33 PIPPA: A Partially Synthetic Conversational Dataset With the emergence of increasingly powerful large language models, there is a burgeoning interest in leveraging these models for casual conversation and role-play applications. However, existing conversational and role-playing datasets often fail to capture the diverse and nuanced interactions typically exhibited by real-world role-play participants. To address this limitation and contribute to the rapidly growing field, we introduce a partially-synthetic dataset named PIPPA (Personal Interaction Pairs between People and AI). PIPPA is a result of a community-driven crowdsourcing effort involving a group of role-play enthusiasts. The dataset comprises over 1 million utterances that are distributed across 26,000 conversation sessions and provides a rich resource for researchers and AI developers to explore and refine conversational AI systems in the context of role-play scenarios. 3 authors · Aug 10, 2023 2
- ConvCounsel: A Conversational Dataset for Student Counseling Student mental health is a sensitive issue that necessitates special attention. A primary concern is the student-to-counselor ratio, which surpasses the recommended standard of 250:1 in most universities. This imbalance results in extended waiting periods for in-person consultations, which cause suboptimal treatment. Significant efforts have been directed toward developing mental health dialogue systems utilizing the existing open-source mental health-related datasets. However, currently available datasets either discuss general topics or various strategies that may not be viable for direct application due to numerous ethical constraints inherent in this research domain. To address this issue, this paper introduces a specialized mental health dataset that emphasizes the active listening strategy employed in conversation for counseling, also named as ConvCounsel. This dataset comprises both speech and text data, which can facilitate the development of a reliable pipeline for mental health dialogue systems. To demonstrate the utility of the proposed dataset, this paper also presents the NYCUKA, a spoken mental health dialogue system that is designed by using the ConvCounsel dataset. The results show the merit of using this dataset. 4 authors · Nov 1, 2024
- MultiConAD: A Unified Multilingual Conversational Dataset for Early Alzheimer's Detection Dementia is a progressive cognitive syndrome with Alzheimer's disease (AD) as the leading cause. Conversation-based AD detection offers a cost-effective alternative to clinical methods, as language dysfunction is an early biomarker of AD. However, most prior research has framed AD detection as a binary classification problem, limiting the ability to identify Mild Cognitive Impairment (MCI)-a crucial stage for early intervention. Also, studies primarily rely on single-language datasets, mainly in English, restricting cross-language generalizability. To address this gap, we make three key contributions. First, we introduce a novel, multilingual dataset for AD detection by unifying 16 publicly available dementia-related conversational datasets. This corpus spans English, Spanish, Chinese, and Greek and incorporates both audio and text data derived from a variety of cognitive assessment tasks. Second, we perform finer-grained classification, including MCI, and evaluate various classifiers using sparse and dense text representations. Third, we conduct experiments in monolingual and multilingual settings, finding that some languages benefit from multilingual training while others perform better independently. This study highlights the challenges in multilingual AD detection and enables future research on both language-specific approaches and techniques aimed at improving model generalization and robustness. 3 authors · Feb 26
- MM-Conv: A Multi-modal Conversational Dataset for Virtual Humans In this paper, we present a novel dataset captured using a VR headset to record conversations between participants within a physics simulator (AI2-THOR). Our primary objective is to extend the field of co-speech gesture generation by incorporating rich contextual information within referential settings. Participants engaged in various conversational scenarios, all based on referential communication tasks. The dataset provides a rich set of multimodal recordings such as motion capture, speech, gaze, and scene graphs. This comprehensive dataset aims to enhance the understanding and development of gesture generation models in 3D scenes by providing diverse and contextually rich data. 3 authors · Sep 30, 2024
10 Faithful Persona-based Conversational Dataset Generation with Large Language Models High-quality conversational datasets are essential for developing AI models that can communicate with users. One way to foster deeper interactions between a chatbot and its user is through personas, aspects of the user's character that provide insights into their personality, motivations, and behaviors. Training Natural Language Processing (NLP) models on a diverse and comprehensive persona-based dataset can lead to conversational models that create a deeper connection with the user, and maintain their engagement. In this paper, we leverage the power of Large Language Models (LLMs) to create a large, high-quality conversational dataset from a seed dataset. We propose a Generator-Critic architecture framework to expand the initial dataset, while improving the quality of its conversations. The Generator is an LLM prompted to output conversations. The Critic consists of a mixture of expert LLMs that control the quality of the generated conversations. These experts select the best generated conversations, which we then use to improve the Generator. We release Synthetic-Persona-Chat, consisting of 20k conversations seeded from Persona-Chat. We evaluate the quality of Synthetic-Persona-Chat and our generation framework on different dimensions through extensive experiments, and observe that the losing rate of Synthetic-Persona-Chat against Persona-Chat during Turing test decreases from 17.2% to 8.8% over three iterations. 5 authors · Dec 15, 2023 1
- T1: A Tool-Oriented Conversational Dataset for Multi-Turn Agentic Planning Large Language Models (LLMs) have demonstrated impressive capabilities as intelligent agents capable of solving complex problems. However, effective planning in scenarios involving dependencies between API or tool calls-particularly in multi-turn conversations-remains a significant challenge. To address this, we introduce T1, a tool-augmented, multi-domain, multi-turn conversational dataset specifically designed to capture and manage inter-tool dependencies across diverse domains. T1 enables rigorous evaluation of agents' ability to coordinate tool use across nine distinct domains (4 single domain and 5 multi-domain) with the help of an integrated caching mechanism for both short- and long-term memory, while supporting dynamic replanning-such as deciding whether to recompute or reuse cached results. Beyond facilitating research on tool use and planning, T1 also serves as a benchmark for evaluating the performance of open-source language models. We present results powered by T1-Agent, highlighting their ability to plan and reason in complex, tool-dependent scenarios. 9 authors · May 22
5 A Repository of Conversational Datasets Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using '1-of-100 accuracy'. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set. 11 authors · Apr 12, 2019
1 AstroLLaMA-Chat: Scaling AstroLLaMA with Conversational and Diverse Datasets We explore the potential of enhancing LLM performance in astronomy-focused question-answering through targeted, continual pre-training. By employing a compact 7B-parameter LLaMA-2 model and focusing exclusively on a curated set of astronomy corpora -- comprising abstracts, introductions, and conclusions -- we achieve notable improvements in specialized topic comprehension. While general LLMs like GPT-4 excel in broader question-answering scenarios due to superior reasoning capabilities, our findings suggest that continual pre-training with limited resources can still enhance model performance on specialized topics. Additionally, we present an extension of AstroLLaMA: the fine-tuning of the 7B LLaMA model on a domain-specific conversational dataset, culminating in the release of the chat-enabled AstroLLaMA for community use. Comprehensive quantitative benchmarking is currently in progress and will be detailed in an upcoming full paper. The model, AstroLLaMA-Chat, is now available at https://huggingface.co/universeTBD, providing the first open-source conversational AI tool tailored for the astronomy community. 14 authors · Jan 2, 2024
- ASR Benchmarking: Need for a More Representative Conversational Dataset Automatic Speech Recognition (ASR) systems have achieved remarkable performance on widely used benchmarks such as LibriSpeech and Fleurs. However, these benchmarks do not adequately reflect the complexities of real-world conversational environments, where speech is often unstructured and contains disfluencies such as pauses, interruptions, and diverse accents. In this study, we introduce a multilingual conversational dataset, derived from TalkBank, consisting of unstructured phone conversation between adults. Our results show a significant performance drop across various state-of-the-art ASR models when tested in conversational settings. Furthermore, we observe a correlation between Word Error Rate and the presence of speech disfluencies, highlighting the critical need for more realistic, conversational ASR benchmarks. 4 authors · Sep 18, 2024
- Topic Segmentation of Semi-Structured and Unstructured Conversational Datasets using Language Models Breaking down a document or a conversation into multiple contiguous segments based on its semantic structure is an important and challenging problem in NLP, which can assist many downstream tasks. However, current works on topic segmentation often focus on segmentation of structured texts. In this paper, we comprehensively analyze the generalization capabilities of state-of-the-art topic segmentation models on unstructured texts. We find that: (a) Current strategies of pre-training on a large corpus of structured text such as Wiki-727K do not help in transferability to unstructured conversational data. (b) Training from scratch with only a relatively small-sized dataset of the target unstructured domain improves the segmentation results by a significant margin. We stress-test our proposed Topic Segmentation approach by experimenting with multiple loss functions, in order to mitigate effects of imbalance in unstructured conversational datasets. Our empirical evaluation indicates that Focal Loss function is a robust alternative to Cross-Entropy and re-weighted Cross-Entropy loss function when segmenting unstructured and semi-structured chats. 7 authors · Oct 25, 2023
- Exploring the Potential of LLMs as Personalized Assistants: Dataset, Evaluation, and Analysis Personalized AI assistants, a hallmark of the human-like capabilities of Large Language Models (LLMs), are a challenging application that intertwines multiple problems in LLM research. Despite the growing interest in the development of personalized assistants, the lack of an open-source conversational dataset tailored for personalization remains a significant obstacle for researchers in the field. To address this research gap, we introduce HiCUPID, a new benchmark to probe and unleash the potential of LLMs to deliver personalized responses. Alongside a conversational dataset, HiCUPID provides a Llama-3.2-based automated evaluation model whose assessment closely mirrors human preferences. We release our dataset, evaluation model, and code at https://github.com/12kimih/HiCUPID. 4 authors · Jun 1
- TopiOCQA: Open-domain Conversational Question Answering with Topic Switching In a conversational question answering scenario, a questioner seeks to extract information about a topic through a series of interdependent questions and answers. As the conversation progresses, they may switch to related topics, a phenomenon commonly observed in information-seeking search sessions. However, current datasets for conversational question answering are limiting in two ways: 1) they do not contain topic switches; and 2) they assume the reference text for the conversation is given, i.e., the setting is not open-domain. We introduce TopiOCQA (pronounced Tapioca), an open-domain conversational dataset with topic switches on Wikipedia. TopiOCQA contains 3,920 conversations with information-seeking questions and free-form answers. On average, a conversation in our dataset spans 13 question-answer turns and involves four topics (documents). TopiOCQA poses a challenging test-bed for models, where efficient retrieval is required on multiple turns of the same conversation, in conjunction with constructing valid responses using conversational history. We evaluate several baselines, by combining state-of-the-art document retrieval methods with neural reader models. Our best model achieves F1 of 55.8, falling short of human performance by 14.2 points, indicating the difficulty of our dataset. Our dataset and code is available at https://mcgill-nlp.github.io/topiocqa 5 authors · Oct 2, 2021
41 Adaptive Multi-Agent Response Refinement in Conversational Systems Large Language Models (LLMs) have demonstrated remarkable success in conversational systems by generating human-like responses. However, they can fall short, especially when required to account for personalization or specific knowledge. In real-life settings, it is impractical to rely on users to detect these errors and request a new response. One way to address this problem is to refine the response before returning it to the user. While existing approaches focus on refining responses within a single LLM, this method struggles to consider diverse aspects needed for effective conversations. In this work, we propose refining responses through a multi-agent framework, where each agent is assigned a specific role for each aspect. We focus on three key aspects crucial to conversational quality: factuality, personalization, and coherence. Each agent is responsible for reviewing and refining one of these aspects, and their feedback is then merged to improve the overall response. To enhance collaboration among them, we introduce a dynamic communication strategy. Instead of following a fixed sequence of agents, our approach adaptively selects and coordinates the most relevant agents based on the specific requirements of each query. We validate our framework on challenging conversational datasets, demonstrating that ours significantly outperforms relevant baselines, particularly in tasks involving knowledge or user's persona, or both. Amazon · Nov 11 2
- PSCon: Toward Conversational Product Search Conversational Product Search (CPS) is confined to simulated conversations due to the lack of real-world CPS datasets that reflect human-like language. Additionally, current conversational datasets are limited to support cross-market and multi-lingual usage. In this paper, we introduce a new CPS data collection protocol and present PSCon, a novel CPS dataset designed to assist product search via human-like conversations. The dataset is constructed using a coached human-to-human data collection protocol and supports two languages and dual markets. Also, the dataset enables thorough exploration of six subtasks of CPS: user intent detection, keyword extraction, system action prediction, question selection, item ranking, and response generation. Furthermore, we also offer an analysis of the dataset and propose a benchmark model on the proposed CPS dataset. 8 authors · Feb 19 1
- Steering Conversational Large Language Models for Long Emotional Support Conversations In this study, we address the challenge of enabling large language models (LLMs) to consistently adhere to emotional support strategies in extended conversations. We focus on the steerability of the Llama-2 and Llama-3 suite of models, examining their ability to maintain these strategies throughout interactions. To assess this, we introduce the Strategy Relevant Attention (SRA) metric, which quantifies the model's adherence to the prompted strategy through attention maps. To facilitate our study, we create a strategy-conditioned synthetic conversational dataset derived from the ESConv dataset. We also propose various baselines informed by our proposed SRA metric to address the challenge and propose a fine-tuned model that significantly enhances the steerability of the base model in following the strategy throughout the conversation. The code and data are publicly available on our GitHub. 3 authors · Feb 16, 2024
