Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGraphix-T5: Mixing Pre-Trained Transformers with Graph-Aware Layers for Text-to-SQL Parsing
The task of text-to-SQL parsing, which aims at converting natural language questions into executable SQL queries, has garnered increasing attention in recent years, as it can assist end users in efficiently extracting vital information from databases without the need for technical background. One of the major challenges in text-to-SQL parsing is domain generalization, i.e., how to generalize well to unseen databases. Recently, the pre-trained text-to-text transformer model, namely T5, though not specialized for text-to-SQL parsing, has achieved state-of-the-art performance on standard benchmarks targeting domain generalization. In this work, we explore ways to further augment the pre-trained T5 model with specialized components for text-to-SQL parsing. Such components are expected to introduce structural inductive bias into text-to-SQL parsers thus improving model's capacity on (potentially multi-hop) reasoning, which is critical for generating structure-rich SQLs. To this end, we propose a new architecture GRAPHIX-T5, a mixed model with the standard pre-trained transformer model augmented by some specially-designed graph-aware layers. Extensive experiments and analysis demonstrate the effectiveness of GRAPHIX-T5 across four text-to-SQL benchmarks: SPIDER, SYN, REALISTIC and DK. GRAPHIX-T5 surpass all other T5-based parsers with a significant margin, achieving new state-of-the-art performance. Notably, GRAPHIX-T5-large reach performance superior to the original T5-large by 5.7% on exact match (EM) accuracy and 6.6% on execution accuracy (EX). This even outperforms the T5-3B by 1.2% on EM and 1.5% on EX.
Motion-Aware Concept Alignment for Consistent Video Editing
We introduce MoCA-Video (Motion-Aware Concept Alignment in Video), a training-free framework bridging the gap between image-domain semantic mixing and video. Given a generated video and a user-provided reference image, MoCA-Video injects the semantic features of the reference image into a specific object within the video, while preserving the original motion and visual context. Our approach leverages a diagonal denoising schedule and class-agnostic segmentation to detect and track objects in the latent space and precisely control the spatial location of the blended objects. To ensure temporal coherence, we incorporate momentum-based semantic corrections and gamma residual noise stabilization for smooth frame transitions. We evaluate MoCA's performance using the standard SSIM, image-level LPIPS, temporal LPIPS, and introduce a novel metric CASS (Conceptual Alignment Shift Score) to evaluate the consistency and effectiveness of the visual shifts between the source prompt and the modified video frames. Using self-constructed dataset, MoCA-Video outperforms current baselines, achieving superior spatial consistency, coherent motion, and a significantly higher CASS score, despite having no training or fine-tuning. MoCA-Video demonstrates that structured manipulation in the diffusion noise trajectory allows for controllable, high-quality video synthesis.
MobileLLM-Pro Technical Report
Efficient on-device language models around 1 billion parameters are essential for powering low-latency AI applications on mobile and wearable devices. However, achieving strong performance in this model class, while supporting long context windows and practical deployment remains a significant challenge. We introduce MobileLLM-Pro, a 1-billion-parameter language model optimized for on-device deployment. MobileLLM-Pro achieves state-of-the-art results across 11 standard benchmarks, significantly outperforming both Gemma 3-1B and Llama 3.2-1B, while supporting context windows of up to 128,000 tokens and showing only minor performance regressions at 4-bit quantization. These improvements are enabled by four core innovations: (1) implicit positional distillation, a novel technique that effectively instills long-context capabilities through knowledge distillation; (2) a specialist model merging framework that fuses multiple domain experts into a compact model without parameter growth; (3) simulation-driven data mixing using utility estimation; and (4) 4-bit quantization-aware training with self-distillation. We release our model weights and code to support future research in efficient on-device language models.
SampleMix: A Sample-wise Pre-training Data Mixing Strategey by Coordinating Data Quality and Diversity
Existing pretraining data mixing methods for large language models (LLMs) typically follow a domain-wise methodology, a top-down process that first determines domain weights and then performs uniform data sampling across each domain. However, these approaches neglect significant inter-domain overlaps and commonalities, failing to control the global diversity of the constructed training dataset. Further, uniform sampling within domains ignores fine-grained sample-specific features, potentially leading to suboptimal data distribution. To address these shortcomings, we propose a novel sample-wise data mixture approach based on a bottom-up paradigm. This method performs global cross-domain sampling by systematically evaluating the quality and diversity of each sample, thereby dynamically determining the optimal domain distribution. Comprehensive experiments across multiple downstream tasks and perplexity assessments demonstrate that SampleMix surpasses existing domain-based methods. Meanwhile, SampleMix requires 1.4x to 2.1x training steps to achieves the baselines' performance, highlighting the substantial potential of SampleMix to optimize pre-training data.
R&B: Domain Regrouping and Data Mixture Balancing for Efficient Foundation Model Training
Data mixing strategies have successfully reduced the costs involved in training language models. While promising, such methods suffer from two flaws. First, they rely on predetermined data domains (e.g., data sources, task types), which may fail to capture critical semantic nuances, leaving performance on the table. Second, these methods scale with the number of domains in a computationally prohibitive way. We address these challenges via R&B, a framework that re-partitions training data based on semantic similarity (Regroup) to create finer-grained domains, and efficiently optimizes the data composition (Balance) by leveraging a Gram matrix induced by domain gradients obtained throughout training. Unlike prior works, it removes the need for additional compute to obtain evaluation information such as losses or gradients. We analyze this technique under standard regularity conditions and provide theoretical insights that justify R&B's effectiveness compared to non-adaptive mixing approaches. Empirically, we demonstrate the effectiveness of R&B on five diverse datasets ranging from natural language to reasoning and multimodal tasks. With as little as 0.01% additional compute overhead, R&B matches or exceeds the performance of state-of-the-art data mixing strategies.
Multi-Distillation from Speech and Music Representation Models
Real-world audio often mixes speech and music, yet models typically handle only one domain. This paper introduces a multi-teacher distillation framework that unifies speech and music models into a single one while significantly reducing model size. Our approach leverages the strengths of domain-specific teacher models, such as HuBERT for speech and MERT for music, and explores various strategies to balance both domains. Experiments across diverse tasks demonstrate that our model matches the performance of domain-specific models, showing the effectiveness of cross-domain distillation. Additionally, we conduct few-shot learning experiments, highlighting the need for general models in real-world scenarios where labeled data is limited. Our results show that our model not only performs on par with specialized models but also outperforms them in few-shot scenarios, proving that a cross-domain approach is essential and effective for diverse tasks with limited data.
Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance
Pretraining data of large language models composes multiple domains (e.g., web texts, academic papers, codes), whose mixture proportions crucially impact the competence of outcome models. While existing endeavors rely on heuristics or qualitative strategies to tune the proportions, we discover the quantitative predictability of model performance regarding the mixture proportions in function forms, which we refer to as the data mixing laws. Fitting such functions on sample mixtures unveils model performance on unseen mixtures before actual runs, thus guiding the selection of an ideal data mixture. Furthermore, we propose nested use of the scaling laws of training steps, model sizes, and our data mixing law to enable predicting the performance of large models trained on massive data under various mixtures with only small-scale training. Moreover, experimental results verify that our method effectively optimizes the training mixture of a 1B model trained for 100B tokens in RedPajama, reaching a performance comparable to the one trained for 48% more steps on the default mixture. Extending the application of data mixing laws to continual training accurately predicts the critical mixture proportion that avoids catastrophic forgetting and outlooks the potential for dynamic data schedules
Data Mixing Optimization for Supervised Fine-Tuning of Large Language Models
Optimizing data mixtures for supervised fine-tuning (SFT) of large language models (LLMs) is critical for developing general-purpose models, yet this area remains underexplored. In this paper, we frame data mixing as an optimization problem and introduce a novel method designed to minimize validation loss. Our approach parametrizes the loss by modeling effective data transferred and leveraging scaling laws for fine-tuning. By experimenting with various small-scale data mixtures, we fit these parameters and derive the optimal weights. We provide both mathematical proofs and empirical results demonstrating that our algorithm achieves excellent overall and individual performance across all domains. Through controlled experiments, we show that models trained with our optimized weights perform on par with those using optimal weights determined via grid search, with per-domain loss only 0.66% higher than the best domain loss from grid search on average. Additionally, we show that reweighting popular SFT datasets using our method improves both validation loss and downstream performance. Finally, we discuss how our method can generalize to guide data selection for domain-specific models and provide insights into SFT.
Organize the Web: Constructing Domains Enhances Pre-Training Data Curation
Modern language models are trained on large, unstructured datasets consisting of trillions of tokens and obtained by crawling the web. The unstructured nature makes it difficult to reason about their contents and develop systematic approaches to data curation. In this paper, we unpack monolithic web corpora by developing taxonomies of their contents and organizing them into domains. We introduce WebOrganizer, a framework for organizing web pages in terms of both their topic and format. Using these two complementary notions of domains, we automatically annotate pre-training data by distilling annotations from a large language model into efficient classifiers. This allows us to study how data from different domains should be mixed to improve models on downstream tasks, and we show that we can combine insights about effective topics and formats to further boost performance. We demonstrate that our domain mixing also improves existing methods that select data based on quality. Furthermore, we study and compare how quality-based methods will implicitly change the domain mixture. Overall, our work demonstrates that constructing and mixing domains provides a valuable complement to quality-based data curation methods, opening new avenues for effective and insightful pre-training data curation.
AutoMix: Unveiling the Power of Mixup for Stronger Classifiers
Data mixing augmentation have proved to be effective in improving the generalization ability of deep neural networks. While early methods mix samples by hand-crafted policies (e.g., linear interpolation), recent methods utilize saliency information to match the mixed samples and labels via complex offline optimization. However, there arises a trade-off between precise mixing policies and optimization complexity. To address this challenge, we propose a novel automatic mixup (AutoMix) framework, where the mixup policy is parameterized and serves the ultimate classification goal directly. Specifically, AutoMix reformulates the mixup classification into two sub-tasks (i.e., mixed sample generation and mixup classification) with corresponding sub-networks and solves them in a bi-level optimization framework. For the generation, a learnable lightweight mixup generator, Mix Block, is designed to generate mixed samples by modeling patch-wise relationships under the direct supervision of the corresponding mixed labels. To prevent the degradation and instability of bi-level optimization, we further introduce a momentum pipeline to train AutoMix in an end-to-end manner. Extensive experiments on nine image benchmarks prove the superiority of AutoMix compared with state-of-the-art in various classification scenarios and downstream tasks.
