant challenges in precisely encoding diverse speech elements and effectively synthesising these elements into natural-sounding converted speech. To overcome these limitations, we introduce Pureformer-VC, an encoder-decoder framework that utilizes Conformer blocks to build a disentangled encoder and employs Zipformer blocks to create a style transfer decoder. We adopt a variational decoupled training approach to isolate speech components using a Variational Autoencoder (VAE), complemented by triplet discriminative training to enhance the speaker's discriminative capabilities. Furthermore, we incorporate the Attention Style Transfer Mechanism (ASTM) with Zipformer's shared weights to improve the style transfer performance in the decoder. We conducted experiments on two multi-speaker datasets. The experimental results demonstrate that the proposed model achieves comparable subjective evaluation scores while significantly enhancing objective metrics compared to existing approaches in many-to-many and many-to-one VC scenarios.
Zipformer: A faster and better encoder for automatic speech recognition
The Conformer has become the most popular encoder model for automatic speech recognition (ASR). It adds convolution modules to a transformer to learn both local and global dependencies. In this work we describe a faster, more memory-efficient, and better-performing transformer, called Zipformer. Modeling changes include: 1) a U-Net-like encoder structure where middle stacks operate at lower frame rates; 2) reorganized block structure with more modules, within which we re-use attention weights for efficiency; 3) a modified form of LayerNorm called BiasNorm allows us to retain some length information; 4) new activation functions SwooshR and SwooshL work better than Swish. We also propose a new optimizer, called ScaledAdam, which scales the update by each tensor's current scale to keep the relative change about the same, and also explictly learns the parameter scale. It achieves faster convergence and better performance than Adam. Extensive experiments on LibriSpeech, Aishell-1, and WenetSpeech datasets demonstrate the effectiveness of our proposed Zipformer over other state-of-the-art ASR models. Our code is publicly available at https://github.com/k2-fsa/icefall.
k2SSL: A Faster and Better Framework for Self-Supervised Speech Representation Learning
Self-supervised learning (SSL) has achieved great success in speech-related tasks, driven by advancements in speech encoder architectures and the expansion of datasets. While Transformer and Conformer architectures have dominated SSL backbones, encoders like Zipformer, which excel in automatic speech recognition (ASR), remain unexplored in SSL. Concurrently, inefficiencies in data processing within existing SSL training frameworks, such as fairseq, pose challenges in managing the growing volumes of training data. To address these issues, we propose k2SSL, an open-source framework that offers faster, more memory-efficient, and better-performing self-supervised speech representation learning, with a focus on downstream ASR tasks. The optimized HuBERT and proposed Zipformer-based SSL systems exhibit substantial reductions in both training time and memory usage during SSL training. Experiments on LibriSpeech and Libri-Light demonstrate that Zipformer-based SSL systems significantly outperform comparable HuBERT and WavLM systems, achieving a relative WER reduction on dev-other/test-other of up to 34.8%/32.4% compared to HuBERT Base after supervised fine-tuning, along with a 3.5x pre-training speedup in total GPU hours.
EcoFormer: Energy-Saving Attention with Linear Complexity
Transformer is a transformative framework that models sequential data and has achieved remarkable performance on a wide range of tasks, but with high computational and energy cost. To improve its efficiency, a popular choice is to compress the models via binarization which constrains the floating-point values into binary ones to save resource consumption owing to cheap bitwise operations significantly. However, existing binarization methods only aim at minimizing the information loss for the input distribution statistically, while ignoring the pairwise similarity modeling at the core of the attention. To this end, we propose a new binarization paradigm customized to high-dimensional softmax attention via kernelized hashing, called EcoFormer, to map the original queries and keys into low-dimensional binary codes in Hamming space. The kernelized hash functions are learned to match the ground-truth similarity relations extracted from the attention map in a self-supervised way. Based on the equivalence between the inner product of binary codes and the Hamming distance as well as the associative property of matrix multiplication, we can approximate the attention in linear complexity by expressing it as a dot-product of binary codes. Moreover, the compact binary representations of queries and keys enable us to replace most of the expensive multiply-accumulate operations in attention with simple accumulations to save considerable on-chip energy footprint on edge devices. Extensive experiments on both vision and language tasks show that EcoFormer consistently achieves comparable performance with standard attentions while consuming much fewer resources. For example, based on PVTv2-B0 and ImageNet-1K, Ecoformer achieves a 73% on-chip energy footprint reduction with only a 0.33% performance drop compared to the standard attention. Code is available at https://github.com/ziplab/EcoFormer.