1 EmoInHindi: A Multi-label Emotion and Intensity Annotated Dataset in Hindi for Emotion Recognition in Dialogues The long-standing goal of Artificial Intelligence (AI) has been to create human-like conversational systems. Such systems should have the ability to develop an emotional connection with the users, hence emotion recognition in dialogues is an important task. Emotion detection in dialogues is a challenging task because humans usually convey multiple emotions with varying degrees of intensities in a single utterance. Moreover, emotion in an utterance of a dialogue may be dependent on previous utterances making the task more complex. Emotion recognition has always been in great demand. However, most of the existing datasets for multi-label emotion and intensity detection in conversations are in English. To this end, we create a large conversational dataset in Hindi named EmoInHindi for multi-label emotion and intensity recognition in conversations containing 1,814 dialogues with a total of 44,247 utterances. We prepare our dataset in a Wizard-of-Oz manner for mental health and legal counselling of crime victims. Each utterance of the dialogue is annotated with one or more emotion categories from the 16 emotion classes including neutral, and their corresponding intensity values. We further propose strong contextual baselines that can detect emotion(s) and the corresponding intensity of an utterance given the conversational context. 5 authors · May 27, 2022
- EvalYaks: Instruction Tuning Datasets and LoRA Fine-tuned Models for Automated Scoring of CEFR B2 Speaking Assessment Transcripts Relying on human experts to evaluate CEFR speaking assessments in an e-learning environment creates scalability challenges, as it limits how quickly and widely assessments can be conducted. We aim to automate the evaluation of CEFR B2 English speaking assessments in e-learning environments from conversation transcripts. First, we evaluate the capability of leading open source and commercial Large Language Models (LLMs) to score a candidate's performance across various criteria in the CEFR B2 speaking exam in both global and India-specific contexts. Next, we create a new expert-validated, CEFR-aligned synthetic conversational dataset with transcripts that are rated at different assessment scores. In addition, new instruction-tuned datasets are developed from the English Vocabulary Profile (up to CEFR B2 level) and the CEFR-SP WikiAuto datasets. Finally, using these new datasets, we perform parameter efficient instruction tuning of Mistral Instruct 7B v0.2 to develop a family of models called EvalYaks. Four models in this family are for assessing the four sections of the CEFR B2 speaking exam, one for identifying the CEFR level of vocabulary and generating level-specific vocabulary, and another for detecting the CEFR level of text and generating level-specific text. EvalYaks achieved an average acceptable accuracy of 96%, a degree of variation of 0.35 levels, and performed 3 times better than the next best model. This demonstrates that a 7B parameter LLM instruction tuned with high-quality CEFR-aligned assessment data can effectively evaluate and score CEFR B2 English speaking assessments, offering a promising solution for scalable, automated language proficiency evaluation. 4 authors · Aug 22, 2024 1
- SpokesBiz -- an Open Corpus of Conversational Polish This paper announces the early release of SpokesBiz, a freely available corpus of conversational Polish developed within the CLARIN-BIZ project and comprising over 650 hours of recordings. The transcribed recordings have been diarized and manually annotated for punctuation and casing. We outline the general structure and content of the corpus, showcasing selected applications in linguistic research, evaluation and improvement of automatic speech recognition (ASR) systems 11 authors · Dec 19, 2023
4 GEITje 7B Ultra: A Conversational Model for Dutch Language models have rapidly evolved, predominantly focusing on English while often neglecting extensive pretraining in other languages. This approach has required initiatives to adapt powerful, English-centric models to other linguistic contexts through finetuning. For Dutch, such a recent endeavour is ``GEITje'' a model originally derived from the English-based Mistral 7B. Building on this fundamental work, the current research extends the capabilities of GEITje by supervised finetuning on newly created high-quality synthetic conversational datasets, along with an additional preference alignment procedure on a synthetic feedback dataset. Both the developed models and the created datasets are openly available. 1 authors · Dec 5, 2024
- Interview: A Large-Scale Open-Source Corpus of Media Dialog Existing conversational datasets consist either of written proxies for dialog or small-scale transcriptions of natural speech. We introduce 'Interview': a large-scale (105K conversations) media dialog dataset collected from news interview transcripts. Compared to existing large-scale proxies for conversational data, language models trained on our dataset exhibit better zero-shot out-of-domain performance on existing spoken dialog datasets, demonstrating its usefulness in modeling real-world conversations. 'Interview' contains speaker role annotations for each turn, facilitating the development of engaging, responsive dialog systems. In fact, experiments on two dialog tasks show that leveraging such labels improves performance over strong speaker-agnostic baselines, and enabling models to generate more specific and inquisitive responses in interview-style conversations. 4 authors · Apr 6, 2020
2 RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language Models This study presents RoleCraft-GLM, an innovative framework aimed at enhancing personalized role-playing with Large Language Models (LLMs). RoleCraft-GLM addresses the key issue of lacking personalized interactions in conversational AI, and offers a solution with detailed and emotionally nuanced character portrayals. We contribute a unique conversational dataset that shifts from conventional celebrity-centric characters to diverse, non-celebrity personas, thus enhancing the realism and complexity of language modeling interactions. Additionally, our approach includes meticulous character development, ensuring dialogues are both realistic and emotionally resonant. The effectiveness of RoleCraft-GLM is validated through various case studies, highlighting its versatility and skill in different scenarios. Our framework excels in generating dialogues that accurately reflect characters' personality traits and emotions, thereby boosting user engagement. In conclusion, RoleCraft-GLM marks a significant leap in personalized AI interactions, and paves the way for more authentic and immersive AI-assisted role-playing experiences by enabling more nuanced and emotionally rich dialogues 5 authors · Dec 17, 2023
- CLASS Meet SPOCK: An Education Tutoring Chatbot based on Learning Science Principles We present a design framework called Conversational Learning with Analytical Step-by-Step Strategies (CLASS) for developing high-performance Intelligent Tutoring Systems (ITS). The CLASS framework aims to empower ITS with with two critical capabilities: imparting tutor-like step-by-step guidance and enabling tutor-like conversations in natural language to effectively engage learners. To empower ITS with the aforementioned capabilities, the CLASS framework employs two carefully curated synthetic datasets. The first scaffolding dataset encompasses a variety of elements, including problems, their corresponding subproblems, hints, incorrect solutions, and tailored feedback. This dataset provides ITS with essential problem-solving strategies necessary for guiding students through each step of the conversation. The second conversational dataset contains simulated student-tutor conversations that involve the application of problem-solving strategies learned from the first dataset. In the second dataset, the tutoring system adheres to a pre-defined response template, which helps to maintain consistency and structure in ITS's responses during its interactions. This structured methodology facilitates seamless integration of user feedback and yields valuable insights into ITS's internal decision-making process, allowing for continuous refinement and improvement of the system. We also present a proof-of-concept ITS, referred to as SPOCK, trained using the CLASS framework with a focus on college level introductory biology content. A carefully constructed protocol was developed for SPOCK's preliminary evaluation, examining aspects such as the factual accuracy and relevance of its responses. Experts in the field of biology offered favorable remarks, particularly highlighting SPOCK's capability to break down questions into manageable subproblems and provide step-by-step guidance to students. 4 authors · May 22, 2023
17 Arch-Router: Aligning LLM Routing with Human Preferences With the rapid proliferation of large language models (LLMs) -- each optimized for different strengths, style, or latency/cost profile -- routing has become an essential technique to operationalize the use of different models. However, existing LLM routing approaches are limited in two key ways: they evaluate performance using benchmarks that often fail to capture human preferences driven by subjective evaluation criteria, and they typically select from a limited pool of models. In this work, we propose a preference-aligned routing framework that guides model selection by matching queries to user-defined domains (e.g., travel) or action types (e.g., image editing) -- offering a practical mechanism to encode preferences in routing decisions. Specifically, we introduce Arch-Router, a compact 1.5B model that learns to map queries to domain-action preferences for model routing decisions. Our approach also supports seamlessly adding new models for routing without requiring retraining or architectural modifications. Experiments on conversational datasets demonstrate that our approach achieves state-of-the-art (SOTA) results in matching queries with human preferences, outperforming top proprietary models. Our approach captures subjective evaluation criteria and makes routing decisions more transparent and flexible. Our model is available at: https://huggingface.co/katanemo/Arch-Router-1.5B. 4 authors · Jun 19 2
- Code Soliloquies for Accurate Calculations in Large Language Models High-quality conversational datasets are integral to the successful development of Intelligent Tutoring Systems (ITS) that employ a Large Language Model (LLM) backend. These datasets, when used to fine-tune the LLM backend, significantly enhance the quality of interactions between students and ITS. A common strategy for developing these datasets involves generating synthetic student-teacher dialogues using advanced GPT-4 models. However, challenges arise when these dialogues demand complex calculations, common in subjects like physics. Despite its advanced capabilities, GPT-4's performance falls short in reliably handling even simple multiplication tasks, marking a significant limitation in its utility for these subjects. To address these challenges, this paper introduces an innovative stateful prompt design. Our approach generates a mock conversation between a student and a tutorbot, both roles simulated by GPT-4. Each student response triggers a soliloquy (an inner monologue) in the GPT-tutorbot, which assesses whether its response would necessitate calculations. If so, it proceeds to script the required code in Python and then uses the resulting output to construct its response to the student. Our approach notably enhances the quality of synthetic conversation datasets, especially for subjects that are calculation-intensive. Our findings show that our Higgs model -- a LLaMA finetuned with datasets generated through our novel stateful prompt design -- proficiently utilizes Python for computations. Consequently, finetuning with our datasets enriched with code soliloquies enhances not just the accuracy but also the computational reliability of Higgs' responses. 6 authors · Sep 21, 2023
- LibriConvo: Simulating Conversations from Read Literature for ASR and Diarization We introduce LibriConvo, a simulated multi-speaker conversational dataset based on speaker-aware conversation simulation (SASC), designed to support training and evaluation of speaker diarization and automatic speech recognition (ASR) systems. Unlike prior resources that mostly rely on semantically disconnected utterances and implausible temporal gaps, LibriConvo ensures semantic coherence and realistic conversational timing. Our pipeline leverages CallHome with external VAD for reliable boundaries, applies compression to reduce unnaturally long silences, and organizes LibriTTS utterances by book to maintain contextual consistency. Acoustic realism is enhanced via a novel room impulse response selection procedure that ranks speaker-microphone configurations by spatial plausibility, balancing realism and diversity. The dataset comprises 240.1 hours across 1,496 dialogues with 830 unique speakers, split in a speaker-disjoint manner for robust evaluation. Baselines show that the sortformer model outperforms the pyannote pipeline in diarization, while a fine-tuned Fast Conformer-CTC XLarge with Serialized Output Training achieves 7.29\% WER for ASR, surpassing zero-shot Whisper-large-v3. LibriConvo provides a valuable resource for advancing multi-speaker speech processing research with realistic conversational dynamics and controlled experimental conditions. 2 authors · Oct 27
- Investigating Acoustic-Textual Emotional Inconsistency Information for Automatic Depression Detection Previous studies have demonstrated that emotional features from a single acoustic sentiment label can enhance depression diagnosis accuracy. Additionally, according to the Emotion Context-Insensitivity theory and our pilot study, individuals with depression might convey negative emotional content in an unexpectedly calm manner, showing a high degree of inconsistency in emotional expressions during natural conversations. So far, few studies have recognized and leveraged the emotional expression inconsistency for depression detection. In this paper, a multimodal cross-attention method is presented to capture the Acoustic-Textual Emotional Inconsistency (ATEI) information. This is achieved by analyzing the intricate local and long-term dependencies of emotional expressions across acoustic and textual domains, as well as the mismatch between the emotional content within both domains. A Transformer-based model is then proposed to integrate this ATEI information with various fusion strategies for detecting depression. Furthermore, a scaling technique is employed to adjust the ATEI feature degree during the fusion process, thereby enhancing the model's ability to discern patients with depression across varying levels of severity. To best of our knowledge, this work is the first to incorporate emotional expression inconsistency information into depression detection. Experimental results on a counseling conversational dataset illustrate the effectiveness of our method. 7 authors · Dec 8, 2024
- XPersona: Evaluating Multilingual Personalized Chatbot Personalized dialogue systems are an essential step toward better human-machine interaction. Existing personalized dialogue agents rely on properly designed conversational datasets, which are mostly monolingual (e.g., English), which greatly limits the usage of conversational agents in other languages. In this paper, we propose a multi-lingual extension of Persona-Chat, namely XPersona. Our dataset includes persona conversations in six different languages other than English for building and evaluating multilingual personalized agents. We experiment with both multilingual and cross-lingual trained baselines, and evaluate them against monolingual and translation-pipeline models using both automatic and human evaluation. Experimental results show that the multilingual trained models outperform the translation-pipeline and that they are on par with the monolingual models, with the advantage of having a single model across multiple languages. On the other hand, the state-of-the-art cross-lingual trained models achieve inferior performance to the other models, showing that cross-lingual conversation modeling is a challenging task. We hope that our dataset and baselines will accelerate research in multilingual dialogue systems. 8 authors · Mar 17, 2020
- Few-Shot Bot: Prompt-Based Learning for Dialogue Systems Learning to converse using only a few examples is a great challenge in conversational AI. The current best conversational models, which are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL), are language models (LMs) fine-tuned on large conversational datasets. Training these models is expensive, both in terms of computational resources and time, and it is hard to keep them up to date with new conversational skills. A simple yet unexplored solution is prompt-based few-shot learning (Brown et al. 2020) which does not require gradient-based fine-tuning but instead uses a few examples in the LM context as the only source of learning. In this paper, we explore prompt-based few-shot learning in dialogue tasks. We benchmark LMs of different sizes in nine response generation tasks, which include four knowledge-grounded tasks, a task-oriented generations task, three open-chat tasks, and controlled stylistic generation, and five conversational parsing tasks, which include dialogue state tracking, graph path generation, persona information extraction, document retrieval, and internet query generation. The current largest released LM (GPT-J-6B) using prompt-based few-shot learning, and thus requiring no training, achieves competitive performance to fully trained state-of-the-art models. Moreover, we propose a novel prompt-based few-shot classifier, that also does not require any fine-tuning, to select the most appropriate prompt given a dialogue history. Finally, by combining the power of prompt-based few-shot learning and a Skill Selector, we create an end-to-end chatbot named the Few-Shot Bot (FSB), which automatically selects the most appropriate conversational skill, queries different knowledge bases or the internet, and uses the retrieved knowledge to generate a human-like response, all using only few dialogue examples per skill. 4 authors · Oct 15, 2021