TiKMiX: Take Data Influence into Dynamic Mixture for Language Model Pre-training
The data mixture used in the pre-training of a language model is a cornerstone of its final performance. However, a static mixing strategy is suboptimal, as the model's learning preferences for various data domains shift dynamically throughout training. Crucially, observing these evolving preferences in a computationally efficient manner remains a significant challenge. To address this, we propose TiKMiX, a method that dynamically adjusts the data mixture according to the model's evolving preferences. TiKMiX introduces Group Influence, an efficient metric for evaluating the impact of data domains on the model. This metric enables the formulation of the data mixing problem as a search for an optimal, influence-maximizing distribution. We solve this via two approaches: TiKMiX-D for direct optimization, and TiKMiX-M, which uses a regression model to predict a superior mixture. We trained models with different numbers of parameters, on up to 1 trillion tokens. TiKMiX-D exceeds the performance of state-of-the-art methods like REGMIX while using just 20% of the computational resources. TiKMiX-M leads to an average performance gain of 2% across 9 downstream benchmarks. Our experiments reveal that a model's data preferences evolve with training progress and scale, and we demonstrate that dynamically adjusting the data mixture based on Group Influence, a direct measure of these preferences, significantly improves performance by mitigating the underdigestion of data seen with static ratios.
MagicMix: Semantic Mixing with Diffusion Models
Have you ever imagined what a corgi-alike coffee machine or a tiger-alike rabbit would look like? In this work, we attempt to answer these questions by exploring a new task called semantic mixing, aiming at blending two different semantics to create a new concept (e.g., corgi + coffee machine -- > corgi-alike coffee machine). Unlike style transfer, where an image is stylized according to the reference style without changing the image content, semantic blending mixes two different concepts in a semantic manner to synthesize a novel concept while preserving the spatial layout and geometry. To this end, we present MagicMix, a simple yet effective solution based on pre-trained text-conditioned diffusion models. Motivated by the progressive generation property of diffusion models where layout/shape emerges at early denoising steps while semantically meaningful details appear at later steps during the denoising process, our method first obtains a coarse layout (either by corrupting an image or denoising from a pure Gaussian noise given a text prompt), followed by injection of conditional prompt for semantic mixing. Our method does not require any spatial mask or re-training, yet is able to synthesize novel objects with high fidelity. To improve the mixing quality, we further devise two simple strategies to provide better control and flexibility over the synthesized content. With our method, we present our results over diverse downstream applications, including semantic style transfer, novel object synthesis, breed mixing, and concept removal, demonstrating the flexibility of our method. More results can be found on the project page https://magicmix.github.io
Sparse Mixers: Combining MoE and Mixing to build a more efficient BERT
We combine the capacity of sparsely gated Mixture-of-Experts (MoE) with the speed and stability of linear, mixing transformations to design the Sparse Mixer encoder model. Sparse Mixer slightly outperforms (<1%) BERT on GLUE and SuperGLUE, but more importantly trains 65% faster and runs inference 61% faster. We also present a faster variant, prosaically named Fast Sparse Mixer, that marginally underperforms BERT on SuperGLUE, but trains and runs nearly twice as fast. We justify the design of these two models by carefully ablating through various mixing mechanisms, MoE configurations and hyperparameters. Sparse Mixer overcomes many of the latency and stability concerns of MoE models and offers the prospect of serving sparse student models, without resorting to distilling them to dense variants.
MixMix: All You Need for Data-Free Compression Are Feature and Data Mixing
User data confidentiality protection is becoming a rising challenge in the present deep learning research. Without access to data, conventional data-driven model compression faces a higher risk of performance degradation. Recently, some works propose to generate images from a specific pretrained model to serve as training data. However, the inversion process only utilizes biased feature statistics stored in one model and is from low-dimension to high-dimension. As a consequence, it inevitably encounters the difficulties of generalizability and inexact inversion, which leads to unsatisfactory performance. To address these problems, we propose MixMix based on two simple yet effective techniques: (1) Feature Mixing: utilizes various models to construct a universal feature space for generalized inversion; (2) Data Mixing: mixes the synthesized images and labels to generate exact label information. We prove the effectiveness of MixMix from both theoretical and empirical perspectives. Extensive experiments show that MixMix outperforms existing methods on the mainstream compression tasks, including quantization, knowledge distillation, and pruning. Specifically, MixMix achieves up to 4% and 20% accuracy uplift on quantization and pruning, respectively, compared to existing data-free compression work.
Select, Label, and Mix: Learning Discriminative Invariant Feature Representations for Partial Domain Adaptation
Partial domain adaptation which assumes that the unknown target label space is a subset of the source label space has attracted much attention in computer vision. Despite recent progress, existing methods often suffer from three key problems: negative transfer, lack of discriminability, and domain invariance in the latent space. To alleviate the above issues, we develop a novel 'Select, Label, and Mix' (SLM) framework that aims to learn discriminative invariant feature representations for partial domain adaptation. First, we present an efficient "select" module that automatically filters out the outlier source samples to avoid negative transfer while aligning distributions across both domains. Second, the "label" module iteratively trains the classifier using both the labeled source domain data and the generated pseudo-labels for the target domain to enhance the discriminability of the latent space. Finally, the "mix" module utilizes domain mixup regularization jointly with the other two modules to explore more intrinsic structures across domains leading to a domain-invariant latent space for partial domain adaptation. Extensive experiments on several benchmark datasets for partial domain adaptation demonstrate the superiority of our proposed framework over state-of-the-art methods.
Mixture-of-Domain-Adapters: Decoupling and Injecting Domain Knowledge to Pre-trained Language Models Memories
Pre-trained language models (PLMs) demonstrate excellent abilities to understand texts in the generic domain while struggling in a specific domain. Although continued pre-training on a large domain-specific corpus is effective, it is costly to tune all the parameters on the domain. In this paper, we investigate whether we can adapt PLMs both effectively and efficiently by only tuning a few parameters. Specifically, we decouple the feed-forward networks (FFNs) of the Transformer architecture into two parts: the original pre-trained FFNs to maintain the old-domain knowledge and our novel domain-specific adapters to inject domain-specific knowledge in parallel. Then we adopt a mixture-of-adapters gate to fuse the knowledge from different domain adapters dynamically. Our proposed Mixture-of-Domain-Adapters (MixDA) employs a two-stage adapter-tuning strategy that leverages both unlabeled data and labeled data to help the domain adaptation: i) domain-specific adapter on unlabeled data; followed by ii) the task-specific adapter on labeled data. MixDA can be seamlessly plugged into the pretraining-finetuning paradigm and our experiments demonstrate that MixDA achieves superior performance on in-domain tasks (GLUE), out-of-domain tasks (ChemProt, RCT, IMDB, Amazon), and knowledge-intensive tasks (KILT). Further analyses demonstrate the reliability, scalability, and efficiency of our method. The code is available at https://github.com/Amano-Aki/Mixture-of-Domain-Adapters.
Towards Foundational Models for Dynamical System Reconstruction: Hierarchical Meta-Learning via Mixture of Experts
As foundational models reshape scientific discovery, a bottleneck persists in dynamical system reconstruction (DSR): the ability to learn across system hierarchies. Many meta-learning approaches have been applied successfully to single systems, but falter when confronted with sparse, loosely related datasets requiring multiple hierarchies to be learned. Mixture of Experts (MoE) offers a natural paradigm to address these challenges. Despite their potential, we demonstrate that naive MoEs are inadequate for the nuanced demands of hierarchical DSR, largely due to their gradient descent-based gating update mechanism which leads to slow updates and conflicted routing during training. To overcome this limitation, we introduce MixER: Mixture of Expert Reconstructors, a novel sparse top-1 MoE layer employing a custom gating update algorithm based on K-means and least squares. Extensive experiments validate MixER's capabilities, demonstrating efficient training and scalability to systems of up to ten parametric ordinary differential equations. However, our layer underperforms state-of-the-art meta-learners in high-data regimes, particularly when each expert is constrained to process only a fraction of a dataset composed of highly related data points. Further analysis with synthetic and neuroscientific time series suggests that the quality of the contextual representations generated by MixER is closely linked to the presence of hierarchical structure in the data.
EcomGPT-CT: Continual Pre-training of E-commerce Large Language Models with Semi-structured Data
Large Language Models (LLMs) pre-trained on massive corpora have exhibited remarkable performance on various NLP tasks. However, applying these models to specific domains still poses significant challenges, such as lack of domain knowledge, limited capacity to leverage domain knowledge and inadequate adaptation to domain-specific data formats. Considering the exorbitant cost of training LLMs from scratch and the scarcity of annotated data within particular domains, in this work, we focus on domain-specific continual pre-training of LLMs using E-commerce domain as an exemplar. Specifically, we explore the impact of continual pre-training on LLMs employing unlabeled general and E-commercial corpora. Furthermore, we design a mixing strategy among different data sources to better leverage E-commercial semi-structured data. We construct multiple tasks to assess LLMs' few-shot In-context Learning ability and their zero-shot performance after instruction tuning in E-commerce domain. Experimental results demonstrate the effectiveness of continual pre-training of E-commerce LLMs and the efficacy of our devised data mixing strategy.
Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup
Mixup is a highly successful technique to improve generalization of neural networks by augmenting the training data with combinations of random pairs. Selective mixup is a family of methods that apply mixup to specific pairs, e.g. only combining examples across classes or domains. These methods have claimed remarkable improvements on benchmarks with distribution shifts, but their mechanisms and limitations remain poorly understood. We examine an overlooked aspect of selective mixup that explains its success in a completely new light. We find that the non-random selection of pairs affects the training distribution and improve generalization by means completely unrelated to the mixing. For example in binary classification, mixup across classes implicitly resamples the data for a uniform class distribution - a classical solution to label shift. We show empirically that this implicit resampling explains much of the improvements in prior work. Theoretically, these results rely on a regression toward the mean, an accidental property that we identify in several datasets. We have found a new equivalence between two successful methods: selective mixup and resampling. We identify limits of the former, confirm the effectiveness of the latter, and find better combinations of their respective benefits.
