new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using Differential Analysis

Static analysis tools are widely used for vulnerability detection as they understand programs with complex behavior and millions of lines of code. Despite their popularity, static analysis tools are known to generate an excess of false positives. The recent ability of Machine Learning models to understand programming languages opens new possibilities when applied to static analysis. However, existing datasets to train models for vulnerability identification suffer from multiple limitations such as limited bug context, limited size, and synthetic and unrealistic source code. We propose D2A, a differential analysis based approach to label issues reported by static analysis tools. The D2A dataset is built by analyzing version pairs from multiple open source projects. From each project, we select bug fixing commits and we run static analysis on the versions before and after such commits. If some issues detected in a before-commit version disappear in the corresponding after-commit version, they are very likely to be real bugs that got fixed by the commit. We use D2A to generate a large labeled dataset to train models for vulnerability identification. We show that the dataset can be used to build a classifier to identify possible false alarms among the issues reported by static analysis, hence helping developers prioritize and investigate potential true positives first.

  • 9 authors
·
Feb 16, 2021

Pluggable Pruning with Contiguous Layer Distillation for Diffusion Transformers

Diffusion Transformers (DiTs) have shown exceptional performance in image generation, yet their large parameter counts incur high computational costs, impeding deployment in resource-constrained settings. To address this, we propose Pluggable Pruning with Contiguous Layer Distillation (PPCL), a flexible structured pruning framework specifically designed for DiT architectures. First, we identify redundant layer intervals through a linear probing mechanism combined with the first-order differential trend analysis of similarity metrics. Subsequently, we propose a plug-and-play teacher-student alternating distillation scheme tailored to integrate depth-wise and width-wise pruning within a single training phase. This distillation framework enables flexible knowledge transfer across diverse pruning ratios, eliminating the need for per-configuration retraining. Extensive experiments on multiple Multi-Modal Diffusion Transformer architecture models demonstrate that PPCL achieves a 50\% reduction in parameter count compared to the full model, with less than 3\% degradation in key objective metrics. Notably, our method maintains high-quality image generation capabilities while achieving higher compression ratios, rendering it well-suited for resource-constrained environments. The open-source code, checkpoints for PPCL can be found at the following link: https://github.com/OPPO-Mente-Lab/Qwen-Image-Pruning.

  • 6 authors
·
Nov 20, 2025

ClaraVid: A Holistic Scene Reconstruction Benchmark From Aerial Perspective With Delentropy-Based Complexity Profiling

The development of aerial holistic scene understanding algorithms is hindered by the scarcity of comprehensive datasets that enable both semantic and geometric reconstruction. While synthetic datasets offer an alternative, existing options exhibit task-specific limitations, unrealistic scene compositions, and rendering artifacts that compromise real-world applicability. We introduce ClaraVid, a synthetic aerial dataset specifically designed to overcome these limitations. Comprising 16,917 high-resolution images captured at 4032x3024 from multiple viewpoints across diverse landscapes, ClaraVid provides dense depth maps, panoptic segmentation, sparse point clouds, and dynamic object masks, while mitigating common rendering artifacts. To further advance neural reconstruction, we introduce the Delentropic Scene Profile (DSP), a novel complexity metric derived from differential entropy analysis, designed to quantitatively assess scene difficulty and inform reconstruction tasks. Utilizing DSP, we systematically benchmark neural reconstruction methods, uncovering a consistent, measurable correlation between scene complexity and reconstruction accuracy. Empirical results indicate that higher delentropy strongly correlates with increased reconstruction errors, validating DSP as a reliable complexity prior. Currently under review, upon acceptance the data and code will be available at https://rdbch.github.io/claravid{rdbch.github.io/ClaraVid}.