22 Flacuna: Unleashing the Problem Solving Power of Vicuna using FLAN Fine-Tuning Recently, the release of INSTRUCTEVAL has provided valuable insights into the performance of large language models (LLMs) that utilize encoder-decoder or decoder-only architecture. Interestingly, despite being introduced four years ago, T5-based LLMs, such as FLAN-T5, continue to outperform the latest decoder-based LLMs, such as LLAMA and VICUNA, on tasks that require general problem-solving skills. This performance discrepancy can be attributed to three key factors: (1) Pre-training data, (2) Backbone architecture, and (3) Instruction dataset. In this technical report, our main focus is on investigating the impact of the third factor by leveraging VICUNA, a large language model based on LLAMA, which has undergone fine-tuning on ChatGPT conversations. To achieve this objective, we fine-tuned VICUNA using a customized instruction dataset collection called FLANMINI. This collection includes a subset of the large-scale instruction dataset known as FLAN, as well as various code-related datasets and conversational datasets derived from ChatGPT/GPT-4. This dataset comprises a large number of tasks that demand problem-solving skills. Our experimental findings strongly indicate that the enhanced problem-solving abilities of our model, FLACUNA, are obtained through fine-tuning VICUNA on the FLAN dataset, leading to significant improvements across numerous benchmark datasets in INSTRUCTEVAL. FLACUNA is publicly available at https://huggingface.co/declare-lab/flacuna-13b-v1.0. 4 authors · Jul 5, 2023 1
28 From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations We present a framework for generating full-bodied photorealistic avatars that gesture according to the conversational dynamics of a dyadic interaction. Given speech audio, we output multiple possibilities of gestural motion for an individual, including face, body, and hands. The key behind our method is in combining the benefits of sample diversity from vector quantization with the high-frequency details obtained through diffusion to generate more dynamic, expressive motion. We visualize the generated motion using highly photorealistic avatars that can express crucial nuances in gestures (e.g. sneers and smirks). To facilitate this line of research, we introduce a first-of-its-kind multi-view conversational dataset that allows for photorealistic reconstruction. Experiments show our model generates appropriate and diverse gestures, outperforming both diffusion- and VQ-only methods. Furthermore, our perceptual evaluation highlights the importance of photorealism (vs. meshes) in accurately assessing subtle motion details in conversational gestures. Code and dataset available online. 7 authors · Jan 3, 2024 6
7 OpenAssistant Conversations -- Democratizing Large Language Model Alignment Aligning large language models (LLMs) with human preferences has proven to drastically improve usability and has driven rapid adoption as demonstrated by ChatGPT. Alignment techniques such as supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) greatly reduce the required skill and domain knowledge to effectively harness the capabilities of LLMs, increasing their accessibility and utility across various domains. However, state-of-the-art alignment techniques like RLHF rely on high-quality human feedback data, which is expensive to create and often remains proprietary. In an effort to democratize research on large-scale alignment, we release OpenAssistant Conversations, a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages distributed across 66,497 conversation trees, in 35 different languages, annotated with 461,292 quality ratings. The corpus is a product of a worldwide crowd-sourcing effort involving over 13,500 volunteers. To demonstrate the OpenAssistant Conversations dataset's effectiveness, we present OpenAssistant, the first fully open-source large-scale instruction-tuned model to be trained on human data. A preference study revealed that OpenAssistant replies are comparably preferred to GPT-3.5-turbo (ChatGPT) with a relative winrate of 48.3% vs. 51.7% respectively. We release our code and data under fully permissive licenses. 18 authors · Apr 14, 2023
3 Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment Larger language models (LLMs) have taken the world by storm with their massive multi-tasking capabilities simply by optimizing over a next-word prediction objective. With the emergence of their properties and encoded knowledge, the risk of LLMs producing harmful outputs increases, making them unfit for scalable deployment for the public. In this work, we propose a new safety evaluation benchmark RED-EVAL that carries out red-teaming. We show that even widely deployed models are susceptible to the Chain of Utterances-based (CoU) prompting, jailbreaking closed source LLM-based systems such as GPT-4 and ChatGPT to unethically respond to more than 65% and 73% of harmful queries. We also demonstrate the consistency of the RED-EVAL across 8 open-source LLMs in generating harmful responses in more than 86% of the red-teaming attempts. Next, we propose RED-INSTRUCT--An approach for the safety alignment of LLMs. It constitutes two phases: 1) HARMFULQA data collection: Leveraging CoU prompting, we collect a dataset that consists of 1.9K harmful questions covering a wide range of topics, 9.5K safe and 7.3K harmful conversations from ChatGPT; 2) SAFE-ALIGN: We demonstrate how the conversational dataset can be used for the safety alignment of LLMs by minimizing the negative log-likelihood over helpful responses and penalizing over harmful responses by gradient accent over sample loss. Our model STARLING, a fine-tuned Vicuna-7B, is observed to be more safely aligned when evaluated on RED-EVAL and HHH benchmarks while preserving the utility of the baseline models (TruthfulQA, MMLU, and BBH). 2 authors · Aug 18, 2023
- A Self-enhancement Approach for Domain-specific Chatbot Training via Knowledge Mining and Digest Large Language Models (LLMs), despite their great power in language generation, often encounter challenges when dealing with intricate and knowledge-demanding queries in specific domains. This paper introduces a novel approach to enhance LLMs by effectively extracting the relevant knowledge from domain-specific textual sources, and the adaptive training of a chatbot with domain-specific inquiries. Our two-step approach starts from training a knowledge miner, namely LLMiner, which autonomously extracts Question-Answer pairs from relevant documents through a chain-of-thought reasoning process. Subsequently, we blend the mined QA pairs with a conversational dataset to fine-tune the LLM as a chatbot, thereby enriching its domain-specific expertise and conversational capabilities. We also developed a new evaluation benchmark which comprises four domain-specific text corpora and associated human-crafted QA pairs for testing. Our model shows remarkable performance improvement over generally aligned LLM and surpasses domain-adapted models directly fine-tuned on domain corpus. In particular, LLMiner achieves this with minimal human intervention, requiring only 600 seed instances, thereby providing a pathway towards self-improvement of LLMs through model-synthesized training data. 9 authors · Nov 17, 2023
- Benchmark Data and Evaluation Framework for Intent Discovery Around COVID-19 Vaccine Hesitancy The COVID-19 pandemic has made a huge global impact and cost millions of lives. As COVID-19 vaccines were rolled out, they were quickly met with widespread hesitancy. To address the concerns of hesitant people, we launched VIRA, a public dialogue system aimed at addressing questions and concerns surrounding the COVID-19 vaccines. Here, we release VIRADialogs, a dataset of over 8k dialogues conducted by actual users with VIRA, providing a unique real-world conversational dataset. In light of rapid changes in users' intents, due to updates in guidelines or in response to new information, we highlight the important task of intent discovery in this use-case. We introduce a novel automatic evaluation framework for intent discovery, leveraging the existing intent classifier of VIRA. We use this framework to report baseline intent discovery results over VIRADialogs, that highlight the difficulty of this task. 10 authors · May 24, 2022
- MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging Knowledge Graphs Despite advancements in on-topic dialogue systems, effectively managing topic shifts within dialogues remains a persistent challenge, largely attributed to the limited availability of training datasets. To address this issue, we propose Multi-Passage to Dialogue (MP2D), a data generation framework that automatically creates conversational question-answering datasets with natural topic transitions. By leveraging the relationships between entities in a knowledge graph, MP2D maps the flow of topics within a dialogue, effectively mirroring the dynamics of human conversation. It retrieves relevant passages corresponding to the topics and transforms them into dialogues through the passage-to-dialogue method. Through quantitative and qualitative experiments, we demonstrate MP2D's efficacy in generating dialogue with natural topic shifts. Furthermore, this study introduces a novel benchmark for topic shift dialogues, TS-WikiDialog. Utilizing the dataset, we demonstrate that even Large Language Models (LLMs) struggle to handle topic shifts in dialogue effectively, and we showcase the performance improvements of models trained on datasets generated by MP2D across diverse topic shift dialogue tasks. 6 authors · Mar 9, 2024
- Småprat: DialoGPT for Natural Language Generation of Swedish Dialogue by Transfer Learning Building open-domain conversational systems (or chatbots) that produce convincing responses is a recognized challenge. Recent state-of-the-art (SoTA) transformer-based models for the generation of natural language dialogue have demonstrated impressive performance in simulating human-like, single-turn conversations in English. This work investigates, by an empirical study, the potential for transfer learning of such models to Swedish language. DialoGPT, an English language pre-trained model, is adapted by training on three different Swedish language conversational datasets obtained from publicly available sources. Perplexity score (an automated intrinsic language model metric) and surveys by human evaluation were used to assess the performances of the fine-tuned models, with results that indicate that the capacity for transfer learning can be exploited with considerable success. Human evaluators asked to score the simulated dialogue judged over 57% of the chatbot responses to be human-like for the model trained on the largest (Swedish) dataset. We provide the demos and model checkpoints of our English and Swedish chatbots on the HuggingFace platform for public use. 7 authors · Oct 12, 2021
- I like fish, especially dolphins: Addressing Contradictions in Dialogue Modeling To quantify how well natural language understanding models can capture consistency in a general conversation, we introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversational dataset containing both human-human and human-bot contradictory dialogues. We then compare a structured utterance-based approach of using pre-trained Transformer models for contradiction detection with the typical unstructured approach. Results reveal that: (i) our newly collected dataset is notably more effective at providing supervision for the dialogue contradiction detection task than existing NLI data including those aimed to cover the dialogue domain; (ii) the structured utterance-based approach is more robust and transferable on both analysis and out-of-distribution dialogues than its unstructured counterpart. We also show that our best contradiction detection model correlates well with human judgments and further provide evidence for its usage in both automatically evaluating and improving the consistency of state-of-the-art generative chatbots. 5 authors · Dec 24, 2020
1 A Diversity-Promoting Objective Function for Neural Conversation Models Sequence-to-sequence neural network models for generation of conversational responses tend to generate safe, commonplace responses (e.g., "I don't know") regardless of the input. We suggest that the traditional objective function, i.e., the likelihood of output (response) given input (message) is unsuited to response generation tasks. Instead we propose using Maximum Mutual Information (MMI) as the objective function in neural models. Experimental results demonstrate that the proposed MMI models produce more diverse, interesting, and appropriate responses, yielding substantive gains in BLEU scores on two conversational datasets and in human evaluations. 5 authors · Oct 11, 2015
- Generative Context Distillation Prompts used in recent large language model based applications are often fixed and lengthy, leading to significant computational overhead. To address this challenge, we propose Generative Context Distillation (GCD), a lightweight prompt internalization method that employs a joint training approach. This method not only replicates the behavior of models with prompt inputs but also generates the content of the prompt along with reasons for why the model's behavior should change accordingly. We demonstrate that our approach effectively internalizes complex prompts across various agent-based application scenarios. For effective training without interactions with the dedicated environments, we introduce a data synthesis technique that autonomously collects conversational datasets by swapping the roles of the agent and environment. This method is especially useful in scenarios where only a predefined prompt is available without a corresponding training dataset. By internalizing complex prompts, Generative Context Distillation enables high-performance and efficient inference without the need for explicit prompts. 6 authors · Nov 24, 2024
- COSMIC: COmmonSense knowledge for eMotion Identification in Conversations In this paper, we address the task of utterance level emotion recognition in conversations using commonsense knowledge. We propose COSMIC, a new framework that incorporates different elements of commonsense such as mental states, events, and causal relations, and build upon them to learn interactions between interlocutors participating in a conversation. Current state-of-the-art methods often encounter difficulties in context propagation, emotion shift detection, and differentiating between related emotion classes. By learning distinct commonsense representations, COSMIC addresses these challenges and achieves new state-of-the-art results for emotion recognition on four different benchmark conversational datasets. Our code is available at https://github.com/declare-lab/conv-emotion. 5 authors · Oct 6, 2020
- Muse: A Multimodal Conversational Recommendation Dataset with Scenario-Grounded User Profiles Current conversational recommendation systems focus predominantly on text. However, real-world recommendation settings are generally multimodal, causing a significant gap between existing research and practical applications. To address this issue, we propose Muse, the first multimodal conversational recommendation dataset. Muse comprises 83,148 utterances from 7,000 conversations centered around the Clothing domain. Each conversation contains comprehensive multimodal interactions, rich elements, and natural dialogues. Data in Muse are automatically synthesized by a multi-agent framework powered by multimodal large language models (MLLMs). It innovatively derives user profiles from real-world scenarios rather than depending on manual design and history data for better scalability, and then it fulfills conversation simulation and optimization. Both human and LLM evaluations demonstrate the high quality of conversations in Muse. Additionally, fine-tuning experiments on three MLLMs demonstrate Muse's learnable patterns for recommendations and responses, confirming its value for multimodal conversational recommendation. Our dataset and codes are available at https://anonymous.4open.science/r/Muse-0086. 6 authors · Dec 24, 2024