Data Mixing Agent: Learning to Re-weight Domains for Continual Pre-training
Continual pre-training on small-scale task-specific data is an effective method for improving large language models in new target fields, yet it risks catastrophic forgetting of their original capabilities. A common solution is to re-weight training data mixtures from source and target fields on a domain space to achieve balanced performance. Previous domain reweighting strategies rely on manual designation with certain heuristics based on human intuition or empirical results. In this work, we prove that more general heuristics can be parameterized by proposing Data Mixing Agent, the first model-based, end-to-end framework that learns to re-weight domains. The agent learns generalizable heuristics through reinforcement learning on large quantities of data mixing trajectories with corresponding feedback from an evaluation environment. Experiments in continual pre-training on math reasoning show that Data Mixing Agent outperforms strong baselines in achieving balanced performance across source and target field benchmarks. Furthermore, it generalizes well across unseen source fields, target models, and domain spaces without retraining. Direct application to the code generation field also indicates its adaptability across target domains. Further analysis showcases the agents' well-aligned heuristics with human intuitions and their efficiency in achieving superior model performance with less source-field data.
Balancing Discriminability and Transferability for Source-Free Domain Adaptation
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations; while concurrently preserving the task-discriminability knowledge gathered from the labeled source data. However, the requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for the challenging source-free DA setting. The trivial solution of realizing an effective original to generic domain mapping improves transferability but degrades task discriminability. Upon analyzing the hurdles from both theoretical and empirical standpoints, we derive novel insights to show that a mixup between original and corresponding translated generic samples enhances the discriminability-transferability trade-off while duly respecting the privacy-oriented source-free setting. A simple but effective realization of the proposed insights on top of the existing source-free DA approaches yields state-of-the-art performance with faster convergence. Beyond single-source, we also outperform multi-source prior-arts across both classification and semantic segmentation benchmarks.
Aioli: A Unified Optimization Framework for Language Model Data Mixing
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
C-Mixup: Improving Generalization in Regression
Improving the generalization of deep networks is an important open challenge, particularly in domains without plentiful data. The mixup algorithm improves generalization by linearly interpolating a pair of examples and their corresponding labels. These interpolated examples augment the original training set. Mixup has shown promising results in various classification tasks, but systematic analysis of mixup in regression remains underexplored. Using mixup directly on regression labels can result in arbitrarily incorrect labels. In this paper, we propose a simple yet powerful algorithm, C-Mixup, to improve generalization on regression tasks. In contrast with vanilla mixup, which picks training examples for mixing with uniform probability, C-Mixup adjusts the sampling probability based on the similarity of the labels. Our theoretical analysis confirms that C-Mixup with label similarity obtains a smaller mean square error in supervised regression and meta-regression than vanilla mixup and using feature similarity. Another benefit of C-Mixup is that it can improve out-of-distribution robustness, where the test distribution is different from the training distribution. By selectively interpolating examples with similar labels, it mitigates the effects of domain-associated information and yields domain-invariant representations. We evaluate C-Mixup on eleven datasets, ranging from tabular to video data. Compared to the best prior approach, C-Mixup achieves 6.56%, 4.76%, 5.82% improvements in in-distribution generalization, task generalization, and out-of-distribution robustness, respectively. Code is released at https://github.com/huaxiuyao/C-Mixup.
Harnessing Hard Mixed Samples with Decoupled Regularizer
Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data. Recently, dynamic mixup methods have improved previous static policies effectively (e.g., linear interpolation) by maximizing target-related salient regions in mixed samples, but excessive additional time costs are not acceptable. These additional computational overheads mainly come from optimizing the mixed samples according to the mixed labels. However, we found that the extra optimizing step may be redundant because label-mismatched mixed samples are informative hard mixed samples for deep models to localize discriminative features. In this paper, we thus are not trying to propose a more complicated dynamic mixup policy but rather an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM). The primary effect is that DM can adaptively utilize those hard mixed samples to mine discriminative features without losing the original smoothness of mixup. As a result, DM enables static mixup methods to achieve comparable or even exceed the performance of dynamic methods without any extra computation. This also leads to an interesting objective design problem for mixup training that we need to focus on both smoothing the decision boundaries and identifying discriminative features. Extensive experiments on supervised and semi-supervised learning benchmarks across seven datasets validate the effectiveness of DM as a plug-and-play module. Source code and models are available at https://github.com/Westlake-AI/openmixup
LM-Cocktail: Resilient Tuning of Language Models via Model Merging
The pre-trained language models are continually fine-tuned to better support downstream applications. However, this operation may result in significant performance degeneration on general tasks beyond the targeted domain. To overcome this problem, we propose LM-Cocktail which enables the fine-tuned model to stay resilient in general perspectives. Our method is conducted in the form of model merging, where the fine-tuned language model is merged with the pre-trained base model or the peer models from other domains through weighted average. Despite simplicity, LM-Cocktail is surprisingly effective: the resulted model is able to achieve a strong empirical performance in the whole scope of general tasks while preserving a superior capacity in its targeted domain. We conduct comprehensive experiments with LLama and BGE model on popular benchmarks, including FLAN, MMLU, MTEB, whose results validate the efficacy of our proposed method. The code and checkpoints are available at https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail.
LLM-Blender: Ensembling Large Language Models with Pairwise Ranking and Generative Fusion
We present LLM-Blender, an ensembling framework designed to attain consistently superior performance by leveraging the diverse strengths of multiple open-source large language models (LLMs). Our framework consists of two modules: PairRanker and GenFuser, addressing the observation that optimal LLMs for different examples can significantly vary. PairRanker employs a specialized pairwise comparison method to distinguish subtle differences between candidate outputs. It jointly encodes the input text and a pair of candidates, using cross-attention encoders to determine the superior one. Our results demonstrate that PairRanker exhibits the highest correlation with ChatGPT-based ranking. Then, GenFuser aims to merge the top-ranked candidates, generating an improved output by capitalizing on their strengths and mitigating their weaknesses. To facilitate large-scale evaluation, we introduce a benchmark dataset, MixInstruct, which is a mixture of multiple instruction datasets featuring oracle pairwise comparisons. Our LLM-Blender significantly outperform individual LLMs and baseline methods across various metrics, establishing a substantial performance gap.
DEMix Layers: Disentangling Domains for Modular Language Modeling
We introduce a new domain expert mixture (DEMix) layer that enables conditioning a language model (LM) on the domain of the input text. A DEMix layer is a collection of expert feedforward networks, each specialized to a domain, that makes the LM modular: experts can be mixed, added or removed after initial training. Extensive experiments with autoregressive transformer LMs (up to 1.3B parameters) show that DEMix layers reduce test-time perplexity, increase training efficiency, and enable rapid adaptation with little overhead. We show that mixing experts during inference, using a parameter-free weighted ensemble, allows the model to better generalize to heterogeneous or unseen domains. We also show that experts can be added to iteratively incorporate new domains without forgetting older ones, and that experts can be removed to restrict access to unwanted domains, without additional training. Overall, these results demonstrate benefits of explicitly conditioning on textual domains during language modeling.
Data Mixing Made Efficient: A Bivariate Scaling Law for Language Model Pretraining
Large language models exhibit exceptional generalization capabilities, primarily attributed to the utilization of diversely sourced data. However, conventional practices in integrating this diverse data heavily rely on heuristic schemes, lacking theoretical guidance. This research tackles these limitations by investigating strategies based on low-cost proxies for data mixtures, with the aim of streamlining data curation to enhance training efficiency. Specifically, we propose a unified scaling law, termed BiMix, which accurately models the bivariate scaling behaviors of both data quantity and mixing proportions. We conduct systematic experiments and provide empirical evidence for the predictive power and fundamental principles of BiMix. Notably, our findings reveal that entropy-driven training-free data mixtures can achieve comparable or even better performance than more resource-intensive methods. We hope that our quantitative insights can shed light on further judicious research and development in cost-effective language modeling.
Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup
Mixup is a well-known data-dependent augmentation technique for DNNs, consisting of two sub-tasks: mixup generation and classification. However, the recent dominant online training method confines mixup to supervised learning (SL), and the objective of the generation sub-task is limited to selected sample pairs instead of the whole data manifold, which might cause trivial solutions. To overcome such limitations, we comprehensively study the objective of mixup generation and propose Scenario-Agnostic Mixup (SAMix) for both SL and Self-supervised Learning (SSL) scenarios. Specifically, we hypothesize and verify the objective function of mixup generation as optimizing local smoothness between two mixed classes subject to global discrimination from other classes. Accordingly, we propose eta-balanced mixup loss for complementary learning of the two sub-objectives. Meanwhile, a label-free generation sub-network is designed, which effectively provides non-trivial mixup samples and improves transferable abilities. Moreover, to reduce the computational cost of online training, we further introduce a pre-trained version, SAMix^P, achieving more favorable efficiency and generalizability. Extensive experiments on nine SL and SSL benchmarks demonstrate the consistent superiority and versatility of SAMix compared with existing methods.
AttentionMix: Data augmentation method that relies on BERT attention mechanism
The Mixup method has proven to be a powerful data augmentation technique in Computer Vision, with many successors that perform image mixing in a guided manner. One of the interesting research directions is transferring the underlying Mixup idea to other domains, e.g. Natural Language Processing (NLP). Even though there already exist several methods that apply Mixup to textual data, there is still room for new, improved approaches. In this work, we introduce AttentionMix, a novel mixing method that relies on attention-based information. While the paper focuses on the BERT attention mechanism, the proposed approach can be applied to generally any attention-based model. AttentionMix is evaluated on 3 standard sentiment classification datasets and in all three cases outperforms two benchmark approaches that utilize Mixup mechanism, as well as the vanilla BERT method. The results confirm that the attention-based information can be effectively used for data augmentation in the NLP domain.
Channel-Wise MLPs Improve the Generalization of Recurrent Convolutional Networks
We investigate the impact of channel-wise mixing via multi-layer perceptrons (MLPs) on the generalization capabilities of recurrent convolutional networks. Specifically, we compare two architectures: DARC (Depth Aware Recurrent Convolution), which employs a simple recurrent convolutional structure, and DAMP (Depth Aware Multi-layer Perceptron), which extends DARC with a gated MLP for channel mixing. Using the Re-ARC benchmark, we find that DAMP significantly outperforms DARC in both in-distribution and out-of-distribution generalization under exact-match grading criteria. These results suggest that explicit channel mixing through MLPs enables recurrent convolutional networks to learn more robust and generalizable computational patterns. Our findings have implications for neural program synthesis and highlight the potential of DAMP as a target architecture for hypernetwork approaches.