  • 2 authors
·
Mar 22, 2025

MACPruning: Dynamic Operation Pruning to Mitigate Side-Channel DNN Model Extraction

As deep learning gains popularity, edge IoT devices have seen proliferating deployment of pre-trained Deep Neural Network (DNN) models. These DNNs represent valuable intellectual property and face significant confidentiality threats from side-channel analysis (SCA), particularly non-invasive Differential Electromagnetic (EM) Analysis (DEMA), which retrieves individual model parameters from EM traces collected during model inference. Traditional SCA mitigation methods, such as masking and shuffling, can still be applied to DNN inference, but will incur significant performance degradation due to the large volume of operations and parameters. Based on the insight that DNN models have high redundancy and are robust to input variation, we introduce MACPruning, a novel lightweight defense against DEMA-based parameter extraction attacks, exploiting specific characteristics of DNN execution. The design principle of MACPruning is to randomly deactivate input pixels and prune the operations (typically multiply-accumulate-MAC) on those pixels. The technique removes certain leakages and overall redistributes weight-dependent EM leakages temporally, and thus effectively mitigates DEMA. To maintain DNN performance, we propose an importance-aware pixel map that preserves critical input pixels, keeping randomness in the defense while minimizing its impact on DNN performance due to operation pruning. We conduct a comprehensive security analysis of MACPruning on various datasets for DNNs on edge devices. Our evaluations demonstrate that MACPruning effectively reduces EM leakages with minimal impact on the model accuracy and negligible computational overhead.

  • 5 authors
·
Feb 20, 2025

Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model

In this paper, we revisit the problem of sparse linear regression in the local differential privacy (LDP) model. Existing research in the non-interactive and sequentially local models has focused on obtaining the lower bounds for the case where the underlying parameter is 1-sparse, and extending such bounds to the more general k-sparse case has proven to be challenging. Moreover, it is unclear whether efficient non-interactive LDP (NLDP) algorithms exist. To address these issues, we first consider the problem in the epsilon non-interactive LDP model and provide a lower bound of Omega(sqrt{dklog d}{nepsilon}) on the ell_2-norm estimation error for sub-Gaussian data, where n is the sample size and d is the dimension of the space. We propose an innovative NLDP algorithm, the very first of its kind for the problem. As a remarkable outcome, this algorithm also yields a novel and highly efficient estimator as a valuable by-product. Our algorithm achieves an upper bound of O({dsqrt{k}{nepsilon}}) for the estimation error when the data is sub-Gaussian, which can be further improved by a factor of O(d) if the server has additional public but unlabeled data. For the sequentially interactive LDP model, we show a similar lower bound of Omega({sqrt{dk}{nepsilon}}). As for the upper bound, we rectify a previous method and show that it is possible to achieve a bound of O(ksqrt{d}{nepsilon}). Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.

  • 5 authors
·
Oct 11, 2023

Accelerating COVID-19 Differential Diagnosis with Explainable Ultrasound Image Analysis

Controlling the COVID-19 pandemic largely hinges upon the existence of fast, safe, and highly-available diagnostic tools. Ultrasound, in contrast to CT or X-Ray, has many practical advantages and can serve as a globally-applicable first-line examination technique. We provide the largest publicly available lung ultrasound (US) dataset for COVID-19 consisting of 106 videos from three classes (COVID-19, bacterial pneumonia, and healthy controls); curated and approved by medical experts. On this dataset, we perform an in-depth study of the value of deep learning methods for differential diagnosis of COVID-19. We propose a frame-based convolutional neural network that correctly classifies COVID-19 US videos with a sensitivity of 0.98+-0.04 and a specificity of 0.91+-08 (frame-based sensitivity 0.93+-0.05, specificity 0.87+-0.07). We further employ class activation maps for the spatio-temporal localization of pulmonary biomarkers, which we subsequently validate for human-in-the-loop scenarios in a blindfolded study with medical experts. Aiming for scalability and robustness, we perform ablation studies comparing mobile-friendly, frame- and video-based architectures and show reliability of the best model by aleatoric and epistemic uncertainty estimates. We hope to pave the road for a community effort toward an accessible, efficient and interpretable screening method and we have started to work on a clinical validation of the proposed method. Data and code are publicly available.