1 DisfluencySpeech -- Single-Speaker Conversational Speech Dataset with Paralanguage Laughing, sighing, stuttering, and other forms of paralanguage do not contribute any direct lexical meaning to speech, but they provide crucial propositional context that aids semantic and pragmatic processes such as irony. It is thus important for artificial social agents to both understand and be able to generate speech with semantically-important paralanguage. Most speech datasets do not include transcribed non-lexical speech sounds and disfluencies, while those that do are typically multi-speaker datasets where each speaker provides relatively little audio. This makes it challenging to train conversational Text-to-Speech (TTS) synthesis models that include such paralinguistic components. We thus present DisfluencySpeech, a studio-quality labeled English speech dataset with paralanguage. A single speaker recreates nearly 10 hours of expressive utterances from the Switchboard-1 Telephone Speech Corpus (Switchboard), simulating realistic informal conversations. To aid the development of a TTS model that is able to predictively synthesise paralanguage from text without such components, we provide three different transcripts at different levels of information removal (removal of non-speech events, removal of non-sentence elements, and removal of false starts), as well as benchmark TTS models trained on each of these levels. 2 authors · Jun 13, 2024
- A 106K Multi-Topic Multilingual Conversational User Dataset with Emoticons Instant messaging has become a predominant form of communication, with texts and emoticons enabling users to express emotions and ideas efficiently. Emoticons, in particular, have gained significant traction as a medium for conveying sentiments and information, leading to the growing importance of emoticon retrieval and recommendation systems. However, one of the key challenges in this area has been the absence of datasets that capture both the temporal dynamics and user-specific interactions with emoticons, limiting the progress of personalized user modeling and recommendation approaches. To address this, we introduce the emoticon dataset, a comprehensive resource that includes time-based data along with anonymous user identifiers across different conversations. As the largest publicly accessible emoticon dataset to date, it comprises 22K unique users, 370K emoticons, and 8.3M messages. The data was collected from a widely-used messaging platform across 67 conversations and 720 hours of crawling. Strict privacy and safety checks were applied to ensure the integrity of both text and image data. Spanning across 10 distinct domains, the emoticon dataset provides rich insights into temporal, multilingual, and cross-domain behaviors, which were previously unavailable in other emoticon-based datasets. Our in-depth experiments, both quantitative and qualitative, demonstrate the dataset's potential in modeling user behavior and personalized recommendation systems, opening up new possibilities for research in personalized retrieval and conversational AI. The dataset is freely accessible. 6 authors · Feb 26
- Pearl: A Review-driven Persona-Knowledge Grounded Conversational Recommendation Dataset Conversational recommender system is an emerging area that has garnered an increasing interest in the community, especially with the advancements in large language models (LLMs) that enable diverse reasoning over conversational input. Despite the progress, the field has many aspects left to explore. The currently available public datasets for conversational recommendation lack specific user preferences and explanations for recommendations, hindering high-quality recommendations. To address such challenges, we present a novel conversational recommendation dataset named PEARL, synthesized with persona- and knowledge-augmented LLM simulators. We obtain detailed persona and knowledge from real-world reviews and construct a large-scale dataset with over 57k dialogues. Our experimental results demonstrate that utterances in PEARL include more specific user preferences, show expertise in the target domain, and provide recommendations more relevant to the dialogue context than those in prior datasets. 10 authors · Mar 7, 2024
- Dialogizer: Context-aware Conversational-QA Dataset Generation from Textual Sources To address the data scarcity issue in Conversational question answering (ConvQA), a dialog inpainting method, which utilizes documents to generate ConvQA datasets, has been proposed. However, the original dialog inpainting model is trained solely on the dialog reconstruction task, resulting in the generation of questions with low contextual relevance due to insufficient learning of question-answer alignment. To overcome this limitation, we propose a novel framework called Dialogizer, which has the capability to automatically generate ConvQA datasets with high contextual relevance from textual sources. The framework incorporates two training tasks: question-answer matching (QAM) and topic-aware dialog generation (TDG). Moreover, re-ranking is conducted during the inference phase based on the contextual relevance of the generated questions. Using our framework, we produce four ConvQA datasets by utilizing documents from multiple domains as the primary source. Through automatic evaluation using diverse metrics, as well as human evaluation, we validate that our proposed framework exhibits the ability to generate datasets of higher quality compared to the baseline dialog inpainting model. 6 authors · Nov 9, 2023
- ErAConD : Error Annotated Conversational Dialog Dataset for Grammatical Error Correction Currently available grammatical error correction (GEC) datasets are compiled using well-formed written text, limiting the applicability of these datasets to other domains such as informal writing and dialog. In this paper, we present a novel parallel GEC dataset drawn from open-domain chatbot conversations; this dataset is, to our knowledge, the first GEC dataset targeted to a conversational setting. To demonstrate the utility of the dataset, we use our annotated data to fine-tune a state-of-the-art GEC model, resulting in a 16 point increase in model precision. This is of particular importance in a GEC model, as model precision is considered more important than recall in GEC tasks since false positives could lead to serious confusion in language learners. We also present a detailed annotation scheme which ranks errors by perceived impact on comprehensibility, making our dataset both reproducible and extensible. Experimental results show the effectiveness of our data in improving GEC model performance in conversational scenario. 4 authors · Dec 15, 2021
- OleSpeech-IV: A Large-Scale Multispeaker and Multilingual Conversational Speech Dataset with Diverse Topics OleSpeech-IV dataset is a large-scale multispeaker and multilingual conversational speech dataset with diverse topics. The audio content comes from publicly-available English podcasts, talk shows, teleconferences, and other conversations. Speaker names, turns, and transcripts are human-sourced and refined by a proprietary pipeline, while additional information such as timestamps and confidence scores is derived from the pipeline. The IV denotes its position as Tier IV in the Olewave dataset series. In addition, we have open-sourced a subset, OleSpeech-IV-2025-EN-AR-100, for non-commercial research use. 10 authors · Sep 4
- DailyTalk: Spoken Dialogue Dataset for Conversational Text-to-Speech The majority of current Text-to-Speech (TTS) datasets, which are collections of individual utterances, contain few conversational aspects. In this paper, we introduce DailyTalk, a high-quality conversational speech dataset designed for conversational TTS. We sampled, modified, and recorded 2,541 dialogues from the open-domain dialogue dataset DailyDialog inheriting its annotated attributes. On top of our dataset, we extend prior work as our baseline, where a non-autoregressive TTS is conditioned on historical information in a dialogue. From the baseline experiment with both general and our novel metrics, we show that DailyTalk can be used as a general TTS dataset, and more than that, our baseline can represent contextual information from DailyTalk. The DailyTalk dataset and baseline code are freely available for academic use with CC-BY-SA 4.0 license. 3 authors · Jul 3, 2022
- Summary on The Multilingual Conversational Speech Language Model Challenge: Datasets, Tasks, Baselines, and Methods This paper summarizes the Interspeech2025 Multilingual Conversational Speech Language Model (MLC-SLM) challenge, which aims to advance the exploration of building effective multilingual conversational speech LLMs (SLLMs). We provide a detailed description of the task settings for the MLC-SLM challenge, the released real-world multilingual conversational speech dataset totaling approximately 1,604 hours, and the baseline systems for participants. The MLC-SLM challenge attracts 78 teams from 13 countries to participate, with 489 valid leaderboard results and 14 technical reports for the two tasks. We distill valuable insights on building multilingual conversational SLLMs based on submissions from participants, aiming to contribute to the advancement of the community. 11 authors · Sep 17
- "What's Up, Doc?": Analyzing How Users Seek Health Information in Large-Scale Conversational AI Datasets People are increasingly seeking healthcare information from large language models (LLMs) via interactive chatbots, yet the nature and inherent risks of these conversations remain largely unexplored. In this paper, we filter large-scale conversational AI datasets to achieve HealthChat-11K, a curated dataset of 11K real-world conversations composed of 25K user messages. We use HealthChat-11K and a clinician-driven taxonomy for how users interact with LLMs when seeking healthcare information in order to systematically study user interactions across 21 distinct health specialties. Our analysis reveals insights into the nature of how and why users seek health information, such as common interactions, instances of incomplete context, affective behaviors, and interactions (e.g., leading questions) that can induce sycophancy, underscoring the need for improvements in the healthcare support capabilities of LLMs deployed as conversational AI. Code and artifacts to retrieve our analyses and combine them into a curated dataset can be found here: https://github.com/yahskapar/HealthChat 8 authors · Jun 26
- Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA Augmenting Large Language Models (LLMs) with information retrieval capabilities (i.e., Retrieval-Augmented Generation (RAG)) has proven beneficial for knowledge-intensive tasks. However, understanding users' contextual search intent when generating responses is an understudied topic for conversational question answering (QA). This conversational extension leads to additional concerns when compared to single-turn QA as it is more challenging for systems to comprehend conversational context and manage retrieved passages over multiple turns. In this work, we propose a method for enabling LLMs to decide when to retrieve in RAG settings given a conversational context. When retrieval is deemed necessary, the LLM then rewrites the conversation for passage retrieval and judges the relevance of returned passages before response generation. Operationally, we build on the single-turn SELF-RAG framework (Asai et al., 2023) and propose SELF-multi-RAG for conversational settings. SELF-multi-RAG demonstrates improved capabilities over single-turn variants with respect to retrieving relevant passages (by using summarized conversational context) and assessing the quality of generated responses. Experiments on three conversational QA datasets validate the enhanced response generation capabilities of SELF-multi-RAG, with improvements of ~13% measured by human annotation. 4 authors · Sep 23, 2024
- Large Language Models as Zero-Shot Conversational Recommenders In this paper, we present empirical studies on conversational recommendation tasks using representative large language models in a zero-shot setting with three primary contributions. (1) Data: To gain insights into model behavior in "in-the-wild" conversational recommendation scenarios, we construct a new dataset of recommendation-related conversations by scraping a popular discussion website. This is the largest public real-world conversational recommendation dataset to date. (2) Evaluation: On the new dataset and two existing conversational recommendation datasets, we observe that even without fine-tuning, large language models can outperform existing fine-tuned conversational recommendation models. (3) Analysis: We propose various probing tasks to investigate the mechanisms behind the remarkable performance of large language models in conversational recommendation. We analyze both the large language models' behaviors and the characteristics of the datasets, providing a holistic understanding of the models' effectiveness, limitations and suggesting directions for the design of future conversational recommenders 9 authors · Aug 19, 2023
- Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search In this paper, we present a prompting framework called LLMCS that leverages large language models, such as code-davinci-002 of GPT-3, to perform few-shot conversational query rewriting for conversational search. We explore three prompting methods to generate multiple query rewrites and hypothetical responses, and propose aggregating them into an integrated representation that can robustly represent the user's real contextual search intent. Experimental results on two conversational search datasets, including CAst-19 and CAsT-20, show that our approach achieves significant improvements in search effectiveness over existing baselines and manual rewrites. Notably, LLMCS can significantly outperform the state-of-the-art baselines by up to +5.9\% and +32.9\% w.r.t. NDCG@3 on CAsT-19 and CAsT-20, highlighting the vast potential of large language models for conversational search. Our code will be released at https://github.com/kyriemao/LLMCS. 5 authors · Mar 12, 2023
- PRESTO: A Multilingual Dataset for Parsing Realistic Task-Oriented Dialogs Research interest in task-oriented dialogs has increased as systems such as Google Assistant, Alexa and Siri have become ubiquitous in everyday life. However, the impact of academic research in this area has been limited by the lack of datasets that realistically capture the wide array of user pain points. To enable research on some of the more challenging aspects of parsing realistic conversations, we introduce PRESTO, a public dataset of over 550K contextual multilingual conversations between humans and virtual assistants. PRESTO contains a diverse array of challenges that occur in real-world NLU tasks such as disfluencies, code-switching, and revisions. It is the only large scale human generated conversational parsing dataset that provides structured context such as a user's contacts and lists for each example. Our mT5 model based baselines demonstrate that the conversational phenomenon present in PRESTO are challenging to model, which is further pronounced in a low-resource setup. 16 authors · Mar 15, 2023
2 A Neural Conversational Model Conversational modeling is an important task in natural language understanding and machine intelligence. Although previous approaches exist, they are often restricted to specific domains (e.g., booking an airline ticket) and require hand-crafted rules. In this paper, we present a simple approach for this task which uses the recently proposed sequence to sequence framework. Our model converses by predicting the next sentence given the previous sentence or sentences in a conversation. The strength of our model is that it can be trained end-to-end and thus requires much fewer hand-crafted rules. We find that this straightforward model can generate simple conversations given a large conversational training dataset. Our preliminary results suggest that, despite optimizing the wrong objective function, the model is able to converse well. It is able extract knowledge from both a domain specific dataset, and from a large, noisy, and general domain dataset of movie subtitles. On a domain-specific IT helpdesk dataset, the model can find a solution to a technical problem via conversations. On a noisy open-domain movie transcript dataset, the model can perform simple forms of common sense reasoning. As expected, we also find that the lack of consistency is a common failure mode of our model. 2 authors · Jun 18, 2015
- DuRecDial 2.0: A Bilingual Parallel Corpus for Conversational Recommendation In this paper, we provide a bilingual parallel human-to-human recommendation dialog dataset (DuRecDial 2.0) to enable researchers to explore a challenging task of multilingual and cross-lingual conversational recommendation. The difference between DuRecDial 2.0 and existing conversational recommendation datasets is that the data item (Profile, Goal, Knowledge, Context, Response) in DuRecDial 2.0 is annotated in two languages, both English and Chinese, while other datasets are built with the setting of a single language. We collect 8.2k dialogs aligned across English and Chinese languages (16.5k dialogs and 255k utterances in total) that are annotated by crowdsourced workers with strict quality control procedure. We then build monolingual, multilingual, and cross-lingual conversational recommendation baselines on DuRecDial 2.0. Experiment results show that the use of additional English data can bring performance improvement for Chinese conversational recommendation, indicating the benefits of DuRecDial 2.0. Finally, this dataset provides a challenging testbed for future studies of monolingual, multilingual, and cross-lingual conversational recommendation. 5 authors · Sep 18, 2021