Rethinking Data Mixture for Large Language Models: A Comprehensive Survey and New Perspectives
Training large language models with data collected from various domains can improve their performance on downstream tasks. However, given a fixed training budget, the sampling proportions of these different domains significantly impact the model's performance. How can we determine the domain weights across different data domains to train the best-performing model within constrained computational resources? In this paper, we provide a comprehensive overview of existing data mixture methods. First, we propose a fine-grained categorization of existing methods, extending beyond the previous offline and online classification. Offline methods are further grouped into heuristic-based, algorithm-based, and function fitting-based methods. For online methods, we categorize them into three groups: online min-max optimization, online mixing law, and other approaches by drawing connections with the optimization frameworks underlying offline methods. Second, we summarize the problem formulations, representative algorithms for each subtype of offline and online methods, and clarify the relationships and distinctions among them. Finally, we discuss the advantages and disadvantages of each method and highlight key challenges in the field of data mixture.
SMART: Submodular Data Mixture Strategy for Instruction Tuning
Instruction Tuning involves finetuning a language model on a collection of instruction-formatted datasets in order to enhance the generalizability of the model to unseen tasks. Studies have shown the importance of balancing different task proportions during finetuning, but finding the right balance remains challenging. Unfortunately, there's currently no systematic method beyond manual tuning or relying on practitioners' intuition. In this paper, we introduce SMART (Submodular data Mixture strAtegy for instRuction Tuning) - a novel data mixture strategy which makes use of a submodular function to assign importance scores to tasks which are then used to determine the mixture weights. Given a fine-tuning budget, SMART redistributes the budget among tasks and selects non-redundant samples from each task. Experimental results demonstrate that SMART significantly outperforms traditional methods such as examples proportional mixing and equal mixing. Furthermore, SMART facilitates the creation of data mixtures based on a few representative subsets of tasks alone and through task pruning analysis, we reveal that in a limited budget setting, allocating budget among a subset of representative tasks yields superior performance compared to distributing the budget among all tasks. The code for reproducing our results is open-sourced at https://github.com/kowndinya-renduchintala/SMART.
MixUp as Locally Linear Out-Of-Manifold Regularization
MixUp is a recently proposed data-augmentation scheme, which linearly interpolates a random pair of training examples and correspondingly the one-hot representations of their labels. Training deep neural networks with such additional data is shown capable of significantly improving the predictive accuracy of the current art. The power of MixUp, however, is primarily established empirically and its working and effectiveness have not been explained in any depth. In this paper, we develop an understanding for MixUp as a form of "out-of-manifold regularization", which imposes certain "local linearity" constraints on the model's input space beyond the data manifold. This analysis enables us to identify a limitation of MixUp, which we call "manifold intrusion". In a nutshell, manifold intrusion in MixUp is a form of under-fitting resulting from conflicts between the synthetic labels of the mixed-up examples and the labels of original training data. Such a phenomenon usually happens when the parameters controlling the generation of mixing policies are not sufficiently fine-tuned on the training data. To address this issue, we propose a novel adaptive version of MixUp, where the mixing policies are automatically learned from the data using an additional network and objective function designed to avoid manifold intrusion. The proposed regularizer, AdaMixUp, is empirically evaluated on several benchmark datasets. Extensive experiments demonstrate that AdaMixUp improves upon MixUp when applied to the current art of deep classification models.
DIDS: Domain Impact-aware Data Sampling for Large Language Model Training
Large language models (LLMs) are commonly trained on multi-domain datasets, where domain sampling strategies significantly impact model performance due to varying domain importance across downstream tasks. Existing approaches for optimizing domain-level sampling strategies struggle with maintaining intra-domain consistency and accurately measuring domain impact. In this paper, we present Domain Impact-aware Data Sampling (DIDS). To ensure intra-domain consistency, a gradient clustering algorithm is proposed to group training data based on their learning effects, where a proxy language model and dimensionality reduction are employed to reduce computational overhead. To accurately measure domain impact, we develop a Fisher Information Matrix (FIM) guided metric that quantifies how domain-specific parameter updates affect the model's output distributions on downstream tasks, with theoretical guarantees. Furthermore, to determine optimal sampling ratios, DIDS combines both the FIM-guided domain impact assessment and loss learning trajectories that indicate domain-specific potential, while accounting for diminishing marginal returns. Extensive experiments demonstrate that DIDS achieves 3.4% higher average performance while maintaining comparable training efficiency.
Hydra: Bidirectional State Space Models Through Generalized Matrix Mixers
A wide array of sequence models are built on a framework modeled after Transformers, comprising alternating sequence mixer and channel mixer layers. This paper studies a unifying matrix mixer view of sequence mixers that can be conceptualized as a linear map on the input sequence. This framework encompasses a broad range of well-known sequence models, including the self-attention of Transformers as well as recent strong alternatives such as structured state space models (SSMs), and allows understanding downstream characteristics such as efficiency and expressivity through properties of their structured matrix class. We identify a key axis of matrix parameterizations termed sequence alignment, which increases the flexibility and performance of matrix mixers, providing insights into the strong performance of Transformers and recent SSMs such as Mamba. Furthermore, the matrix mixer framework offers a systematic approach to developing sequence mixers with desired properties, allowing us to develop several new sub-quadratic sequence models. In particular, we propose a natural bidirectional extension of the Mamba model (Hydra), parameterized as a quasiseparable matrix mixer, which demonstrates superior performance over other sequence models including Transformers on non-causal tasks. As a drop-in replacement for attention layers, Hydra outperforms BERT by 0.8 points on the GLUE benchmark and ViT by 2% Top-1 accuracy on ImageNet.
Adversarial AutoMixup
Data mixing augmentation has been widely applied to improve the generalization ability of deep neural networks. Recently, offline data mixing augmentation, e.g. handcrafted and saliency information-based mixup, has been gradually replaced by automatic mixing approaches. Through minimizing two sub-tasks, namely, mixed sample generation and mixup classification in an end-to-end way, AutoMix significantly improves accuracy on image classification tasks. However, as the optimization objective is consistent for the two sub-tasks, this approach is prone to generating consistent instead of diverse mixed samples, which results in overfitting for target task training. In this paper, we propose AdAutomixup, an adversarial automatic mixup augmentation approach that generates challenging samples to train a robust classifier for image classification, by alternatively optimizing the classifier and the mixup sample generator. AdAutomixup comprises two modules, a mixed example generator, and a target classifier. The mixed sample generator aims to produce hard mixed examples to challenge the target classifier, while the target classifier's aim is to learn robust features from hard mixed examples to improve generalization. To prevent the collapse of the inherent meanings of images, we further introduce an exponential moving average (EMA) teacher and cosine similarity to train AdAutomixup in an end-to-end way. Extensive experiments on seven image benchmarks consistently prove that our approach outperforms the state of the art in various classification scenarios. The source code is available at https://github.com/JinXins/Adversarial-AutoMixup.
OpenMixup: Open Mixup Toolbox and Benchmark for Visual Representation Learning
Mixup augmentation has emerged as a widely used technique for improving the generalization ability of deep neural networks (DNNs). However, the lack of standardized implementations and benchmarks has impeded recent progress, resulting in poor reproducibility, unfair comparisons, and conflicting insights. In this paper, we introduce OpenMixup, the first mixup augmentation codebase, and benchmark for visual representation learning. Specifically, we train 18 representative mixup baselines from scratch and rigorously evaluate them across 11 image datasets of varying scales and granularity, ranging from fine-grained scenarios to complex non-iconic scenes. We also open-source our modular codebase, including a collection of popular vision backbones, optimization strategies, and analysis toolkits, which not only supports the benchmarking but enables broader mixup applications beyond classification, such as self-supervised learning and regression tasks. Through experiments and empirical analysis, we gain observations and insights on mixup performance-efficiency trade-offs, generalization, and optimization behaviors, and thereby identify preferred choices for different needs. To the best of our knowledge, OpenMixup has facilitated several recent studies. We believe this work can further advance reproducible mixup augmentation research and thereby lay a solid ground for future progress in the community. The source code and user documents are available at https://github.com/Westlake-AI/openmixup.
Branch-Train-MiX: Mixing Expert LLMs into a Mixture-of-Experts LLM
We investigate efficient methods for training Large Language Models (LLMs) to possess capabilities in multiple specialized domains, such as coding, math reasoning and world knowledge. Our method, named Branch-Train-MiX (BTX), starts from a seed model, which is branched to train experts in embarrassingly parallel fashion with high throughput and reduced communication cost. After individual experts are asynchronously trained, BTX brings together their feedforward parameters as experts in Mixture-of-Expert (MoE) layers and averages the remaining parameters, followed by an MoE-finetuning stage to learn token-level routing. BTX generalizes two special cases, the Branch-Train-Merge method, which does not have the MoE finetuning stage to learn routing, and sparse upcycling, which omits the stage of training experts asynchronously. Compared to alternative approaches, BTX achieves the best accuracy-efficiency tradeoff.
Towards Identifiable Unsupervised Domain Translation: A Diversified Distribution Matching Approach
Unsupervised domain translation (UDT) aims to find functions that convert samples from one domain (e.g., sketches) to another domain (e.g., photos) without changing the high-level semantic meaning (also referred to as ``content''). The translation functions are often sought by probability distribution matching of the transformed source domain and target domain. CycleGAN stands as arguably the most representative approach among this line of work. However, it was noticed in the literature that CycleGAN and variants could fail to identify the desired translation functions and produce content-misaligned translations. This limitation arises due to the presence of multiple translation functions -- referred to as ``measure-preserving automorphism" (MPA) -- in the solution space of the learning criteria. Despite awareness of such identifiability issues, solutions have remained elusive. This study delves into the core identifiability inquiry and introduces an MPA elimination theory. Our analysis shows that MPA is unlikely to exist, if multiple pairs of diverse cross-domain conditional distributions are matched by the learning function. Our theory leads to a UDT learner using distribution matching over auxiliary variable-induced subsets of the domains -- other than over the entire data domains as in the classical approaches. The proposed framework is the first to rigorously establish translation identifiability under reasonable UDT settings, to our best knowledge. Experiments corroborate with our theoretical claims.
CodeMixBench: Evaluating Code-Mixing Capabilities of LLMs Across 18 Languages
Code-mixing, the practice of switching between languages within a conversation, poses unique challenges for traditional NLP. Existing benchmarks are limited by their narrow language pairs and tasks, failing to adequately assess large language models' (LLMs) code-mixing abilities. Despite the recognized importance of code-mixing for multilingual users, research on LLMs in this context remains sparse. Additionally, current techniques for synthesizing code-mixed data are underdeveloped to generate code-mixing. In response, we introduce CodeMixBench, a comprehensive benchmark covering eight tasks, including three specific to LLMs and five traditional NLP tasks, and 18 languages across seven language families. We also propose a new method for generating large-scale synthetic code-mixed texts by combining word substitution with GPT-4 prompting. Our evaluation reveals consistent underperformance of LLMs on code-mixed datasets involving different language families. Enhancements in training data size, model scale, and few-shot learning could improve their performance. The code and dataset are available at https://github.com/Jeromeyluck/CodeMixBench.