  • 6 authors
·
Sep 13, 2020

A Parallel Region-Adaptive Differential Privacy Framework for Image Pixelization

The widespread deployment of high-resolution visual sensing systems, coupled with the rise of foundation models, has amplified privacy risks in video-based applications. Differentially private pixelization offers mathematically guaranteed protection for visual data through grid-based noise addition, but challenges remain in preserving task-relevant fidelity, achieving scalability, and enabling efficient real-time deployment. To address this, we propose a novel parallel, region-adaptive pixelization framework that combines the theoretical rigor of differential privacy with practical efficiency. Our method adaptively adjusts grid sizes and noise scales based on regional complexity, leveraging GPU parallelism to achieve significant runtime acceleration compared to the classical baseline. A lightweight storage scheme is introduced by retaining only essential noisy statistics, significantly reducing space overhead. Formal privacy analysis is provided under the Laplace mechanism and parallel composition theorem. Extensive experiments on the PETS, Venice-2, and PPM-100 datasets demonstrate favorable privacy-utility trade-offs and significant runtime/storage reductions. A face re-identification attack experiment on CelebA further confirms the method's effectiveness in preventing identity inference. This validates its suitability for real-time privacy-critical applications such as elderly care, smart home monitoring, driver behavior analysis, and crowd behavior monitoring.

  • 1 authors
·
Nov 6, 2025

Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations

Generating graph-structured data requires learning the underlying distribution of graphs. Yet, this is a challenging problem, and the previous graph generative methods either fail to capture the permutation-invariance property of graphs or cannot sufficiently model the complex dependency between nodes and edges, which is crucial for generating real-world graphs such as molecules. To overcome such limitations, we propose a novel score-based generative model for graphs with a continuous-time framework. Specifically, we propose a new graph diffusion process that models the joint distribution of the nodes and edges through a system of stochastic differential equations (SDEs). Then, we derive novel score matching objectives tailored for the proposed diffusion process to estimate the gradient of the joint log-density with respect to each component, and introduce a new solver for the system of SDEs to efficiently sample from the reverse diffusion process. We validate our graph generation method on diverse datasets, on which it either achieves significantly superior or competitive performance to the baselines. Further analysis shows that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule, demonstrating the effectiveness of the system of SDEs in modeling the node-edge relationships. Our code is available at https://github.com/harryjo97/GDSS.

  • 3 authors
·
Feb 5, 2022

Opening the Blackbox: Accelerating Neural Differential Equations by Regularizing Internal Solver Heuristics

Democratization of machine learning requires architectures that automatically adapt to new problems. Neural Differential Equations (NDEs) have emerged as a popular modeling framework by removing the need for ML practitioners to choose the number of layers in a recurrent model. While we can control the computational cost by choosing the number of layers in standard architectures, in NDEs the number of neural network evaluations for a forward pass can depend on the number of steps of the adaptive ODE solver. But, can we force the NDE to learn the version with the least steps while not increasing the training cost? Current strategies to overcome slow prediction require high order automatic differentiation, leading to significantly higher training time. We describe a novel regularization method that uses the internal cost heuristics of adaptive differential equation solvers combined with discrete adjoint sensitivities to guide the training process towards learning NDEs that are easier to solve. This approach opens up the blackbox numerical analysis behind the differential equation solver's algorithm and directly uses its local error estimates and stiffness heuristics as cheap and accurate cost estimates. We incorporate our method without any change in the underlying NDE framework and show that our method extends beyond Ordinary Differential Equations to accommodate Neural Stochastic Differential Equations. We demonstrate how our approach can halve the prediction time and, unlike other methods which can increase the training time by an order of magnitude, we demonstrate similar reduction in training times. Together this showcases how the knowledge embedded within state-of-the-art equation solvers can be used to enhance machine learning.

  • 4 authors
·
May 9, 2021

DIFF2: Differential Private Optimization via Gradient Differences for Nonconvex Distributed Learning