- End-to-End Conversational Search for Online Shopping with Utterance Transfer Successful conversational search systems can present natural, adaptive and interactive shopping experience for online shopping customers. However, building such systems from scratch faces real word challenges from both imperfect product schema/knowledge and lack of training dialog data.In this work we first propose ConvSearch, an end-to-end conversational search system that deeply combines the dialog system with search. It leverages the text profile to retrieve products, which is more robust against imperfect product schema/knowledge compared with using product attributes alone. We then address the lack of data challenges by proposing an utterance transfer approach that generates dialogue utterances by using existing dialog from other domains, and leveraging the search behavior data from e-commerce retailer. With utterance transfer, we introduce a new conversational search dataset for online shopping. Experiments show that our utterance transfer method can significantly improve the availability of training dialogue data without crowd-sourcing, and the conversational search system significantly outperformed the best tested baseline. 9 authors · Sep 12, 2021
36 ChatQA: Building GPT-4 Level Conversational QA Models In this work, we introduce ChatQA, a family of conversational question answering (QA) models, that obtain GPT-4 level accuracies. Specifically, we propose a two-stage instruction tuning method that can significantly improve the zero-shot conversational QA results from large language models (LLMs). To handle retrieval in conversational QA, we fine-tune a dense retriever on a multi-turn QA dataset, which provides comparable results to using the state-of-the-art query rewriting model while largely reducing deployment cost. Notably, our ChatQA-70B can outperform GPT-4 in terms of average score on 10 conversational QA datasets (54.14 vs. 53.90), without relying on any synthetic data from OpenAI GPT models. 6 authors · Jan 18, 2024 6
- Measuring Attribution in Natural Language Generation Models With recent improvements in natural language generation (NLG) models for various applications, it has become imperative to have the means to identify and evaluate whether NLG output is only sharing verifiable information about the external world. In this work, we present a new evaluation framework entitled Attributable to Identified Sources (AIS) for assessing the output of natural language generation models, when such output pertains to the external world. We first define AIS and introduce a two-stage annotation pipeline for allowing annotators to appropriately evaluate model output according to AIS guidelines. We empirically validate this approach on generation datasets spanning three tasks (two conversational QA datasets, a summarization dataset, and a table-to-text dataset) via human evaluation studies that suggest that AIS could serve as a common framework for measuring whether model-generated statements are supported by underlying sources. We release guidelines for the human evaluation studies. 10 authors · Dec 23, 2021
- PCoQA: Persian Conversational Question Answering Dataset Humans seek information regarding a specific topic through performing a conversation containing a series of questions and answers. In the pursuit of conversational question answering research, we introduce the PCoQA, the first Persian Conversational Question Answering dataset, a resource comprising information-seeking dialogs encompassing a total of 9,026 contextually-driven questions. Each dialog involves a questioner, a responder, and a document from the Wikipedia; The questioner asks several inter-connected questions from the text and the responder provides a span of the document as the answer for each question. PCoQA is designed to present novel challenges compared to previous question answering datasets including having more open-ended non-factual answers, longer answers, and fewer lexical overlaps. This paper not only presents the comprehensive PCoQA dataset but also reports the performance of various benchmark models. Our models include baseline models and pre-trained models, which are leveraged to boost the performance of the model. The dataset and benchmarks are available at our Github page. 6 authors · Dec 7, 2023
- DICES Dataset: Diversity in Conversational AI Evaluation for Safety Machine learning approaches often require training and evaluation datasets with a clear separation between positive and negative examples. This risks simplifying and even obscuring the inherent subjectivity present in many tasks. Preserving such variance in content and diversity in datasets is often expensive and laborious. This is especially troubling when building safety datasets for conversational AI systems, as safety is both socially and culturally situated. To demonstrate this crucial aspect of conversational AI safety, and to facilitate in-depth model performance analyses, we introduce the DICES (Diversity In Conversational AI Evaluation for Safety) dataset that contains fine-grained demographic information about raters, high replication of ratings per item to ensure statistical power for analyses, and encodes rater votes as distributions across different demographics to allow for in-depth explorations of different aggregation strategies. In short, the DICES dataset enables the observation and measurement of variance, ambiguity, and diversity in the context of conversational AI safety. We also illustrate how the dataset offers a basis for establishing metrics to show how raters' ratings can intersects with demographic categories such as racial/ethnic groups, age groups, and genders. The goal of DICES is to be used as a shared resource and benchmark that respects diverse perspectives during safety evaluation of conversational AI systems. 8 authors · Jun 19, 2023
1 From Base to Conversational: Japanese Instruction Dataset and Tuning Large Language Models Instruction tuning is essential for large language models (LLMs) to become interactive. While many instruction tuning datasets exist in English, there is a noticeable lack in other languages. Also, their effectiveness has not been well verified in non-English languages. We construct a Japanese instruction dataset by expanding and filtering existing datasets and apply the dataset to a Japanese pre-trained base model. We performed Low-Rank Adaptation (LoRA) tuning on both Japanese and English existing models using our instruction dataset. We evaluated these models from both quantitative and qualitative perspectives. As a result, the effectiveness of Japanese instruction datasets is confirmed. The results also indicate that even with relatively small LLMs, performances in downstream tasks would be improved through instruction tuning. Our instruction dataset, tuned models, and implementation are publicly available online. 3 authors · Sep 6, 2023
- MentalChat16K: A Benchmark Dataset for Conversational Mental Health Assistance We introduce MentalChat16K, an English benchmark dataset combining a synthetic mental health counseling dataset and a dataset of anonymized transcripts from interventions between Behavioral Health Coaches and Caregivers of patients in palliative or hospice care. Covering a diverse range of conditions like depression, anxiety, and grief, this curated dataset is designed to facilitate the development and evaluation of large language models for conversational mental health assistance. By providing a high-quality resource tailored to this critical domain, MentalChat16K aims to advance research on empathetic, personalized AI solutions to improve access to mental health support services. The dataset prioritizes patient privacy, ethical considerations, and responsible data usage. MentalChat16K presents a valuable opportunity for the research community to innovate AI technologies that can positively impact mental well-being. The dataset is available at https://huggingface.co/datasets/ShenLab/MentalChat16K and the code and documentation are hosted on GitHub at https://github.com/ChiaPatricia/MentalChat16K. 10 authors · Mar 13
- CPED: A Large-Scale Chinese Personalized and Emotional Dialogue Dataset for Conversational AI Human language expression is based on the subjective construal of the situation instead of the objective truth conditions, which means that speakers' personalities and emotions after cognitive processing have an important influence on conversation. However, most existing datasets for conversational AI ignore human personalities and emotions, or only consider part of them. It's difficult for dialogue systems to understand speakers' personalities and emotions although large-scale pre-training language models have been widely used. In order to consider both personalities and emotions in the process of conversation generation, we propose CPED, a large-scale Chinese personalized and emotional dialogue dataset, which consists of multi-source knowledge related to empathy and personal characteristic. These knowledge covers gender, Big Five personality traits, 13 emotions, 19 dialogue acts and 10 scenes. CPED contains more than 12K dialogues of 392 speakers from 40 TV shows. We release the textual dataset with audio features and video features according to the copyright claims, privacy issues, terms of service of video platforms. We provide detailed description of the CPED construction process and introduce three tasks for conversational AI, including personality recognition, emotion recognition in conversations as well as personalized and emotional conversation generation. Finally, we provide baseline systems for these tasks and consider the function of speakers' personalities and emotions on conversation. Our motivation is to propose a dataset to be widely adopted by the NLP community as a new open benchmark for conversational AI research. The full dataset is available at https://github.com/scutcyr/CPED. 8 authors · May 29, 2022
- BEAT: A Large-Scale Semantic and Emotional Multi-Modal Dataset for Conversational Gestures Synthesis Achieving realistic, vivid, and human-like synthesized conversational gestures conditioned on multi-modal data is still an unsolved problem due to the lack of available datasets, models and standard evaluation metrics. To address this, we build Body-Expression-Audio-Text dataset, BEAT, which has i) 76 hours, high-quality, multi-modal data captured from 30 speakers talking with eight different emotions and in four different languages, ii) 32 millions frame-level emotion and semantic relevance annotations. Our statistical analysis on BEAT demonstrates the correlation of conversational gestures with facial expressions, emotions, and semantics, in addition to the known correlation with audio, text, and speaker identity. Based on this observation, we propose a baseline model, Cascaded Motion Network (CaMN), which consists of above six modalities modeled in a cascaded architecture for gesture synthesis. To evaluate the semantic relevancy, we introduce a metric, Semantic Relevance Gesture Recall (SRGR). Qualitative and quantitative experiments demonstrate metrics' validness, ground truth data quality, and baseline's state-of-the-art performance. To the best of our knowledge, BEAT is the largest motion capture dataset for investigating human gestures, which may contribute to a number of different research fields, including controllable gesture synthesis, cross-modality analysis, and emotional gesture recognition. The data, code and model are available on https://pantomatrix.github.io/BEAT/. 8 authors · Mar 10, 2022
- MTPChat: A Multimodal Time-Aware Persona Dataset for Conversational Agents Understanding temporal dynamics is critical for conversational agents, enabling effective content analysis and informed decision-making. However, time-aware datasets, particularly for persona-grounded conversations, are still limited, which narrows their scope and diminishes their complexity. To address this gap, we introduce MTPChat, a multimodal, time-aware persona dialogue dataset that integrates linguistic, visual, and temporal elements within dialogue and persona memory. Leveraging MTPChat, we propose two time-sensitive tasks: Temporal Next Response Prediction (TNRP) and Temporal Grounding Memory Prediction (TGMP), both designed to assess a model's ability to understand implicit temporal cues and dynamic interactions. Additionally, we present an innovative framework featuring an adaptive temporal module to effectively integrate multimodal streams and capture temporal dependencies. Experimental results validate the challenges posed by MTPChat and demonstrate the effectiveness of our framework in multimodal time-sensitive scenarios. 4 authors · Feb 9
- Open Source MagicData-RAMC: A Rich Annotated Mandarin Conversational(RAMC) Speech Dataset This paper introduces a high-quality rich annotated Mandarin conversational (RAMC) speech dataset called MagicData-RAMC. The MagicData-RAMC corpus contains 180 hours of conversational speech data recorded from native speakers of Mandarin Chinese over mobile phones with a sampling rate of 16 kHz. The dialogs in MagicData-RAMC are classified into 15 diversified domains and tagged with topic labels, ranging from science and technology to ordinary life. Accurate transcription and precise speaker voice activity timestamps are manually labeled for each sample. Speakers' detailed information is also provided. As a Mandarin speech dataset designed for dialog scenarios with high quality and rich annotations, MagicData-RAMC enriches the data diversity in the Mandarin speech community and allows extensive research on a series of speech-related tasks, including automatic speech recognition, speaker diarization, topic detection, keyword search, text-to-speech, etc. We also conduct several relevant tasks and provide experimental results to help evaluate the dataset. 12 authors · Mar 31, 2022
- C-MTCSD: A Chinese Multi-Turn Conversational Stance Detection Dataset Stance detection has become an essential tool for analyzing public discussions on social media. Current methods face significant challenges, particularly in Chinese language processing and multi-turn conversational analysis. To address these limitations, we introduce C-MTCSD, the largest Chinese multi-turn conversational stance detection dataset, comprising 24,264 carefully annotated instances from Sina Weibo, which is 4.2 times larger than the only prior Chinese conversational stance detection dataset. Our comprehensive evaluation using both traditional approaches and large language models reveals the complexity of C-MTCSD: even state-of-the-art models achieve only 64.07% F1 score in the challenging zero-shot setting, while performance consistently degrades with increasing conversation depth. Traditional models particularly struggle with implicit stance detection, achieving below 50% F1 score. This work establishes a challenging new benchmark for Chinese stance detection research, highlighting significant opportunities for future improvements. 5 authors · Apr 14
1 CoQA: A Conversational Question Answering Challenge Humans gather information by engaging in conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong conversational and reading comprehension models on CoQA. The best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating there is ample room for improvement. We launch CoQA as a challenge to the community at http://stanfordnlp.github.io/coqa/ 3 authors · Aug 21, 2018
1 MD3: The Multi-Dialect Dataset of Dialogues We introduce a new dataset of conversational speech representing English from India, Nigeria, and the United States. The Multi-Dialect Dataset of Dialogues (MD3) strikes a new balance between open-ended conversational speech and task-oriented dialogue by prompting participants to perform a series of short information-sharing tasks. This facilitates quantitative cross-dialectal comparison, while avoiding the imposition of a restrictive task structure that might inhibit the expression of dialect features. Preliminary analysis of the dataset reveals significant differences in syntax and in the use of discourse markers. The dataset, which will be made publicly available with the publication of this paper, includes more than 20 hours of audio and more than 200,000 orthographically-transcribed tokens. 5 authors · May 18, 2023
- CICERO: A Dataset for Contextualized Commonsense Inference in Dialogues This paper addresses the problem of dialogue reasoning with contextualized commonsense inference. We curate CICERO, a dataset of dyadic conversations with five types of utterance-level reasoning-based inferences: cause, subsequent event, prerequisite, motivation, and emotional reaction. The dataset contains 53,105 of such inferences from 5,672 dialogues. We use this dataset to solve relevant generative and discriminative tasks: generation of cause and subsequent event; generation of prerequisite, motivation, and listener's emotional reaction; and selection of plausible alternatives. Our results ascertain the value of such dialogue-centric commonsense knowledge datasets. It is our hope that CICERO will open new research avenues into commonsense-based dialogue reasoning. 5 authors · Mar 25, 2022