Data Mixture Inference: What do BPE Tokenizers Reveal about their Training Data?
The pretraining data of today's strongest language models is opaque. In particular, little is known about the proportions of various domains or languages represented. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of training data. We introduce a novel attack based on a previously overlooked source of information -- byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered list of merge rules learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data: the first merge is the most common byte pair, the second is the most common pair after merging the first token, and so on. Given a tokenizer's merge list along with data samples for each category of interest, we formulate a linear program that solves for the proportion of each category in the tokenizer's training set. Importantly, to the extent to which tokenizer training data is representative of the pretraining data, we indirectly learn about the pretraining data. In controlled experiments, we show that our attack recovers mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released with recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o's tokenizer is much more multilingual than its predecessors, training on 39% non-English data; Llama3 extends GPT-3.5's tokenizer primarily for multilingual (48%) use; GPT-3.5's and Claude's tokenizers are trained on predominantly code (~60%). We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs.
Maximize Your Data's Potential: Enhancing LLM Accuracy with Two-Phase Pretraining
Pretraining large language models effectively requires strategic data selection, blending and ordering. However, key details about data mixtures especially their scalability to longer token horizons and larger model sizes remain underexplored due to limited disclosure by model developers. To address this, we formalize the concept of two-phase pretraining and conduct an extensive systematic study on how to select and mix data to maximize model accuracies for the two phases. Our findings illustrate that a two-phase approach for pretraining outperforms random data ordering and natural distribution of tokens by 3.4% and 17% on average accuracies. We provide in-depth guidance on crafting optimal blends based on quality of the data source and the number of epochs to be seen. We propose to design blends using downsampled data at a smaller scale of 1T tokens and then demonstrate effective scaling of our approach to larger token horizon of 15T tokens and larger model size of 25B model size. These insights provide a series of steps practitioners can follow to design and scale their data blends.
Learning Conditional Invariances through Non-Commutativity
Invariance learning algorithms that conditionally filter out domain-specific random variables as distractors, do so based only on the data semantics, and not the target domain under evaluation. We show that a provably optimal and sample-efficient way of learning conditional invariances is by relaxing the invariance criterion to be non-commutatively directed towards the target domain. Under domain asymmetry, i.e., when the target domain contains semantically relevant information absent in the source, the risk of the encoder varphi^* that is optimal on average across domains is strictly lower-bounded by the risk of the target-specific optimal encoder Phi^*_tau. We prove that non-commutativity steers the optimization towards Phi^*_tau instead of varphi^*, bringing the H-divergence between domains down to zero, leading to a stricter bound on the target risk. Both our theory and experiments demonstrate that non-commutative invariance (NCI) can leverage source domain samples to meet the sample complexity needs of learning Phi^*_tau, surpassing SOTA invariance learning algorithms for domain adaptation, at times by over 2%, approaching the performance of an oracle. Implementation is available at https://github.com/abhrac/nci.
Mix-CPT: A Domain Adaptation Framework via Decoupling Knowledge Learning and Format Alignment
Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions. This adaptation typically requires continual pre-training on massive domain-specific corpora to facilitate knowledge memorization, followed by training to apply this knowledge following human instructions and preferences. However, this method may result in inefficient knowledge memorization due to a lack of awareness of knowledge utilization and imposes substantial demands on LLMs to simultaneously learn knowledge utilization and format alignment with limited training samples. To facilitate the domain adaptation of LLM, we revise this process and propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-training that concurrently focuses on knowledge memorization and utilization, allowing for mutual reinforcement. To avoid catastrophic forgetting during the continual pre-training process, we further incorporate a logit swap self-distillation constraint. Subsequently, leveraging the knowledge and capabilities acquired during continual pre-training, we efficiently perform instruction tuning and alignment with a few general training samples to achieve format alignment. Extensive experiments demonstrate that our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains compared to the traditional adaptation methods.
Token-Label Alignment for Vision Transformers
Data mixing strategies (e.g., CutMix) have shown the ability to greatly improve the performance of convolutional neural networks (CNNs). They mix two images as inputs for training and assign them with a mixed label with the same ratio. While they are shown effective for vision transformers (ViTs), we identify a token fluctuation phenomenon that has suppressed the potential of data mixing strategies. We empirically observe that the contributions of input tokens fluctuate as forward propagating, which might induce a different mixing ratio in the output tokens. The training target computed by the original data mixing strategy can thus be inaccurate, resulting in less effective training. To address this, we propose a token-label alignment (TL-Align) method to trace the correspondence between transformed tokens and the original tokens to maintain a label for each token. We reuse the computed attention at each layer for efficient token-label alignment, introducing only negligible additional training costs. Extensive experiments demonstrate that our method improves the performance of ViTs on image classification, semantic segmentation, objective detection, and transfer learning tasks. Code is available at: https://github.com/Euphoria16/TL-Align.
Selective Mixup Fine-Tuning for Optimizing Non-Decomposable Objectives
The rise in internet usage has led to the generation of massive amounts of data, resulting in the adoption of various supervised and semi-supervised machine learning algorithms, which can effectively utilize the colossal amount of data to train models. However, before deploying these models in the real world, these must be strictly evaluated on performance measures like worst-case recall and satisfy constraints such as fairness. We find that current state-of-the-art empirical techniques offer sub-optimal performance on these practical, non-decomposable performance objectives. On the other hand, the theoretical techniques necessitate training a new model from scratch for each performance objective. To bridge the gap, we propose SelMix, a selective mixup-based inexpensive fine-tuning technique for pre-trained models, to optimize for the desired objective. The core idea of our framework is to determine a sampling distribution to perform a mixup of features between samples from particular classes such that it optimizes the given objective. We comprehensively evaluate our technique against the existing empirical and theoretically principled methods on standard benchmark datasets for imbalanced classification. We find that proposed SelMix fine-tuning significantly improves the performance for various practical non-decomposable objectives across benchmarks.
Parameter Competition Balancing for Model Merging
While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: https://github.com/duguodong7/pcb-merging.
Cross Contrasting Feature Perturbation for Domain Generalization
Domain generalization (DG) aims to learn a robust model from source domains that generalize well on unseen target domains. Recent studies focus on generating novel domain samples or features to diversify distributions complementary to source domains. Yet, these approaches can hardly deal with the restriction that the samples synthesized from various domains can cause semantic distortion. In this paper, we propose an online one-stage Cross Contrasting Feature Perturbation (CCFP) framework to simulate domain shift by generating perturbed features in the latent space while regularizing the model prediction against domain shift. Different from the previous fixed synthesizing strategy, we design modules with learnable feature perturbations and semantic consistency constraints. In contrast to prior work, our method does not use any generative-based models or domain labels. We conduct extensive experiments on a standard DomainBed benchmark with a strict evaluation protocol for a fair comparison. Comprehensive experiments show that our method outperforms the previous state-of-the-art, and quantitative analyses illustrate that our approach can alleviate the domain shift problem in out-of-distribution (OOD) scenarios.
Training Domain Draft Models for Speculative Decoding: Best Practices and Insights
Speculative decoding is an effective method for accelerating inference of large language models (LLMs) by employing a small draft model to predict the output of a target model. However, when adapting speculative decoding to domain-specific target models, the acceptance rate of the generic draft model drops significantly due to domain shift. In this work, we systematically investigate knowledge distillation techniques for training domain draft models to improve their speculation accuracy. We compare white-box and black-box distillation approaches and explore their effectiveness in various data accessibility scenarios, including historical user queries, curated domain data, and synthetically generated alignment data. Our experiments across Function Calling, Biology, and Chinese domains show that offline distillation consistently outperforms online distillation by 11% to 25%, white-box distillation surpasses black-box distillation by 2% to 10%, and data scaling trends hold across domains. Additionally, we find that synthetic data can effectively align draft models and achieve 80% to 93% of the performance of training on historical user queries. These findings provide practical guidelines for training domain-specific draft models to improve speculative decoding efficiency.
Deconstructing Attention: Investigating Design Principles for Effective Language Modeling
The success of Transformer language models is widely credited to their dot-product attention mechanism, which interweaves a set of key design principles: mixing information across positions (enabling multi-token interactions), sequence-dependent activations (where attention weights adapt to each input), a specific mathematical form (dot-product similarities plus softmax weighting), and coupling of queries and keys to evolving hidden states (grounding attention in the current layer). However, the necessity of each of these principles remains largely untested. In this work, we systematically deconstruct attention by designing controlled variants that selectively relax these principles, applied both uniformly across all layers and in hybrid architectures where only some layers retain standard attention. Our empirical analysis reveals that mechanisms for mixing tokens are indispensable, as their absence collapses models to near-random behavior, while the exact mathematical form and sequence dependency can be substantially relaxed, especially when preserved in just a subset of layers. Surprisingly, even variants that fail in isolation can achieve robust performance when interleaved with standard attention, highlighting a cooperative effect. These findings deepen our understanding of what truly underpins attention's effectiveness and open new avenues for simplifying language models without sacrificing performance.
MergeME: Model Merging Techniques for Homogeneous and Heterogeneous MoEs
The recent success of specialized Large Language Models (LLMs) in domains such as mathematical reasoning and coding has led to growing interest in methods for merging these expert LLMs into a unified Mixture-of-Experts (MoE) model, with the goal of enhancing performance in each domain while retaining effectiveness on general tasks. However, the effective merging of expert models remains an open challenge, especially for models with highly divergent weight parameters or different architectures. State-of-the-art MoE merging methods only work with homogeneous model architectures and rely on simple unweighted averaging to merge expert layers, which does not address parameter interference and requires extensive fine-tuning of the merged MoE to restore performance. To address these limitations, this paper introduces new MoE merging techniques, including strategies to mitigate parameter interference, routing heuristics to reduce the need for MoE fine-tuning, and a novel method for merging experts with different architectures. Extensive experiments across multiple domains demonstrate the effectiveness of our proposed methods, reducing fine-tuning costs, improving performance over state-of-the-art methods, and expanding the applicability of MoE merging.