zip2zip: Inference-Time Adaptive Vocabularies for Language Models via Token Compression
Tokenization efficiency plays a critical role in the performance and cost of large language models (LLMs), yet most models rely on static tokenizers optimized for general-purpose corpora. These tokenizers' fixed vocabularies often fail to adapt to domain- or language-specific inputs, leading to longer token sequences and higher computational costs. We introduce zip2zip, a framework that enables LLMs to dynamically adjust token vocabulary at inference time, allowing for fewer generated tokens and thus faster inference. zip2zip consists of three key components: (1) a tokenizer based on Lempel-Ziv-Welch (LZW) compression that incrementally compresses tokens into reusable "hypertokens" on the fly; (2) an embedding layer that computes embeddings for newly formed hypertokens at runtime; and (3) a causal language modeling variant that trains the model to operate on hypertokenized, compressed sequences. We show that an existing LLM can be zip2zip-fied in 10 GPU-hours via parameter-efficient finetuning. The resulting zip2zip LLMs effectively learn to use hypertokens at inference time, reducing input and output sequence length by 20-60\%, with significant improvements in inference latency.
ZipVoice: Fast and High-Quality Zero-Shot Text-to-Speech with Flow Matching
Existing large-scale zero-shot text-to-speech (TTS) models deliver high speech quality but suffer from slow inference speeds due to massive parameters. To address this issue, this paper introduces ZipVoice, a high-quality flow-matching-based zero-shot TTS model with a compact model size and fast inference speed. Key designs include: 1) a Zipformer-based flow-matching decoder to maintain adequate modeling capabilities under constrained size; 2) Average upsampling-based initial speech-text alignment and Zipformer-based text encoder to improve speech intelligibility; 3) A flow distillation method to reduce sampling steps and eliminate the inference overhead associated with classifier-free guidance. Experiments on 100k hours multilingual datasets show that ZipVoice matches state-of-the-art models in speech quality, while being 3 times smaller and up to 30 times faster than a DiT-based flow-matching baseline. Codes, model checkpoints and demo samples are publicly available.
Splitformer: An improved early-exit architecture for automatic speech recognition on edge devices
The ability to dynamically adjust the computational load of neural models during inference in a resource aware manner is crucial for on-device processing scenarios, characterised by limited and time-varying computational resources. Early-exit architectures represent an elegant and effective solution, since they can process the input with a subset of their layers, exiting at intermediate branches (the upmost layers are hence removed from the model). From a different perspective, for automatic speech recognition applications there are memory-efficient neural architectures that apply variable frame rate analysis, through downsampling/upsampling operations in the middle layers, reducing the overall number of operations and improving significantly the performance on well established benchmarks. One example is the Zipformer. However, these architectures lack the modularity necessary to inject early-exit branches. With the aim of improving the performance in early-exit models, we propose introducing parallel layers in the architecture that process downsampled versions of their inputs. % in conjunction with standard processing layers. We show that in this way the speech recognition performance on standard benchmarks significantly improve, at the cost of a small increase in the overall number of model parameters but without affecting the inference time.
ChunkLLM: A Lightweight Pluggable Framework for Accelerating LLMs Inference
Transformer-based large models excel in natural language processing and computer vision, but face severe computational inefficiencies due to the self-attention's quadratic complexity with input tokens. Recently, researchers have proposed a series of methods based on block selection and compression to alleviate this problem, but they either have issues with semantic incompleteness or poor training-inference efficiency. To comprehensively address these challenges, we propose ChunkLLM, a lightweight and pluggable training framework. Specifically, we introduce two components: QK Adapter (Q-Adapter and K-Adapter) and Chunk Adapter. The former is attached to each Transformer layer, serving dual purposes of feature compression and chunk attention acquisition. The latter operates at the bottommost layer of the model, functioning to detect chunk boundaries by leveraging contextual semantic information. During the training phase, the parameters of the backbone remain frozen, with only the QK Adapter and Chunk Adapter undergoing training. Notably, we design an attention distillation method for training the QK Adapter, which enhances the recall rate of key chunks. During the inference phase, chunk selection is triggered exclusively when the current token is detected as a chunk boundary, thereby accelerating model inference. Experimental evaluations are conducted on a diverse set of long-text and short-text benchmark datasets spanning multiple tasks. ChunkLLM not only attains comparable performance on short-text benchmarks but also maintains 98.64% of the performance on long-context benchmarks while preserving a 48.58% key-value cache retention rate. Particularly, ChunkLLM attains a maximum speedup of 4.48x in comparison to the vanilla Transformer in the processing of 120K long texts.
Brainformers: Trading Simplicity for Efficiency
Transformers are central to recent successes in natural language processing and computer vision. Transformers have a mostly uniform backbone where layers alternate between feed-forward and self-attention in order to build a deep network. Here we investigate this design choice and find that more complex blocks that have different permutations of layer primitives can be more efficient. Using this insight, we develop a complex block, named Brainformer, that consists of a diverse sets of layers such as sparsely gated feed-forward layers, dense feed-forward layers, attention layers, and various forms of layer normalization and activation functions. Brainformer consistently outperforms the state-of-the-art dense and sparse Transformers, in terms of both quality and efficiency. A Brainformer model with 8 billion activated parameters per token demonstrates 2x faster training convergence and 5x faster step time compared to its GLaM counterpart. In downstream task evaluation, Brainformer also demonstrates a 3% higher SuperGLUE score with fine-tuning compared to GLaM with a similar number of activated parameters. Finally, Brainformer largely outperforms a Primer dense model derived with NAS with similar computation per token on fewshot evaluations.