- E3: Entailment-driven Extracting and Editing for Conversational Machine Reading Conversational machine reading systems help users answer high-level questions (e.g. determine if they qualify for particular government benefits) when they do not know the exact rules by which the determination is made(e.g. whether they need certain income levels or veteran status). The key challenge is that these rules are only provided in the form of a procedural text (e.g. guidelines from government website) which the system must read to figure out what to ask the user. We present a new conversational machine reading model that jointly extracts a set of decision rules from the procedural text while reasoning about which are entailed by the conversational history and which still need to be edited to create questions for the user. On the recently introduced ShARC conversational machine reading dataset, our Entailment-driven Extract and Edit network (E3) achieves a new state-of-the-art, outperforming existing systems as well as a new BERT-based baseline. In addition, by explicitly highlighting which information still needs to be gathered, E3 provides a more explainable alternative to prior work. We release source code for our models and experiments at https://github.com/vzhong/e3. 2 authors · Jun 12, 2019
1 Multi-Task End-to-End Training Improves Conversational Recommendation In this paper, we analyze the performance of a multitask end-to-end transformer model on the task of conversational recommendations, which aim to provide recommendations based on a user's explicit preferences expressed in dialogue. While previous works in this area adopt complex multi-component approaches where the dialogue management and entity recommendation tasks are handled by separate components, we show that a unified transformer model, based on the T5 text-to-text transformer model, can perform competitively in both recommending relevant items and generating conversation dialogue. We fine-tune our model on the ReDIAL conversational movie recommendation dataset, and create additional training tasks derived from MovieLens (such as the prediction of movie attributes and related movies based on an input movie), in a multitask learning setting. Using a series of probe studies, we demonstrate that the learned knowledge in the additional tasks is transferred to the conversational setting, where each task leads to a 9%-52% increase in its related probe score. 7 authors · May 8, 2023
- TalkPlayData 2: An Agentic Synthetic Data Pipeline for Multimodal Conversational Music Recommendation We present TalkPlayData 2, a synthetic dataset for multimodal conversational music recommendation generated by an agentic data pipeline. In TalkPlayData 2 pipeline, multiple large language model (LLM) agents are created under various roles with specialized prompts and access to different parts of information, and the chat data is acquired by logging the conversation between the Listener LLM and the Recsys LLM. To cover various conversation scenarios, for each conversation, the Listener LLM is conditioned on a finetuned conversation goal. Finally, all the LLMs are multimodal with audio and images, allowing a simulation of multimodal recommendation and conversation. In the LLM-as-a-judge and subjective evaluation experiments, TalkPlayData 2 achieved the proposed goal in various aspects related to training a generative recommendation model for music. TalkPlayData 2 and its generation code are open-sourced at https://talkpl.ai/talkplaydata2.html. 3 authors · Aug 18
- DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. 6 authors · Oct 11, 2017
- Towards Deep Conversational Recommendations There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale dataset consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a dataset consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms, and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior. 6 authors · Dec 18, 2018
- Call for Customized Conversation: Customized Conversation Grounding Persona and Knowledge Humans usually have conversations by making use of prior knowledge about a topic and background information of the people whom they are talking to. However, existing conversational agents and datasets do not consider such comprehensive information, and thus they have a limitation in generating the utterances where the knowledge and persona are fused properly. To address this issue, we introduce a call For Customized conversation (FoCus) dataset where the customized answers are built with the user's persona and Wikipedia knowledge. To evaluate the abilities to make informative and customized utterances of pre-trained language models, we utilize BART and GPT-2 as well as transformer-based models. We assess their generation abilities with automatic scores and conduct human evaluations for qualitative results. We examine whether the model reflects adequate persona and knowledge with our proposed two sub-tasks, persona grounding (PG) and knowledge grounding (KG). Moreover, we show that the utterances of our data are constructed with the proper knowledge and persona through grounding quality assessment. 9 authors · Dec 15, 2021
1 ILuvUI: Instruction-tuned LangUage-Vision modeling of UIs from Machine Conversations Multimodal Vision-Language Models (VLMs) enable powerful applications from their fused understanding of images and language, but many perform poorly on UI tasks due to the lack of UI training data. In this paper, we adapt a recipe for generating paired text-image training data for VLMs to the UI domain by combining existing pixel-based methods with a Large Language Model (LLM). Unlike prior art, our method requires no human-provided annotations, and it can be applied to any dataset of UI screenshots. We generate a dataset of 335K conversational examples paired with UIs that cover Q&A, UI descriptions, and planning, and use it to fine-tune a conversational VLM for UI tasks. To assess the performance of our model, we benchmark it on UI element detection tasks, evaluate response quality, and showcase its applicability to multi-step UI navigation and planning. 4 authors · Oct 7, 2023
1 LINGUIST: Language Model Instruction Tuning to Generate Annotated Utterances for Intent Classification and Slot Tagging We present LINGUIST, a method for generating annotated data for Intent Classification and Slot Tagging (IC+ST), via fine-tuning AlexaTM 5B, a 5-billion-parameter multilingual sequence-to-sequence (seq2seq) model, on a flexible instruction prompt. In a 10-shot novel intent setting for the SNIPS dataset, LINGUIST surpasses state-of-the-art approaches (Back-Translation and Example Extrapolation) by a wide margin, showing absolute improvement for the target intents of +1.9 points on IC Recall and +2.5 points on ST F1 Score. In the zero-shot cross-lingual setting of the mATIS++ dataset, LINGUIST out-performs a strong baseline of Machine Translation with Slot Alignment by +4.14 points absolute on ST F1 Score across 6 languages, while matching performance on IC. Finally, we verify our results on an internal large-scale multilingual dataset for conversational agent IC+ST and show significant improvements over a baseline which uses Back-Translation, Paraphrasing and Slot Catalog Resampling. To our knowledge, we are the first to demonstrate instruction fine-tuning of a large-scale seq2seq model to control the outputs of multilingual intent- and slot-labeled data generation. 5 authors · Sep 20, 2022
- CoQAR: Question Rewriting on CoQA Questions asked by humans during a conversation often contain contextual dependencies, i.e., explicit or implicit references to previous dialogue turns. These dependencies take the form of coreferences (e.g., via pronoun use) or ellipses, and can make the understanding difficult for automated systems. One way to facilitate the understanding and subsequent treatments of a question is to rewrite it into an out-of-context form, i.e., a form that can be understood without the conversational context. We propose CoQAR, a corpus containing 4.5K conversations from the Conversational Question-Answering dataset CoQA, for a total of 53K follow-up question-answer pairs. Each original question was manually annotated with at least 2 at most 3 out-of-context rewritings. CoQAR can be used in the supervised learning of three tasks: question paraphrasing, question rewriting and conversational question answering. In order to assess the quality of CoQAR's rewritings, we conduct several experiments consisting in training and evaluating models for these three tasks. Our results support the idea that question rewriting can be used as a preprocessing step for question answering models, thereby increasing their performances. 3 authors · Jul 7, 2022
- MathChat: Benchmarking Mathematical Reasoning and Instruction Following in Multi-Turn Interactions Large language models (LLMs) have demonstrated impressive capabilities in mathematical problem solving, particularly in single turn question answering formats. However, real world scenarios often involve mathematical question answering that requires multi turn or interactive information exchanges, and the performance of LLMs on these tasks is still underexplored. This paper introduces MathChat, a comprehensive benchmark specifically designed to evaluate LLMs across a broader spectrum of mathematical tasks. These tasks are structured to assess the models' abilities in multiturn interactions and open ended generation. We evaluate the performance of various SOTA LLMs on the MathChat benchmark, and we observe that while these models excel in single turn question answering, they significantly underperform in more complex scenarios that require sustained reasoning and dialogue understanding. To address the above limitations of existing LLMs when faced with multiturn and open ended tasks, we develop MathChat sync, a synthetic dialogue based math dataset for LLM finetuning, focusing on improving models' interaction and instruction following capabilities in conversations. Experimental results emphasize the need for training LLMs with diverse, conversational instruction tuning datasets like MathChatsync. We believe this work outlines one promising direction for improving the multiturn mathematical reasoning abilities of LLMs, thus pushing forward the development of LLMs that are more adept at interactive mathematical problem solving and real world applications. 7 authors · May 29, 2024
- The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems This paper introduces the Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words. This provides a unique resource for research into building dialogue managers based on neural language models that can make use of large amounts of unlabeled data. The dataset has both the multi-turn property of conversations in the Dialog State Tracking Challenge datasets, and the unstructured nature of interactions from microblog services such as Twitter. We also describe two neural learning architectures suitable for analyzing this dataset, and provide benchmark performance on the task of selecting the best next response. 4 authors · Jun 29, 2015
- A Dataset for Document Grounded Conversations This paper introduces a document grounded dataset for text conversations. We define "Document Grounded Conversations" as conversations that are about the contents of a specified document. In this dataset the specified documents were Wikipedia articles about popular movies. The dataset contains 4112 conversations with an average of 21.43 turns per conversation. This positions this dataset to not only provide a relevant chat history while generating responses but also provide a source of information that the models could use. We describe two neural architectures that provide benchmark performance on the task of generating the next response. We also evaluate our models for engagement and fluency, and find that the information from the document helps in generating more engaging and fluent responses. 3 authors · Sep 19, 2018
2 HR-MultiWOZ: A Task Oriented Dialogue (TOD) Dataset for HR LLM Agent Recent advancements in Large Language Models (LLMs) have been reshaping Natural Language Processing (NLP) task in several domains. Their use in the field of Human Resources (HR) has still room for expansions and could be beneficial for several time consuming tasks. Examples such as time-off submissions, medical claims filing, and access requests are noteworthy, but they are by no means the sole instances. However, the aforementioned developments must grapple with the pivotal challenge of constructing a high-quality training dataset. On one hand, most conversation datasets are solving problems for customers not employees. On the other hand, gathering conversations with HR could raise privacy concerns. To solve it, we introduce HR-Multiwoz, a fully-labeled dataset of 550 conversations spanning 10 HR domains to evaluate LLM Agent. Our work has the following contributions: (1) It is the first labeled open-sourced conversation dataset in the HR domain for NLP research. (2) It provides a detailed recipe for the data generation procedure along with data analysis and human evaluations. The data generation pipeline is transferable and can be easily adapted for labeled conversation data generation in other domains. (3) The proposed data-collection pipeline is mostly based on LLMs with minimal human involvement for annotation, which is time and cost-efficient. 8 authors · Feb 1, 2024
2 Datasets for Large Language Models: A Comprehensive Survey This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets. 5 authors · Feb 27, 2024 1
- The Gutenberg Dialogue Dataset Large datasets are essential for neural modeling of many NLP tasks. Current publicly available open-domain dialogue datasets offer a trade-off between quality (e.g., DailyDialog) and size (e.g., Opensubtitles). We narrow this gap by building a high-quality dataset of 14.8M utterances in English, and smaller datasets in German, Dutch, Spanish, Portuguese, Italian, and Hungarian. We extract and process dialogues from public-domain books made available by Project Gutenberg. We describe our dialogue extraction pipeline, analyze the effects of the various heuristics used, and present an error analysis of extracted dialogues. Finally, we conduct experiments showing that better response quality can be achieved in zero-shot and finetuning settings by training on our data than on the larger but much noisier Opensubtitles dataset. Our open-source pipeline (https://github.com/ricsinaruto/gutenberg-dialog) can be extended to further languages with little additional effort. Researchers can also build their versions of existing datasets by adjusting various trade-off parameters. We also built a web demo for interacting with our models: https://ricsinaruto.github.io/chatbot.html. 2 authors · Apr 27, 2020
12 DialogStudio: Towards Richest and Most Diverse Unified Dataset Collection for Conversational AI Despite advancements in conversational AI, language models encounter challenges to handle diverse conversational tasks, and existing dialogue dataset collections often lack diversity and comprehensiveness. To tackle these issues, we introduce DialogStudio: the largest and most diverse collection of dialogue datasets, unified under a consistent format while preserving their original information. Our collection encompasses data from open-domain dialogues, task-oriented dialogues, natural language understanding, conversational recommendation, dialogue summarization, and knowledge-grounded dialogues, making it an incredibly rich and diverse resource for dialogue research and model training. To further enhance the utility of DialogStudio, we identify the licenses for each dataset and design domain-aware prompts for selected dialogues to facilitate instruction-aware fine-tuning. Furthermore, we develop conversational AI models using the dataset collection, and our experiments in both zero-shot and few-shot learning scenarios demonstrate the superiority of DialogStudio. To improve transparency and support dataset and task-based research, as well as language model pre-training, all datasets, licenses, codes, and models associated with DialogStudio are made publicly accessible at https://github.com/salesforce/DialogStudio 10 authors · Jul 19, 2023
25 LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset Studying how people interact with large language models (LLMs) in real-world scenarios is increasingly important due to their widespread use in various applications. In this paper, we introduce LMSYS-Chat-1M, a large-scale dataset containing one million real-world conversations with 25 state-of-the-art LLMs. This dataset is collected from 210K unique IP addresses in the wild on our Vicuna demo and Chatbot Arena website. We offer an overview of the dataset's content, including its curation process, basic statistics, and topic distribution, highlighting its diversity, originality, and scale. We demonstrate its versatility through four use cases: developing content moderation models that perform similarly to GPT-4, building a safety benchmark, training instruction-following models that perform similarly to Vicuna, and creating challenging benchmark questions. We believe that this dataset will serve as a valuable resource for understanding and advancing LLM capabilities. The dataset is publicly available at https://huggingface.co/datasets/lmsys/lmsys-chat-1m. 13 authors · Sep 21, 2023 4