D-CPT Law: Domain-specific Continual Pre-Training Scaling Law for Large Language Models
Continual Pre-Training (CPT) on Large Language Models (LLMs) has been widely used to expand the model's fundamental understanding of specific downstream domains (e.g., math and code). For the CPT on domain-specific LLMs, one important question is how to choose the optimal mixture ratio between the general-corpus (e.g., Dolma, Slim-pajama) and the downstream domain-corpus. Existing methods usually adopt laborious human efforts by grid-searching on a set of mixture ratios, which require high GPU training consumption costs. Besides, we cannot guarantee the selected ratio is optimal for the specific domain. To address the limitations of existing methods, inspired by the Scaling Law for performance prediction, we propose to investigate the Scaling Law of the Domain-specific Continual Pre-Training (D-CPT Law) to decide the optimal mixture ratio with acceptable training costs for LLMs of different sizes. Specifically, by fitting the D-CPT Law, we can easily predict the general and downstream performance of arbitrary mixture ratios, model sizes, and dataset sizes using small-scale training costs on limited experiments. Moreover, we also extend our standard D-CPT Law on cross-domain settings and propose the Cross-Domain D-CPT Law to predict the D-CPT law of target domains, where very small training costs (about 1% of the normal training costs) are needed for the target domains. Comprehensive experimental results on six downstream domains demonstrate the effectiveness and generalizability of our proposed D-CPT Law and Cross-Domain D-CPT Law.
DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining
The mixture proportions of pretraining data domains (e.g., Wikipedia, books, web text) greatly affect language model (LM) performance. In this paper, we propose Domain Reweighting with Minimax Optimization (DoReMi), which first trains a small proxy model using group distributionally robust optimization (Group DRO) over domains to produce domain weights (mixture proportions) without knowledge of downstream tasks. We then resample a dataset with these domain weights and train a larger, full-sized model. In our experiments, we use DoReMi on a 280M-parameter proxy model to find domain weights for training an 8B-parameter model (30x larger) more efficiently. On The Pile, DoReMi improves perplexity across all domains, even when it downweights a domain. DoReMi improves average few-shot downstream accuracy by 6.5% over a baseline model trained using The Pile's default domain weights and reaches the baseline accuracy with 2.6x fewer training steps. On the GLaM dataset, DoReMi, which has no knowledge of downstream tasks, even matches the performance of using domain weights tuned on downstream tasks.
Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models
In natural language processing, it has been observed recently that generalization could be greatly improved by finetuning a large-scale language model pretrained on a large unlabeled corpus. Despite its recent success and wide adoption, finetuning a large pretrained language model on a downstream task is prone to degenerate performance when there are only a small number of training instances available. In this paper, we introduce a new regularization technique, to which we refer as "mixout", motivated by dropout. Mixout stochastically mixes the parameters of two models. We show that our mixout technique regularizes learning to minimize the deviation from one of the two models and that the strength of regularization adapts along the optimization trajectory. We empirically evaluate the proposed mixout and its variants on finetuning a pretrained language model on downstream tasks. More specifically, we demonstrate that the stability of finetuning and the average accuracy greatly increase when we use the proposed approach to regularize finetuning of BERT on downstream tasks in GLUE.
SelectMix: Enhancing Label Noise Robustness through Targeted Sample Mixing
Deep neural networks tend to memorize noisy labels, severely degrading their generalization performance. Although Mixup has demonstrated effectiveness in improving generalization and robustness, existing Mixup-based methods typically perform indiscriminate mixing without principled guidance on sample selection and mixing strategy, inadvertently propagating noisy supervision. To overcome these limitations, we propose SelectMix, a confidence-guided mixing framework explicitly tailored for noisy labels. SelectMix first identifies potentially noisy or ambiguous samples through confidence based mismatch analysis using K-fold cross-validation, then selectively blends identified uncertain samples with confidently predicted peers from their potential classes. Furthermore, SelectMix employs soft labels derived from all classes involved in the mixing process, ensuring the labels accurately represent the composition of the mixed samples, thus aligning supervision signals closely with the actual mixed inputs. Through extensive theoretical analysis and empirical evaluations on multiple synthetic (MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100) and real-world benchmark datasets (CIFAR-N, MNIST and Clothing1M), we demonstrate that SelectMix consistently outperforms strong baseline methods, validating its effectiveness and robustness in learning with noisy labels.
RegMix: Data Mixture as Regression for Language Model Pre-training
The data mixture for large language model pre-training significantly impacts performance, yet how to determine an effective mixture remains unclear. We propose RegMix to automatically identify a high-performing data mixture by formulating it as a regression task. RegMix involves training a set of small models with diverse data mixtures and fitting a regression model to predict their performance given their respective mixtures. With the fitted regression model, we simulate the top-ranked mixture and use it to train a large-scale model with orders of magnitude more compute. To empirically validate RegMix, we train 512 models with 1M parameters for 1B tokens of different mixtures to fit the regression model and find the optimal mixture. Using this mixture we train a 1B parameter model for 25B tokens (i.e. 1000x larger and 25x longer) which we find performs best among 64 candidate 1B parameter models with other mixtures. Further, our method demonstrates superior performance compared to human selection and achieves results that match or surpass DoReMi, while utilizing only 10% of the compute budget. Our experiments also show that (1) Data mixtures significantly impact performance with single-task performance variations of up to 14.6%; (2) Web corpora rather than data perceived as high-quality like Wikipedia have the strongest positive correlation with downstream performance; (3) Domains interact in complex ways often contradicting common sense, thus automatic approaches like RegMix are needed; (4) Data mixture effects transcend scaling laws, and our approach captures the complexity by considering all domains together. Our code is available at https://github.com/sail-sg/regmix.
Improving Both Domain Robustness and Domain Adaptability in Machine Translation
We consider two problems of NMT domain adaptation using meta-learning. First, we want to reach domain robustness, i.e., we want to reach high quality on both domains seen in the training data and unseen domains. Second, we want our systems to be adaptive, i.e., making it possible to finetune systems with just hundreds of in-domain parallel sentences. We study the domain adaptability of meta-learning when improving the domain robustness of the model. In this paper, we propose a novel approach, RMLNMT (Robust Meta-Learning Framework for Neural Machine Translation Domain Adaptation), which improves the robustness of existing meta-learning models. More specifically, we show how to use a domain classifier in curriculum learning and we integrate the word-level domain mixing model into the meta-learning framework with a balanced sampling strategy. Experiments on EnglishrightarrowGerman and EnglishrightarrowChinese translation show that RMLNMT improves in terms of both domain robustness and domain adaptability in seen and unseen domains. Our source code is available at https://github.com/lavine-lmu/RMLNMT.
DomainDrop: Suppressing Domain-Sensitive Channels for Domain Generalization
Deep Neural Networks have exhibited considerable success in various visual tasks. However, when applied to unseen test datasets, state-of-the-art models often suffer performance degradation due to domain shifts. In this paper, we introduce a novel approach for domain generalization from a novel perspective of enhancing the robustness of channels in feature maps to domain shifts. We observe that models trained on source domains contain a substantial number of channels that exhibit unstable activations across different domains, which are inclined to capture domain-specific features and behave abnormally when exposed to unseen target domains. To address the issue, we propose a DomainDrop framework to continuously enhance the channel robustness to domain shifts, where a domain discriminator is used to identify and drop unstable channels in feature maps of each network layer during forward propagation. We theoretically prove that our framework could effectively lower the generalization bound. Extensive experiments on several benchmarks indicate that our framework achieves state-of-the-art performance compared to other competing methods. Our code is available at https://github.com/lingeringlight/DomainDrop.
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
While deep neural networks show great performance on fitting to the training distribution, improving the networks' generalization performance to the test distribution and robustness to the sensitivity to input perturbations still remain as a challenge. Although a number of mixup based augmentation strategies have been proposed to partially address them, it remains unclear as to how to best utilize the supervisory signal within each input data for mixup from the optimization perspective. We propose a new perspective on batch mixup and formulate the optimal construction of a batch of mixup data maximizing the data saliency measure of each individual mixup data and encouraging the supermodular diversity among the constructed mixup data. This leads to a novel discrete optimization problem minimizing the difference between submodular functions. We also propose an efficient modular approximation based iterative submodular minimization algorithm for efficient mixup computation per each minibatch suitable for minibatch based neural network training. Our experiments show the proposed method achieves the state of the art generalization, calibration, and weakly supervised localization results compared to other mixup methods. The source code is available at https://github.com/snu-mllab/Co-Mixup.
GAPrune: Gradient-Alignment Pruning for Domain-Aware Embeddings
Domain-specific embedding models have shown promise for applications that require specialized semantic understanding, such as coding agents and financial retrieval systems, often achieving higher performance gains than general models. However, state-of-the-art embedding models are typically based on LLMs, which contain billions of parameters, making deployment challenging in resource-constrained environments. Model compression through pruning offers a promising solution, but existing pruning methods treat all parameters uniformly, failing to distinguish between general semantic representations and domain-specific patterns, leading to suboptimal pruning decisions. Thus, we propose GAPrune, a pruning framework that addresses this challenge by considering both domain importance and preserving general linguistic foundation. Our method uses Fisher Information to measure importance and general-domain gradient alignment to assess parameter behavior, then combines these signals using our Domain Alignment Importance (DAI) scoring. Lower DAI scores indicate that the parameter is either less important for the domain task or creates conflicts between domain and general objectives. Experiments on two domain benchmarks, FinMTEB and ChemTEB, show that GAPrune maintains performance within 2.5% of dense models in one-shot pruning at 50% sparsity, while outperforming all baselines. With retraining in 100 steps, GAPrune achieves +4.51% improvement on FinMTEB and +1.73% on ChemTEB, demonstrating that our pruning strategy not only preserves but enhances domain-specific capabilities. Our findings demonstrate that principled pruning strategies can achieve model compression and enhanced domain specialization, providing the research community with a new approach for development.
Unsupervised Topic Models are Data Mixers for Pre-training Language Models
The performance of large language models (LLMs) is significantly affected by the quality and composition of their pre-training data, which is inherently diverse, spanning various domains, sources, and topics. Effectively integrating these heterogeneous data sources is crucial for optimizing LLM performance. Previous research has predominantly concentrated on domain-based data mixing, often neglecting the nuanced topic-level characteristics of the data. To address this gap, we propose a simple yet effective topic-based data mixing strategy that utilizes fine-grained topics generated through our topic modeling method, DataWeave. DataWeave employs a multi-stage clustering process to group semantically similar documents and utilizes LLMs to generate detailed topics, thereby facilitating a more nuanced understanding of dataset composition. Our strategy employs heuristic methods to upsample or downsample specific topics, which significantly enhances LLM performance on downstream tasks, achieving superior results compared to previous, more complex data mixing approaches. Furthermore, we confirm that the topics Science and Relationships are particularly effective, yielding the most substantial performance improvements. We will make our code and datasets publicly available.