Differential private optimization for nonconvex smooth objective is considered. In the previous work, the best known utility bound is widetilde O(d/(nvarepsilon_DP)) in terms of the squared full gradient norm, which is achieved by Differential Private Gradient Descent (DP-GD) as an instance, where n is the sample size, d is the problem dimensionality and varepsilon_DP is the differential privacy parameter. To improve the best known utility bound, we propose a new differential private optimization framework called DIFF2 (DIFFerential private optimization via gradient DIFFerences) that constructs a differential private global gradient estimator with possibly quite small variance based on communicated gradient differences rather than gradients themselves. It is shown that DIFF2 with a gradient descent subroutine achieves the utility of widetilde O(d^{2/3}/(nvarepsilon_DP)^{4/3}), which can be significantly better than the previous one in terms of the dependence on the sample size n. To the best of our knowledge, this is the first fundamental result to improve the standard utility widetilde O(d/(nvarepsilon_DP)) for nonconvex objectives. Additionally, a more computational and communication efficient subroutine is combined with DIFF2 and its theoretical analysis is also given. Numerical experiments are conducted to validate the superiority of DIFF2 framework.

  • 2 authors
·
Feb 8, 2023

Diffusion Models for Medical Image Analysis: A Comprehensive Survey

Denoising diffusion models, a class of generative models, have garnered immense interest lately in various deep-learning problems. A diffusion probabilistic model defines a forward diffusion stage where the input data is gradually perturbed over several steps by adding Gaussian noise and then learns to reverse the diffusion process to retrieve the desired noise-free data from noisy data samples. Diffusion models are widely appreciated for their strong mode coverage and quality of the generated samples despite their known computational burdens. Capitalizing on the advances in computer vision, the field of medical imaging has also observed a growing interest in diffusion models. To help the researcher navigate this profusion, this survey intends to provide a comprehensive overview of diffusion models in the discipline of medical image analysis. Specifically, we introduce the solid theoretical foundation and fundamental concepts behind diffusion models and the three generic diffusion modelling frameworks: diffusion probabilistic models, noise-conditioned score networks, and stochastic differential equations. Then, we provide a systematic taxonomy of diffusion models in the medical domain and propose a multi-perspective categorization based on their application, imaging modality, organ of interest, and algorithms. To this end, we cover extensive applications of diffusion models in the medical domain. Furthermore, we emphasize the practical use case of some selected approaches, and then we discuss the limitations of the diffusion models in the medical domain and propose several directions to fulfill the demands of this field. Finally, we gather the overviewed studies with their available open-source implementations at https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging.

  • 7 authors
·
Nov 14, 2022

On Neural Differential Equations

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

  • 1 authors
·
Feb 4, 2022

Medical Reasoning in LLMs: An In-Depth Analysis of DeepSeek R1

Integrating large language models (LLMs) like DeepSeek R1 into healthcare requires rigorous evaluation of their reasoning alignment with clinical expertise. This study assesses DeepSeek R1's medical reasoning against expert patterns using 100 MedQA clinical cases. The model achieved 93% diagnostic accuracy, demonstrating systematic clinical judgment through differential diagnosis, guideline-based treatment selection, and integration of patient-specific factors. However, error analysis of seven incorrect cases revealed persistent limitations: anchoring bias, challenges reconciling conflicting data, insufficient exploration of alternatives, overthinking, knowledge gaps, and premature prioritization of definitive treatment over intermediate care. Crucially, reasoning length correlated with accuracy - shorter responses (<5,000 characters) were more reliable, suggesting extended explanations may signal uncertainty or rationalization of errors. While DeepSeek R1 exhibits foundational clinical reasoning capabilities, recurring flaws highlight critical areas for refinement, including bias mitigation, knowledge updates, and structured reasoning frameworks. These findings underscore LLMs' potential to augment medical decision-making through artificial reasoning but emphasize the need for domain-specific validation, interpretability safeguards, and confidence metrics (e.g., response length thresholds) to ensure reliability in real-world applications.

  • 3 authors
·
Mar 27, 2025

Federated Spectral Graph Transformers Meet Neural Ordinary Differential Equations for Non-IID Graphs