- A Large-Scale Corpus for Conversation Disentanglement Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our dataset is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 80% of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research. 9 authors · Oct 25, 2018
2 The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents We introduce the StatCan Dialogue Dataset consisting of 19,379 conversation turns between agents working at Statistics Canada and online users looking for published data tables. The conversations stem from genuine intents, are held in English or French, and lead to agents retrieving one of over 5000 complex data tables. Based on this dataset, we propose two tasks: (1) automatic retrieval of relevant tables based on a on-going conversation, and (2) automatic generation of appropriate agent responses at each turn. We investigate the difficulty of each task by establishing strong baselines. Our experiments on a temporal data split reveal that all models struggle to generalize to future conversations, as we observe a significant drop in performance across both tasks when we move from the validation to the test set. In addition, we find that response generation models struggle to decide when to return a table. Considering that the tasks pose significant challenges to existing models, we encourage the community to develop models for our task, which can be directly used to help knowledge workers find relevant tables for live chat users. 3 authors · Apr 3, 2023 1
- On the Safety of Conversational Models: Taxonomy, Dataset, and Benchmark Dialogue safety problems severely limit the real-world deployment of neural conversational models and have attracted great research interests recently. However, dialogue safety problems remain under-defined and the corresponding dataset is scarce. We propose a taxonomy for dialogue safety specifically designed to capture unsafe behaviors in human-bot dialogue settings, with focuses on context-sensitive unsafety, which is under-explored in prior works. To spur research in this direction, we compile DiaSafety, a dataset with rich context-sensitive unsafe examples. Experiments show that existing safety guarding tools fail severely on our dataset. As a remedy, we train a dialogue safety classifier to provide a strong baseline for context-sensitive dialogue unsafety detection. With our classifier, we perform safety evaluations on popular conversational models and show that existing dialogue systems still exhibit concerning context-sensitive safety problems. 9 authors · Oct 16, 2021
- Towards Scalable Multi-domain Conversational Agents: The Schema-Guided Dialogue Dataset Virtual assistants such as Google Assistant, Alexa and Siri provide a conversational interface to a large number of services and APIs spanning multiple domains. Such systems need to support an ever-increasing number of services with possibly overlapping functionality. Furthermore, some of these services have little to no training data available. Existing public datasets for task-oriented dialogue do not sufficiently capture these challenges since they cover few domains and assume a single static ontology per domain. In this work, we introduce the the Schema-Guided Dialogue (SGD) dataset, containing over 16k multi-domain conversations spanning 16 domains. Our dataset exceeds the existing task-oriented dialogue corpora in scale, while also highlighting the challenges associated with building large-scale virtual assistants. It provides a challenging testbed for a number of tasks including language understanding, slot filling, dialogue state tracking and response generation. Along the same lines, we present a schema-guided paradigm for task-oriented dialogue, in which predictions are made over a dynamic set of intents and slots, provided as input, using their natural language descriptions. This allows a single dialogue system to easily support a large number of services and facilitates simple integration of new services without requiring additional training data. Building upon the proposed paradigm, we release a model for dialogue state tracking capable of zero-shot generalization to new APIs, while remaining competitive in the regular setting. 5 authors · Sep 12, 2019
- For those who don't know (how) to ask: Building a dataset of technology questions for digital newcomers While the rise of large language models (LLMs) has created rich new opportunities to learn about digital technology, many on the margins of this technology struggle to gain and maintain competency due to lexical or conceptual barriers that prevent them from asking appropriate questions. Although there have been many efforts to understand factuality of LLM-created content and ability of LLMs to answer questions, it is not well understood how unclear or nonstandard language queries affect the model outputs. We propose the creation of a dataset that captures questions of digital newcomers and outsiders, utilizing data we have compiled from a decade's worth of one-on-one tutoring. In this paper we lay out our planned efforts and some potential uses of this dataset. 4 authors · Mar 26, 2024
1 NaturalConv: A Chinese Dialogue Dataset Towards Multi-turn Topic-driven Conversation In this paper, we propose a Chinese multi-turn topic-driven conversation dataset, NaturalConv, which allows the participants to chat anything they want as long as any element from the topic is mentioned and the topic shift is smooth. Our corpus contains 19.9K conversations from six domains, and 400K utterances with an average turn number of 20.1. These conversations contain in-depth discussions on related topics or widely natural transition between multiple topics. We believe either way is normal for human conversation. To facilitate the research on this corpus, we provide results of several benchmark models. Comparative results show that for this dataset, our current models are not able to provide significant improvement by introducing background knowledge/topic. Therefore, the proposed dataset should be a good benchmark for further research to evaluate the validity and naturalness of multi-turn conversation systems. Our dataset is available at https://ai.tencent.com/ailab/nlp/dialogue/#datasets. 4 authors · Mar 3, 2021
- Doc2Bot: Accessing Heterogeneous Documents via Conversational Bots This paper introduces Doc2Bot, a novel dataset for building machines that help users seek information via conversations. This is of particular interest for companies and organizations that own a large number of manuals or instruction books. Despite its potential, the nature of our task poses several challenges: (1) documents contain various structures that hinder the ability of machines to comprehend, and (2) user information needs are often underspecified. Compared to prior datasets that either focus on a single structural type or overlook the role of questioning to uncover user needs, the Doc2Bot dataset is developed to target such challenges systematically. Our dataset contains over 100,000 turns based on Chinese documents from five domains, larger than any prior document-grounded dialog dataset for information seeking. We propose three tasks in Doc2Bot: (1) dialog state tracking to track user intentions, (2) dialog policy learning to plan system actions and contents, and (3) response generation which generates responses based on the outputs of the dialog policy. Baseline methods based on the latest deep learning models are presented, indicating that our proposed tasks are challenging and worthy of further research. 8 authors · Oct 20, 2022
- Towards Exploiting Background Knowledge for Building Conversation Systems Existing dialog datasets contain a sequence of utterances and responses without any explicit background knowledge associated with them. This has resulted in the development of models which treat conversation as a sequence-to-sequence generation task i.e, given a sequence of utterances generate the response sequence). This is not only an overly simplistic view of conversation but it is also emphatically different from the way humans converse by heavily relying on their background knowledge about the topic (as opposed to simply relying on the previous sequence of utterances). For example, it is common for humans to (involuntarily) produce utterances which are copied or suitably modified from background articles they have read about the topic. To facilitate the development of such natural conversation models which mimic the human process of conversing, we create a new dataset containing movie chats wherein each response is explicitly generated by copying and/or modifying sentences from unstructured background knowledge such as plots, comments and reviews about the movie. We establish baseline results on this dataset (90K utterances from 9K conversations) using three different models: (i) pure generation based models which ignore the background knowledge (ii) generation based models which learn to copy information from the background knowledge when required and (iii) span prediction based models which predict the appropriate response span in the background knowledge. 4 authors · Sep 21, 2018
1 DialogCC: Large-Scale Multi-Modal Dialogue Dataset As sharing images in an instant message is a crucial factor, there has been active research on learning a image-text multi-modal dialogue model. However, training a well-generalized multi-modal dialogue model is challenging because existing multi-modal dialogue datasets contain a small number of data, limited topics, and a restricted variety of images per dialogue. In this paper, we present a multi-modal dialogue dataset creation pipeline that involves matching large-scale images to dialogues based on CLIP similarity. Using this automatic pipeline, we propose a large-scale multi-modal dialogue dataset, DialogCC, which covers diverse real-world topics and various images per dialogue. With extensive experiments, we demonstrate that training a multi-modal dialogue model with our dataset can improve generalization performance. Additionally, existing models trained with our dataset achieve state-of-the-art performance on image and text retrieval tasks. The source code and the dataset will be released after publication. 4 authors · Dec 8, 2022
1 MS MARCO: A Human Generated MAchine Reading COmprehension Dataset We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models. 15 authors · Nov 28, 2016
- Music Discovery Dialogue Generation Using Human Intent Analysis and Large Language Models A conversational music retrieval system can help users discover music that matches their preferences through dialogue. To achieve this, a conversational music retrieval system should seamlessly engage in multi-turn conversation by 1) understanding user queries and 2) responding with natural language and retrieved music. A straightforward solution would be a data-driven approach utilizing such conversation logs. However, few datasets are available for the research and are limited in terms of volume and quality. In this paper, we present a data generation framework for rich music discovery dialogue using a large language model (LLM) and user intents, system actions, and musical attributes. This is done by i) dialogue intent analysis using grounded theory, ii) generating attribute sequences via cascading database filtering, and iii) generating utterances using large language models. By applying this framework to the Million Song dataset, we create LP-MusicDialog, a Large Language Model based Pseudo Music Dialogue dataset, containing over 288k music conversations using more than 319k music items. Our evaluation shows that the synthetic dataset is competitive with an existing, small human dialogue dataset in terms of dialogue consistency, item relevance, and naturalness. Furthermore, using the dataset, we train a conversational music retrieval model and show promising results. 5 authors · Nov 11, 2024
- Local Knowledge Powered Conversational Agents State-of-the-art conversational agents have advanced significantly in conjunction with the use of large transformer-based language models. However, even with these advancements, conversational agents still lack the ability to produce responses that are informative and coherent with the local context. In this work, we propose a dialog framework that incorporates both local knowledge as well as users' past dialogues to generate high quality conversations. We introduce an approach to build a dataset based on Reddit conversations, where outbound URL links are widely available in the conversations and the hyperlinked documents can be naturally included as local external knowledge. Using our framework and dataset, we demonstrate that incorporating local knowledge can largely improve informativeness, coherency and realisticness measures using human evaluations. In particular, our approach consistently outperforms the state-of-the-art conversational model on the Reddit dataset across all three measures. We also find that scaling the size of our models from 117M to 8.3B parameters yields consistent improvement of validation perplexity as well as human evaluated metrics. Our model with 8.3B parameters can generate human-like responses as rated by various human evaluations in a single-turn dialog setting. 6 authors · Oct 20, 2020
- Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset A significant barrier to progress in data-driven approaches to building dialog systems is the lack of high quality, goal-oriented conversational data. To help satisfy this elementary requirement, we introduce the initial release of the Taskmaster-1 dataset which includes 13,215 task-based dialogs comprising six domains. Two procedures were used to create this collection, each with unique advantages. The first involves a two-person, spoken "Wizard of Oz" (WOz) approach in which trained agents and crowdsourced workers interact to complete the task while the second is "self-dialog" in which crowdsourced workers write the entire dialog themselves. We do not restrict the workers to detailed scripts or to a small knowledge base and hence we observe that our dataset contains more realistic and diverse conversations in comparison to existing datasets. We offer several baseline models including state of the art neural seq2seq architectures with benchmark performance as well as qualitative human evaluations. Dialogs are labeled with API calls and arguments, a simple and cost effective approach which avoids the requirement of complex annotation schema. The layer of abstraction between the dialog model and the service provider API allows for a given model to interact with multiple services that provide similar functionally. Finally, the dataset will evoke interest in written vs. spoken language, discourse patterns, error handling and other linguistic phenomena related to dialog system research, development and design. 10 authors · Sep 1, 2019
- Understanding the Effectiveness of Very Large Language Models on Dialog Evaluation Language models have steadily increased in size over the past few years. They achieve a high level of performance on various natural language processing (NLP) tasks such as question answering and summarization. Large language models (LLMs) have been used for generation and can now output human-like text. Due to this, there are other downstream tasks in the realm of dialog that can now harness the LLMs' language understanding capabilities. Dialog evaluation is one task that this paper will explore. It concentrates on prompting with LLMs: BLOOM, OPT, GPT-3, Flan-T5, InstructDial and TNLGv2. The paper shows that the choice of datasets used for training a model contributes to how well it performs on a task as well as on how the prompt should be structured. Specifically, the more diverse and relevant the group of datasets that a model is trained on, the better dialog evaluation performs. This paper also investigates how the number of examples in the prompt and the type of example selection used affect the model's performance. 7 authors · Jan 27, 2023
- DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public. 5 authors · May 26, 2023
16 Audio Dialogues: Dialogues dataset for audio and music understanding Existing datasets for audio understanding primarily focus on single-turn interactions (i.e. audio captioning, audio question answering) for describing audio in natural language, thus limiting understanding audio via interactive dialogue. To address this gap, we introduce Audio Dialogues: a multi-turn dialogue dataset containing 163.8k samples for general audio sounds and music. In addition to dialogues, Audio Dialogues also has question-answer pairs to understand and compare multiple input audios together. Audio Dialogues leverages a prompting-based approach and caption annotations from existing datasets to generate multi-turn dialogues using a Large Language Model (LLM). We evaluate existing audio-augmented large language models on our proposed dataset to demonstrate the complexity and applicability of Audio Dialogues. Our code for generating the dataset will be made publicly available. Detailed prompts and generated dialogues can be found on the demo website https://audiodialogues.github.io/. 4 authors · Apr 11, 2024 1