SPANet: Frequency-balancing Token Mixer using Spectral Pooling Aggregation Modulation
Recent studies show that self-attentions behave like low-pass filters (as opposed to convolutions) and enhancing their high-pass filtering capability improves model performance. Contrary to this idea, we investigate existing convolution-based models with spectral analysis and observe that improving the low-pass filtering in convolution operations also leads to performance improvement. To account for this observation, we hypothesize that utilizing optimal token mixers that capture balanced representations of both high- and low-frequency components can enhance the performance of models. We verify this by decomposing visual features into the frequency domain and combining them in a balanced manner. To handle this, we replace the balancing problem with a mask filtering problem in the frequency domain. Then, we introduce a novel token-mixer named SPAM and leverage it to derive a MetaFormer model termed as SPANet. Experimental results show that the proposed method provides a way to achieve this balance, and the balanced representations of both high- and low-frequency components can improve the performance of models on multiple computer vision tasks. Our code is available at https://doranlyong.github.io/projects/spanet/{https://doranlyong.github.io/projects/spanet/}.
MixFlows: principled variational inference via mixed flows
This work presents mixed variational flows (MixFlows), a new variational family that consists of a mixture of repeated applications of a map to an initial reference distribution. First, we provide efficient algorithms for i.i.d. sampling, density evaluation, and unbiased ELBO estimation. We then show that MixFlows have MCMC-like convergence guarantees when the flow map is ergodic and measure-preserving, and provide bounds on the accumulation of error for practical implementations where the flow map is approximated. Finally, we develop an implementation of MixFlows based on uncorrected discretized Hamiltonian dynamics combined with deterministic momentum refreshment. Simulated and real data experiments show that MixFlows can provide more reliable posterior approximations than several black-box normalizing flows, as well as samples of comparable quality to those obtained from state-of-the-art MCMC methods.
Bass Accompaniment Generation via Latent Diffusion
The ability to automatically generate music that appropriately matches an arbitrary input track is a challenging task. We present a novel controllable system for generating single stems to accompany musical mixes of arbitrary length. At the core of our method are audio autoencoders that efficiently compress audio waveform samples into invertible latent representations, and a conditional latent diffusion model that takes as input the latent encoding of a mix and generates the latent encoding of a corresponding stem. To provide control over the timbre of generated samples, we introduce a technique to ground the latent space to a user-provided reference style during diffusion sampling. For further improving audio quality, we adapt classifier-free guidance to avoid distortions at high guidance strengths when generating an unbounded latent space. We train our model on a dataset of pairs of mixes and matching bass stems. Quantitative experiments demonstrate that, given an input mix, the proposed system can generate basslines with user-specified timbres. Our controllable conditional audio generation framework represents a significant step forward in creating generative AI tools to assist musicians in music production.
MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose MixGRPO, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed MixGRPO-Flash, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at https://github.com/Tencent-Hunyuan/MixGRPO{MixGRPO}.
DualMix: Unleashing the Potential of Data Augmentation for Online Class-Incremental Learning
Online Class-Incremental (OCI) learning has sparked new approaches to expand the previously trained model knowledge from sequentially arriving data streams with new classes. Unfortunately, OCI learning can suffer from catastrophic forgetting (CF) as the decision boundaries for old classes can become inaccurate when perturbated by new ones. Existing literature have applied the data augmentation (DA) to alleviate the model forgetting, while the role of DA in OCI has not been well understood so far. In this paper, we theoretically show that augmented samples with lower correlation to the original data are more effective in preventing forgetting. However, aggressive augmentation may also reduce the consistency between data and corresponding labels, which motivates us to exploit proper DA to boost the OCI performance and prevent the CF problem. We propose the Enhanced Mixup (EnMix) method that mixes the augmented samples and their labels simultaneously, which is shown to enhance the sample diversity while maintaining strong consistency with corresponding labels. Further, to solve the class imbalance problem, we design an Adaptive Mixup (AdpMix) method to calibrate the decision boundaries by mixing samples from both old and new classes and dynamically adjusting the label mixing ratio. Our approach is demonstrated to be effective on several benchmark datasets through extensive experiments, and it is shown to be compatible with other replay-based techniques.
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data
Data mixing augmentation has proved effective in training deep models. Recent methods mix labels mainly based on the mixture proportion of image pixels. As the main discriminative information of a fine-grained image usually resides in subtle regions, methods along this line are prone to heavy label noise in fine-grained recognition. We propose in this paper a novel scheme, termed as Semantically Proportional Mixing (SnapMix), which exploits class activation map (CAM) to lessen the label noise in augmenting fine-grained data. SnapMix generates the target label for a mixed image by estimating its intrinsic semantic composition, and allows for asymmetric mixing operations and ensures semantic correspondence between synthetic images and target labels. Experiments show that our method consistently outperforms existing mixed-based approaches on various datasets and under different network depths. Furthermore, by incorporating the mid-level features, the proposed SnapMix achieves top-level performance, demonstrating its potential to serve as a solid baseline for fine-grained recognition. Our code is available at https://github.com/Shaoli-Huang/SnapMix.git.
Mixture of Tokens: Efficient LLMs through Cross-Example Aggregation
Despite the promise of Mixture of Experts (MoE) models in increasing parameter counts of Transformer models while maintaining training and inference costs, their application carries notable drawbacks. The key strategy of these models is to, for each processed token, activate at most a few experts - subsets of an extensive feed-forward layer. But this approach is not without its challenges. The operation of matching experts and tokens is discrete, which makes MoE models prone to issues like training instability and uneven expert utilization. Existing techniques designed to address these concerns, such as auxiliary losses or balance-aware matching, result either in lower model performance or are more difficult to train. In response to these issues, we propose Mixture of Tokens, a fully-differentiable model that retains the benefits of MoE architectures while avoiding the aforementioned difficulties. Rather than routing tokens to experts, this approach mixes tokens from different examples prior to feeding them to experts, enabling the model to learn from all token-expert combinations. Importantly, this mixing can be disabled to avoid mixing of different sequences during inference. Crucially, this method is fully compatible with both masked and causal Large Language Model training and inference.
Complementary Domain Adaptation and Generalization for Unsupervised Continual Domain Shift Learning
Continual domain shift poses a significant challenge in real-world applications, particularly in situations where labeled data is not available for new domains. The challenge of acquiring knowledge in this problem setting is referred to as unsupervised continual domain shift learning. Existing methods for domain adaptation and generalization have limitations in addressing this issue, as they focus either on adapting to a specific domain or generalizing to unseen domains, but not both. In this paper, we propose Complementary Domain Adaptation and Generalization (CoDAG), a simple yet effective learning framework that combines domain adaptation and generalization in a complementary manner to achieve three major goals of unsupervised continual domain shift learning: adapting to a current domain, generalizing to unseen domains, and preventing forgetting of previously seen domains. Our approach is model-agnostic, meaning that it is compatible with any existing domain adaptation and generalization algorithms. We evaluate CoDAG on several benchmark datasets and demonstrate that our model outperforms state-of-the-art models in all datasets and evaluation metrics, highlighting its effectiveness and robustness in handling unsupervised continual domain shift learning.
Gradient Matching for Domain Generalization
Machine learning systems typically assume that the distributions of training and test sets match closely. However, a critical requirement of such systems in the real world is their ability to generalize to unseen domains. Here, we propose an inter-domain gradient matching objective that targets domain generalization by maximizing the inner product between gradients from different domains. Since direct optimization of the gradient inner product can be computationally prohibitive -- requires computation of second-order derivatives -- we derive a simpler first-order algorithm named Fish that approximates its optimization. We demonstrate the efficacy of Fish on 6 datasets from the Wilds benchmark, which captures distribution shift across a diverse range of modalities. Our method produces competitive results on these datasets and surpasses all baselines on 4 of them. We perform experiments on both the Wilds benchmark, which captures distribution shift in the real world, as well as datasets in DomainBed benchmark that focuses more on synthetic-to-real transfer. Our method produces competitive results on both benchmarks, demonstrating its effectiveness across a wide range of domain generalization tasks.
Unknown Domain Inconsistency Minimization for Domain Generalization
The objective of domain generalization (DG) is to enhance the transferability of the model learned from a source domain to unobserved domains. To prevent overfitting to a specific domain, Sharpness-Aware Minimization (SAM) reduces source domain's loss sharpness. Although SAM variants have delivered significant improvements in DG, we highlight that there's still potential for improvement in generalizing to unknown domains through the exploration on data space. This paper introduces an objective rooted in both parameter and data perturbed regions for domain generalization, coined Unknown Domain Inconsistency Minimization (UDIM). UDIM reduces the loss landscape inconsistency between source domain and unknown domains. As unknown domains are inaccessible, these domains are empirically crafted by perturbing instances from the source domain dataset. In particular, by aligning the loss landscape acquired in the source domain to the loss landscape of perturbed domains, we expect to achieve generalization grounded on these flat minima for the unknown domains. Theoretically, we validate that merging SAM optimization with the UDIM objective establishes an upper bound for the true objective of the DG task. In an empirical aspect, UDIM consistently outperforms SAM variants across multiple DG benchmark datasets. Notably, UDIM shows statistically significant improvements in scenarios with more restrictive domain information, underscoring UDIM's generalization capability in unseen domains. Our code is available at https://github.com/SJShin-AI/UDIM.
From Words to Code: Harnessing Data for Program Synthesis from Natural Language
Creating programs to correctly manipulate data is a difficult task, as the underlying programming languages and APIs can be challenging to learn for many users who are not skilled programmers. Large language models (LLMs) demonstrate remarkable potential for generating code from natural language, but in the data manipulation domain, apart from the natural language (NL) description of the intended task, we also have the dataset on which the task is to be performed, or the "data context". Existing approaches have utilized data context in a limited way by simply adding relevant information from the input data into the prompts sent to the LLM. In this work, we utilize the available input data to execute the candidate programs generated by the LLMs and gather their outputs. We introduce semantic reranking, a technique to rerank the programs generated by LLMs based on three signals coming the program outputs: (a) semantic filtering and well-formedness based score tuning: do programs even generate well-formed outputs, (b) semantic interleaving: how do the outputs from different candidates compare to each other, and (c) output-based score tuning: how do the outputs compare to outputs predicted for the same task. We provide theoretical justification for semantic interleaving. We also introduce temperature mixing, where we combine samples generated by LLMs using both high and low temperatures. We extensively evaluate our approach in three domains, namely databases (SQL), data science (Pandas) and business intelligence (Excel's Power Query M) on a variety of new and existing benchmarks. We observe substantial gains across domains, with improvements of up to 45% in top-1 accuracy and 34% in top-3 accuracy.