Graph Neural Network (GNN) research is rapidly advancing due to GNNs' capacity to learn distributed representations from graph-structured data. However, centralizing large volumes of real-world graph data for GNN training is often impractical due to privacy concerns, regulatory restrictions, and commercial competition. Federated learning (FL), a distributed learning paradigm, offers a solution by preserving data privacy with collaborative model training. Despite progress in training huge vision and language models, federated learning for GNNs remains underexplored. To address this challenge, we present a novel method for federated learning on GNNs based on spectral GNNs equipped with neural ordinary differential equations (ODE) for better information capture, showing promising results across both homophilic and heterophilic graphs. Our approach effectively handles non-Independent and Identically Distributed (non-IID) data, while also achieving performance comparable to existing methods that only operate on IID data. It is designed to be privacy-preserving and bandwidth-optimized, making it suitable for real-world applications such as social network analysis, recommendation systems, and fraud detection, which often involve complex, non-IID, and heterophilic graph structures. Our results in the area of federated learning on non-IID heterophilic graphs demonstrate significant improvements, while also achieving better performance on homophilic graphs. This work highlights the potential of federated learning in diverse and challenging graph settings. Open-source code available on GitHub (https://github.com/SpringWiz11/Fed-GNODEFormer).

  • 3 authors
·
Apr 16, 2025

SineNet: Learning Temporal Dynamics in Time-Dependent Partial Differential Equations

We consider using deep neural networks to solve time-dependent partial differential equations (PDEs), where multi-scale processing is crucial for modeling complex, time-evolving dynamics. While the U-Net architecture with skip connections is commonly used by prior studies to enable multi-scale processing, our analysis shows that the need for features to evolve across layers results in temporally misaligned features in skip connections, which limits the model's performance. To address this limitation, we propose SineNet, consisting of multiple sequentially connected U-shaped network blocks, referred to as waves. In SineNet, high-resolution features are evolved progressively through multiple stages, thereby reducing the amount of misalignment within each stage. We furthermore analyze the role of skip connections in enabling both parallel and sequential processing of multi-scale information. Our method is rigorously tested on multiple PDE datasets, including the Navier-Stokes equations and shallow water equations, showcasing the advantages of our proposed approach over conventional U-Nets with a comparable parameter budget. We further demonstrate that increasing the number of waves in SineNet while maintaining the same number of parameters leads to a monotonically improved performance. The results highlight the effectiveness of SineNet and the potential of our approach in advancing the state-of-the-art in neural PDE solver design. Our code is available as part of AIRS (https://github.com/divelab/AIRS).

  • 7 authors
·
Mar 28, 2024

Multi-Layer Deep xVA: Structural Credit Models, Measure Changes and Convergence Analysis

We propose a structural default model for portfolio-wide valuation adjustments (xVAs) and represent it as a system of coupled backward stochastic differential equations. The framework is divided into four layers, each capturing a key component: (i) clean values, (ii) initial margin and Collateral Valuation Adjustment (ColVA), (iii) Credit/Debit Valuation Adjustments (CVA/DVA) together with Margin Valuation Adjustment (MVA), and (iv) Funding Valuation Adjustment (FVA). Because these layers depend on one another through collateral and default effects, a naive Monte Carlo approach would require deeply nested simulations, making the problem computationally intractable. To address this challenge, we use an iterative deep BSDE approach, handling each layer sequentially so that earlier outputs serve as inputs to the subsequent layers. Initial margin is computed via deep quantile regression to reflect margin requirements over the Margin Period of Risk. We also adopt a change-of-measure method that highlights rare but significant defaults of the bank or counterparty, ensuring that these events are accurately captured in the training process. We further extend Han and Long's (2020) a posteriori error analysis to BSDEs on bounded domains. Due to the random exit from the domain, we obtain an order of convergence of O(h^{1/4-epsilon}) rather than the usual O(h^{1/2}). Numerical experiments illustrate that this method drastically reduces computational demands and successfully scales to high-dimensional, non-symmetric portfolios. The results confirm its effectiveness and accuracy, offering a practical alternative to nested Monte Carlo simulations in multi-counterparty xVA analyses.