64 WildChat: 1M ChatGPT Interaction Logs in the Wild Chatbots such as GPT-4 and ChatGPT are now serving millions of users. Despite their widespread use, there remains a lack of public datasets showcasing how these tools are used by a population of users in practice. To bridge this gap, we offered free access to ChatGPT for online users in exchange for their affirmative, consensual opt-in to anonymously collect their chat transcripts and request headers. From this, we compiled WildChat, a corpus of 1 million user-ChatGPT conversations, which consists of over 2.5 million interaction turns. We compare WildChat with other popular user-chatbot interaction datasets, and find that our dataset offers the most diverse user prompts, contains the largest number of languages, and presents the richest variety of potentially toxic use-cases for researchers to study. In addition to timestamped chat transcripts, we enrich the dataset with demographic data, including state, country, and hashed IP addresses, alongside request headers. This augmentation allows for more detailed analysis of user behaviors across different geographical regions and temporal dimensions. Finally, because it captures a broad range of use cases, we demonstrate the dataset's potential utility in fine-tuning instruction-following models. WildChat is released at https://wildchat.allen.ai under AI2 ImpACT Licenses. 6 authors · May 2, 2024 1
4 The Claire French Dialogue Dataset We present the Claire French Dialogue Dataset (CFDD), a resource created by members of LINAGORA Labs in the context of the OpenLLM France initiative. CFDD is a corpus containing roughly 160 million words from transcripts and stage plays in French that we have assembled and publicly released in an effort to further the development of multilingual, open source language models. This paper describes the 24 individual corpora of which CFDD is composed and provides links and citations to their original sources. It also provides our proposed breakdown of the full CFDD dataset into eight categories of subcorpora and describes the process we followed to standardize the format of the final dataset. We conclude with a discussion of similar work and future directions. 6 authors · Nov 28, 2023 2
- The JDDC Corpus: A Large-Scale Multi-Turn Chinese Dialogue Dataset for E-commerce Customer Service Human conversations are complicated and building a human-like dialogue agent is an extremely challenging task. With the rapid development of deep learning techniques, data-driven models become more and more prevalent which need a huge amount of real conversation data. In this paper, we construct a large-scale real scenario Chinese E-commerce conversation corpus, JDDC, with more than 1 million multi-turn dialogues, 20 million utterances, and 150 million words. The dataset reflects several characteristics of human-human conversations, e.g., goal-driven, and long-term dependency among the context. It also covers various dialogue types including task-oriented, chitchat and question-answering. Extra intent information and three well-annotated challenge sets are also provided. Then, we evaluate several retrieval-based and generative models to provide basic benchmark performance on the JDDC corpus. And we hope JDDC can serve as an effective testbed and benefit the development of fundamental research in dialogue task 8 authors · Nov 22, 2019
1 Quick Starting Dialog Systems with Paraphrase Generation Acquiring training data to improve the robustness of dialog systems can be a painstakingly long process. In this work, we propose a method to reduce the cost and effort of creating new conversational agents by artificially generating more data from existing examples, using paraphrase generation. Our proposed approach can kick-start a dialog system with little human effort, and brings its performance to a level satisfactory enough for allowing actual interactions with real end-users. We experimented with two neural paraphrasing approaches, namely Neural Machine Translation and a Transformer-based seq2seq model. We present the results obtained with two datasets in English and in French:~a crowd-sourced public intent classification dataset and our own corporate dialog system dataset. We show that our proposed approach increased the generalization capabilities of the intent classification model on both datasets, reducing the effort required to initialize a new dialog system and helping to deploy this technology at scale within an organization. 6 authors · Apr 5, 2022
- DELPHI: Data for Evaluating LLMs' Performance in Handling Controversial Issues Controversy is a reflection of our zeitgeist, and an important aspect to any discourse. The rise of large language models (LLMs) as conversational systems has increased public reliance on these systems for answers to their various questions. Consequently, it is crucial to systematically examine how these models respond to questions that pertaining to ongoing debates. However, few such datasets exist in providing human-annotated labels reflecting the contemporary discussions. To foster research in this area, we propose a novel construction of a controversial questions dataset, expanding upon the publicly released Quora Question Pairs Dataset. This dataset presents challenges concerning knowledge recency, safety, fairness, and bias. We evaluate different LLMs using a subset of this dataset, illuminating how they handle controversial issues and the stances they adopt. This research ultimately contributes to our understanding of LLMs' interaction with controversial issues, paving the way for improvements in their comprehension and handling of complex societal debates. 6 authors · Oct 27, 2023
1 NewsQA: A Machine Comprehension Dataset We present NewsQA, a challenging machine comprehension dataset of over 100,000 human-generated question-answer pairs. Crowdworkers supply questions and answers based on a set of over 10,000 news articles from CNN, with answers consisting of spans of text from the corresponding articles. We collect this dataset through a four-stage process designed to solicit exploratory questions that require reasoning. A thorough analysis confirms that NewsQA demands abilities beyond simple word matching and recognizing textual entailment. We measure human performance on the dataset and compare it to several strong neural models. The performance gap between humans and machines (0.198 in F1) indicates that significant progress can be made on NewsQA through future research. The dataset is freely available at https://datasets.maluuba.com/NewsQA. 7 authors · Nov 29, 2016
1 Zero- and Few-Shot Prompting with LLMs: A Comparative Study with Fine-tuned Models for Bangla Sentiment Analysis The rapid expansion of the digital world has propelled sentiment analysis into a critical tool across diverse sectors such as marketing, politics, customer service, and healthcare. While there have been significant advancements in sentiment analysis for widely spoken languages, low-resource languages, such as Bangla, remain largely under-researched due to resource constraints. Furthermore, the recent unprecedented performance of Large Language Models (LLMs) in various applications highlights the need to evaluate them in the context of low-resource languages. In this study, we present a sizeable manually annotated dataset encompassing 33,605 Bangla news tweets and Facebook comments. We also investigate zero- and few-shot in-context learning with several language models, including Flan-T5, GPT-4, and Bloomz, offering a comparative analysis against fine-tuned models. Our findings suggest that monolingual transformer-based models consistently outperform other models, even in zero and few-shot scenarios. To foster continued exploration, we intend to make this dataset and our research tools publicly available to the broader research community. In the spirit of further research, we plan to make this dataset and our experimental resources publicly accessible to the wider research community. 7 authors · Aug 21, 2023
1 Efficient Deployment of Conversational Natural Language Interfaces over Databases Many users communicate with chatbots and AI assistants in order to help them with various tasks. A key component of the assistant is the ability to understand and answer a user's natural language questions for question-answering (QA). Because data can be usually stored in a structured manner, an essential step involves turning a natural language question into its corresponding query language. However, in order to train most natural language-to-query-language state-of-the-art models, a large amount of training data is needed first. In most domains, this data is not available and collecting such datasets for various domains can be tedious and time-consuming. In this work, we propose a novel method for accelerating the training dataset collection for developing the natural language-to-query-language machine learning models. Our system allows one to generate conversational multi-term data, where multiple turns define a dialogue session, enabling one to better utilize chatbot interfaces. We train two current state-of-the-art NL-to-QL models, on both an SQL and SPARQL-based datasets in order to showcase the adaptability and efficacy of our created data. 5 authors · May 31, 2020
3 SQuAD: 100,000+ Questions for Machine Comprehension of Text We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com 4 authors · Jun 16, 2016 1
- MFAQ: a Multilingual FAQ Dataset In this paper, we present the first multilingual FAQ dataset publicly available. We collected around 6M FAQ pairs from the web, in 21 different languages. Although this is significantly larger than existing FAQ retrieval datasets, it comes with its own challenges: duplication of content and uneven distribution of topics. We adopt a similar setup as Dense Passage Retrieval (DPR) and test various bi-encoders on this dataset. Our experiments reveal that a multilingual model based on XLM-RoBERTa achieves the best results, except for English. Lower resources languages seem to learn from one another as a multilingual model achieves a higher MRR than language-specific ones. Our qualitative analysis reveals the brittleness of the model on simple word changes. We publicly release our dataset, model and training script. 4 authors · Sep 27, 2021
- Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations Building socialbots that can have deep, engaging open-domain conversations with humans is one of the grand challenges of artificial intelligence (AI). To this end, bots need to be able to leverage world knowledge spanning several domains effectively when conversing with humans who have their own world knowledge. Existing knowledge-grounded conversation datasets are primarily stylized with explicit roles for conversation partners. These datasets also do not explore depth or breadth of topical coverage with transitions in conversations. We introduce Topical-Chat, a knowledge-grounded human-human conversation dataset where the underlying knowledge spans 8 broad topics and conversation partners don't have explicitly defined roles, to help further research in open-domain conversational AI. We also train several state-of-the-art encoder-decoder conversational models on Topical-Chat and perform automated and human evaluation for benchmarking. 8 authors · Aug 23, 2023
- VANiLLa : Verbalized Answers in Natural Language at Large Scale In the last years, there have been significant developments in the area of Question Answering over Knowledge Graphs (KGQA). Despite all the notable advancements, current KGQA datasets only provide the answers as the direct output result of the formal query, rather than full sentences incorporating question context. For achieving coherent answers sentence with the question's vocabulary, template-based verbalization so are usually employed for a better representation of answers, which in turn require extensive expert intervention. Thus, making way for machine learning approaches; however, there is a scarcity of datasets that empower machine learning models in this area. Hence, we provide the VANiLLa dataset which aims at reducing this gap by offering answers in natural language sentences. The answer sentences in this dataset are syntactically and semantically closer to the question than to the triple fact. Our dataset consists of over 100k simple questions adapted from the CSQA and SimpleQuestionsWikidata datasets and generated using a semi-automatic framework. We also present results of training our dataset on multiple baseline models adapted from current state-of-the-art Natural Language Generation (NLG) architectures. We believe that this dataset will allow researchers to focus on finding suitable methodologies and architectures for answer verbalization. 4 authors · May 24, 2021
- Recent Advances in Deep Learning Based Dialogue Systems: A Systematic Survey Dialogue systems are a popular natural language processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning based due to the outstanding performance. In this survey, we mainly focus on the deep learning based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present for deep learning based dialogue systems, extensively covering the popular techniques. We speculate that this work is a good starting point for academics who are new to the dialogue systems or those who want to quickly grasp up-to-date techniques in this area. 5 authors · May 10, 2021
- NLU++: A Multi-Label, Slot-Rich, Generalisable Dataset for Natural Language Understanding in Task-Oriented Dialogue We present NLU++, a novel dataset for natural language understanding (NLU) in task-oriented dialogue (ToD) systems, with the aim to provide a much more challenging evaluation environment for dialogue NLU models, up to date with the current application and industry requirements. NLU++ is divided into two domains (BANKING and HOTELS) and brings several crucial improvements over current commonly used NLU datasets. 1) NLU++ provides fine-grained domain ontologies with a large set of challenging multi-intent sentences, introducing and validating the idea of intent modules that can be combined into complex intents that convey complex user goals, combined with finer-grained and thus more challenging slot sets. 2) The ontology is divided into domain-specific and generic (i.e., domain-universal) intent modules that overlap across domains, promoting cross-domain reusability of annotated examples. 3) The dataset design has been inspired by the problems observed in industrial ToD systems, and 4) it has been collected, filtered and carefully annotated by dialogue NLU experts, yielding high-quality annotated data. Finally, we benchmark a series of current state-of-the-art NLU models on NLU++; the results demonstrate the challenging nature of the dataset, especially in low-data regimes, the validity of `intent modularisation', and call for further research on ToD NLU. 4 authors · Apr 27, 2022
1 BlendX: Complex Multi-Intent Detection with Blended Patterns Task-oriented dialogue (TOD) systems are commonly designed with the presumption that each utterance represents a single intent. However, this assumption may not accurately reflect real-world situations, where users frequently express multiple intents within a single utterance. While there is an emerging interest in multi-intent detection (MID), existing in-domain datasets such as MixATIS and MixSNIPS have limitations in their formulation. To address these issues, we present BlendX, a suite of refined datasets featuring more diverse patterns than their predecessors, elevating both its complexity and diversity. For dataset construction, we utilize both rule-based heuristics as well as a generative tool -- OpenAI's ChatGPT -- which is augmented with a similarity-driven strategy for utterance selection. To ensure the quality of the proposed datasets, we also introduce three novel metrics that assess the statistical properties of an utterance related to word count, conjunction use, and pronoun usage. Extensive experiments on BlendX reveal that state-of-the-art MID models struggle with the challenges posed by the new datasets, highlighting the need to reexamine the current state of the MID field. The dataset is available at https://github.com/HYU-NLP/BlendX. 5 authors · Mar 27, 2024
- A Collection of Question Answering Datasets for Norwegian This paper introduces a new suite of question answering datasets for Norwegian; NorOpenBookQA, NorCommonSenseQA, NorTruthfulQA, and NRK-Quiz-QA. The data covers a wide range of skills and knowledge domains, including world knowledge, commonsense reasoning, truthfulness, and knowledge about Norway. Covering both of the written standards of Norwegian - Bokm{\aa}l and Nynorsk - our datasets comprise over 10k question-answer pairs, created by native speakers. We detail our dataset creation approach and present the results of evaluating 11 language models (LMs) in zero- and few-shot regimes. Most LMs perform better in Bokm{\aa}l than Nynorsk, struggle most with commonsense reasoning, and are often untruthful in generating answers to questions. All our datasets and annotation materials are publicly available. 5 authors · Jan 19