The devil is in the object boundary: towards annotation-free instance segmentation using Foundation Models
Foundation models, pre-trained on a large amount of data have demonstrated impressive zero-shot capabilities in various downstream tasks. However, in object detection and instance segmentation, two fundamental computer vision tasks heavily reliant on extensive human annotations, foundation models such as SAM and DINO struggle to achieve satisfactory performance. In this study, we reveal that the devil is in the object boundary, i.e., these foundation models fail to discern boundaries between individual objects. For the first time, we probe that CLIP, which has never accessed any instance-level annotations, can provide a highly beneficial and strong instance-level boundary prior in the clustering results of its particular intermediate layer. Following this surprising observation, we propose Zip which Zips up CLip and SAM in a novel classification-first-then-discovery pipeline, enabling annotation-free, complex-scene-capable, open-vocabulary object detection and instance segmentation. Our Zip significantly boosts SAM's mask AP on COCO dataset by 12.5% and establishes state-of-the-art performance in various settings, including training-free, self-training, and label-efficient finetuning. Furthermore, annotation-free Zip even achieves comparable performance to the best-performing open-vocabulary object detecters using base annotations. Code is released at https://github.com/ChengShiest/Zip-Your-CLIP
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Image generation models have achieved widespread applications. As an instance, the TarFlow model combines the transformer architecture with Normalizing Flow models, achieving state-of-the-art results on multiple benchmarks. However, due to the causal form of attention requiring sequential computation, TarFlow's sampling process is extremely slow. In this paper, we demonstrate that through a series of optimization strategies, TarFlow sampling can be greatly accelerated by using the Gauss-Seidel-Jacobi (abbreviated as GS-Jacobi) iteration method. Specifically, we find that blocks in the TarFlow model have varying importance: a small number of blocks play a major role in image generation tasks, while other blocks contribute relatively little; some blocks are sensitive to initial values and prone to numerical overflow, while others are relatively robust. Based on these two characteristics, we propose the Convergence Ranking Metric (CRM) and the Initial Guessing Metric (IGM): CRM is used to identify whether a TarFlow block is "simple" (converges in few iterations) or "tough" (requires more iterations); IGM is used to evaluate whether the initial value of the iteration is good. Experiments on four TarFlow models demonstrate that GS-Jacobi sampling can significantly enhance sampling efficiency while maintaining the quality of generated images (measured by FID), achieving speed-ups of 4.53x in Img128cond, 5.32x in AFHQ, 2.96x in Img64uncond, and 2.51x in Img64cond without degrading FID scores or sample quality. Code and checkpoints are accessible on https://github.com/encoreus/GS-Jacobi_for_TarFlow
Scaling Mesh Generation via Compressive Tokenization
We propose a compressive yet effective mesh representation, Blocked and Patchified Tokenization (BPT), facilitating the generation of meshes exceeding 8k faces. BPT compresses mesh sequences by employing block-wise indexing and patch aggregation, reducing their length by approximately 75\% compared to the original sequences. This compression milestone unlocks the potential to utilize mesh data with significantly more faces, thereby enhancing detail richness and improving generation robustness. Empowered with the BPT, we have built a foundation mesh generative model training on scaled mesh data to support flexible control for point clouds and images. Our model demonstrates the capability to generate meshes with intricate details and accurate topology, achieving SoTA performance on mesh generation and reaching the level for direct product usage.
ZipNN: Lossless Compression for AI Models
With the growth of model sizes and the scale of their deployment, their sheer size burdens the infrastructure requiring more network and more storage to accommodate these. While there is a vast model compression literature deleting parts of the model weights for faster inference, we investigate a more traditional type of compression - one that represents the model in a compact form and is coupled with a decompression algorithm that returns it to its original form and size - namely lossless compression. We present ZipNN a lossless compression tailored to neural networks. Somewhat surprisingly, we show that specific lossless compression can gain significant network and storage reduction on popular models, often saving 33% and at times reducing over 50% of the model size. We investigate the source of model compressibility and introduce specialized compression variants tailored for models that further increase the effectiveness of compression. On popular models (e.g. Llama 3) ZipNN shows space savings that are over 17% better than vanilla compression while also improving compression and decompression speeds by 62%. We estimate that these methods could save over an ExaByte per month of network traffic downloaded from a large model hub like Hugging Face.