  • 2 authors
·
Feb 20, 2025

A Multimodal Vision Foundation Model for Clinical Dermatology

Diagnosing and treating skin diseases require advanced visual skills across domains and the ability to synthesize information from multiple imaging modalities. While current deep learning models excel at specific tasks like skin cancer diagnosis from dermoscopic images, they struggle to meet the complex, multimodal requirements of clinical practice. Here, we introduce PanDerm, a multimodal dermatology foundation model pretrained through self-supervised learning on over 2 million real-world skin disease images from 11 clinical institutions across 4 imaging modalities. We evaluated PanDerm on 28 diverse benchmarks, including skin cancer screening, risk stratification, differential diagnosis of common and rare skin conditions, lesion segmentation, longitudinal monitoring, and metastasis prediction and prognosis. PanDerm achieved state-of-the-art performance across all evaluated tasks, often outperforming existing models when using only 10% of labeled data. We conducted three reader studies to assess PanDerm's potential clinical utility. PanDerm outperformed clinicians by 10.2% in early-stage melanoma detection through longitudinal analysis, improved clinicians' skin cancer diagnostic accuracy by 11% on dermoscopy images, and enhanced non-dermatologist healthcare providers' differential diagnosis by 16.5% across 128 skin conditions on clinical photographs. These results demonstrate PanDerm's potential to improve patient care across diverse clinical scenarios and serve as a model for developing multimodal foundation models in other medical specialties, potentially accelerating the integration of AI support in healthcare. The code can be found at https://github.com/SiyuanYan1/PanDerm.

  • 25 authors
·
Oct 19, 2024

ReXVQA: A Large-scale Visual Question Answering Benchmark for Generalist Chest X-ray Understanding

We present ReXVQA, the largest and most comprehensive benchmark for visual question answering (VQA) in chest radiology, comprising approximately 696,000 questions paired with 160,000 chest X-rays studies across training, validation, and test sets. Unlike prior efforts that rely heavily on template based queries, ReXVQA introduces a diverse and clinically authentic task suite reflecting five core radiological reasoning skills: presence assessment, location analysis, negation detection, differential diagnosis, and geometric reasoning. We evaluate eight state-of-the-art multimodal large language models, including MedGemma-4B-it, Qwen2.5-VL, Janus-Pro-7B, and Eagle2-9B. The best-performing model (MedGemma) achieves 83.24% overall accuracy. To bridge the gap between AI performance and clinical expertise, we conducted a comprehensive human reader study involving 3 radiology residents on 200 randomly sampled cases. Our evaluation demonstrates that MedGemma achieved superior performance (83.84% accuracy) compared to human readers (best radiology resident: 77.27%), representing a significant milestone where AI performance exceeds expert human evaluation on chest X-ray interpretation. The reader study reveals distinct performance patterns between AI models and human experts, with strong inter-reader agreement among radiologists while showing more variable agreement patterns between human readers and AI models. ReXVQA establishes a new standard for evaluating generalist radiological AI systems, offering public leaderboards, fine-grained evaluation splits, structured explanations, and category-level breakdowns. This benchmark lays the foundation for next-generation AI systems capable of mimicking expert-level clinical reasoning beyond narrow pathology classification. Our dataset will be open-sourced at https://huggingface.co/datasets/rajpurkarlab/ReXVQA

  • 8 authors
·
Jun 4, 2025

Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function

Modern machine learning algorithms, especially deep learning based techniques, typically involve careful hyperparameter tuning to achieve the best performance. Despite the surge of intense interest in practical techniques like Bayesian optimization and random search based approaches to automating this laborious and compute intensive task, the fundamental learning theoretic complexity of tuning hyperparameters for deep neural networks is poorly understood. Inspired by this glaring gap, we initiate the formal study of hyperparameter tuning complexity in deep learning through a recently introduced data driven setting. We assume that we have a series of deep learning tasks, and we have to tune hyperparameters to do well on average over the distribution of tasks. A major difficulty is that the utility function as a function of the hyperparameter is very volatile and furthermore, it is given implicitly by an optimization problem over the model parameters. To tackle this challenge, we introduce a new technique to characterize the discontinuities and oscillations of the utility function on any fixed problem instance as we vary the hyperparameter; our analysis relies on subtle concepts including tools from differential/algebraic geometry and constrained optimization. This can be used to show that the learning theoretic complexity of the corresponding family of utility functions is bounded. We instantiate our results and provide sample complexity bounds for concrete applications tuning a hyperparameter that interpolates neural activation functions and setting the kernel parameter in graph neural networks.

  • 3 authors
·
Jan 23, 2025