Dynamic Data Mixing Maximizes Instruction Tuning for Mixture-of-Experts
Mixture-of-Experts (MoE) models have shown remarkable capability in instruction tuning, especially when the number of tasks scales. However, previous methods simply merge all training tasks (e.g. creative writing, coding, and mathematics) and apply fixed sampling weights, without considering the importance of different tasks as the model training state changes. In this way, the most helpful data cannot be effectively distinguished, leading to suboptimal model performance. To reduce the potential redundancies of datasets, we make the first attempt and propose a novel dynamic data mixture for MoE instruction tuning. Specifically, inspired by MoE's token routing preference, we build dataset-level representations and then capture the subtle differences among datasets. Finally, we propose to dynamically adjust the sampling weight of datasets by their inter-redundancies, thus maximizing global performance under a limited training budget. The experimental results on two MoE models demonstrate the effectiveness of our approach on both downstream knowledge \& reasoning tasks and open-ended queries. Code and models are available at https://github.com/Spico197/MoE-SFT .
Efficient Online Data Mixing For Language Model Pre-Training
The data used to pretrain large language models has a decisive impact on a model's downstream performance, which has led to a large body of work on data selection methods that aim to automatically determine the most suitable data to use for pretraining. Existing data selection methods suffer from slow and computationally expensive processes, a problem amplified by the increasing size of models and of pretraining datasets. Data mixing, on the other hand, reduces the complexity of data selection by grouping data points together and determining sampling probabilities across entire groups. However, data mixing proportions are typically fixed before training and therefore cannot adapt to changing training dynamics. To address these limitations, we develop an efficient algorithm for Online Data Mixing (ODM) that combines elements from both data selection and data mixing. Based on multi-armed bandit algorithms, our online approach optimizes the data mixing proportions during training. Remarkably, our method trains a model that reaches the final perplexity of the next best method with 19\% fewer training iterations, and improves performance on the 5-shot MMLU benchmark by 1.9% relative accuracy, while adding negligible wall-clock time during pretraining.
Does your data spark joy? Performance gains from domain upsampling at the end of training
Pretraining datasets for large language models (LLMs) have grown to trillions of tokens composed of large amounts of CommonCrawl (CC) web scrape along with smaller, domain-specific datasets. It is expensive to understand the impact of these domain-specific datasets on model capabilities as training at large FLOP scales is required to reveal significant changes to difficult and emergent benchmarks. Given the increasing cost of experimenting with pretraining data, how does one determine the optimal balance between the diversity in general web scrapes and the information density of domain specific data? In this work, we show how to leverage the smaller domain specific datasets by upsampling them relative to CC at the end of training to drive performance improvements on difficult benchmarks. This simple technique allows us to improve up to 6.90 pp on MMLU, 8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to the base data mix for a 7B model trained for 1 trillion (T) tokens, thus rivaling Llama-2 (7B)x2014a model trained for twice as long. We experiment with ablating the duration of domain upsampling from 5% to 30% of training and find that 10% to 20% percent is optimal for navigating the tradeoff between general language modeling capabilities and targeted benchmarks. We also use domain upsampling to characterize at scale the utility of individual datasets for improving various benchmarks by removing them during this final phase of training. This tool opens up the ability to experiment with the impact of different pretraining datasets at scale, but at an order of magnitude lower cost compared to full pretraining runs.
StyleDomain: Efficient and Lightweight Parameterizations of StyleGAN for One-shot and Few-shot Domain Adaptation
Domain adaptation of GANs is a problem of fine-tuning the state-of-the-art GAN models (e.g. StyleGAN) pretrained on a large dataset to a specific domain with few samples (e.g. painting faces, sketches, etc.). While there are a great number of methods that tackle this problem in different ways, there are still many important questions that remain unanswered. In this paper, we provide a systematic and in-depth analysis of the domain adaptation problem of GANs, focusing on the StyleGAN model. First, we perform a detailed exploration of the most important parts of StyleGAN that are responsible for adapting the generator to a new domain depending on the similarity between the source and target domains. As a result of this in-depth study, we propose new efficient and lightweight parameterizations of StyleGAN for domain adaptation. Particularly, we show there exist directions in StyleSpace (StyleDomain directions) that are sufficient for adapting to similar domains and they can be reduced further. For dissimilar domains, we propose Affine+ and AffineLight+ parameterizations that allows us to outperform existing baselines in few-shot adaptation with low data regime. Finally, we examine StyleDomain directions and discover their many surprising properties that we apply for domain mixing and cross-domain image morphing.
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
Complex, temporally evolving phenomena, from climate to brain activity, are governed by dynamical systems (DS). DS reconstruction (DSR) seeks to infer generative surrogate models of these from observed data, reproducing their long-term behavior. Existing DSR approaches require purpose-training for any new system observed, lacking the zero-shot and in-context inference capabilities known from LLMs. Here we introduce DynaMix, a novel multivariate ALRNN-based mixture-of-experts architecture pre-trained for DSR, the first DSR model able to generalize zero-shot to out-of-domain DS. Just from a provided context signal, without any re-training, DynaMix faithfully forecasts the long-term evolution of novel DS where existing time series (TS) foundation models, like Chronos, fail -- at a fraction of the number of parameters and orders of magnitude faster inference times. DynaMix outperforms TS foundation models in terms of long-term statistics, and often also short-term forecasts, even on real-world time series, like traffic or weather data, typically used for training and evaluating TS models, but not at all part of DynaMix' training corpus. We illustrate some of the failure modes of TS models for DSR problems, and conclude that models built on DS principles may bear a huge potential also for advancing the TS prediction field.
SaulLM-54B & SaulLM-141B: Scaling Up Domain Adaptation for the Legal Domain
In this paper, we introduce SaulLM-54B and SaulLM-141B, two large language models (LLMs) tailored for the legal sector. These models, which feature architectures of 54 billion and 141 billion parameters, respectively, are based on the Mixtral architecture. The development of SaulLM-54B and SaulLM-141B is guided by large-scale domain adaptation, divided into three strategies: (1) the exploitation of continued pretraining involving a base corpus that includes over 540 billion of legal tokens, (2) the implementation of a specialized legal instruction-following protocol, and (3) the alignment of model outputs with human preferences in legal interpretations. The integration of synthetically generated data in the second and third steps enhances the models' capabilities in interpreting and processing legal texts, effectively reaching state-of-the-art performance and outperforming previous open-source models on LegalBench-Instruct. This work explores the trade-offs involved in domain-specific adaptation at this scale, offering insights that may inform future studies on domain adaptation using strong decoder models. Building upon SaulLM-7B, this study refines the approach to produce an LLM better equipped for legal tasks. We are releasing base, instruct, and aligned versions on top of SaulLM-54B and SaulLM-141B under the MIT License to facilitate reuse and collaborative research.
SUMix: Mixup with Semantic and Uncertain Information
Mixup data augmentation approaches have been applied for various tasks of deep learning to improve the generalization ability of deep neural networks. Some existing approaches CutMix, SaliencyMix, etc. randomly replace a patch in one image with patches from another to generate the mixed image. Similarly, the corresponding labels are linearly combined by a fixed ratio lambda by l. The objects in two images may be overlapped during the mixing process, so some semantic information is corrupted in the mixed samples. In this case, the mixed image does not match the mixed label information. Besides, such a label may mislead the deep learning model training, which results in poor performance. To solve this problem, we proposed a novel approach named SUMix to learn the mixing ratio as well as the uncertainty for the mixed samples during the training process. First, we design a learnable similarity function to compute an accurate mix ratio. Second, an approach is investigated as a regularized term to model the uncertainty of the mixed samples. We conduct experiments on five image benchmarks, and extensive experimental results imply that our method is capable of improving the performance of classifiers with different cutting-based mixup approaches. The source code is available at https://github.com/JinXins/SUMix.
A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
Domain Expansion of Image Generators
Can one inject new concepts into an already trained generative model, while respecting its existing structure and knowledge? We propose a new task - domain expansion - to address this. Given a pretrained generator and novel (but related) domains, we expand the generator to jointly model all domains, old and new, harmoniously. First, we note the generator contains a meaningful, pretrained latent space. Is it possible to minimally perturb this hard-earned representation, while maximally representing the new domains? Interestingly, we find that the latent space offers unused, "dormant" directions, which do not affect the output. This provides an opportunity: By "repurposing" these directions, we can represent new domains without perturbing the original representation. In fact, we find that pretrained generators have the capacity to add several - even hundreds - of new domains! Using our expansion method, one "expanded" model can supersede numerous domain-specific models, without expanding the model size. Additionally, a single expanded generator natively supports smooth transitions between domains, as well as composition of domains. Code and project page available at https://yotamnitzan.github.io/domain-expansion/.
Input Domain Aware MoE: Decoupling Routing Decisions from Task Optimization in Mixture of Experts
Sparse Mixture of Experts (sMoE) has become a pivotal approach for scaling large vision-language models, offering substantial capacity while maintaining computational efficiency through dynamic, sparse activation of experts. However, existing routing mechanisms, typically based on similarity scoring, struggle to effectively capture the underlying input structure. This limitation leads to a trade-off between expert specialization and balanced computation, hindering both scalability and performance. We propose Input Domain Aware MoE, a novel routing framework that leverages a probabilistic mixture model to better partition the input space. By modeling routing probabilities as a mixture of distributions, our method enables experts to develop clear specialization boundaries while achieving balanced utilization. Unlike conventional approaches, our routing mechanism is trained independently of task-specific objectives, allowing for stable optimization and decisive expert assignments. Empirical results on vision-language tasks demonstrate that our method consistently outperforms existing sMoE approaches, achieving higher task performance and improved expert utilization balance.
Nexus: Specialization meets Adaptability for Efficiently Training Mixture of Experts
Efficiency, specialization, and adaptability to new data distributions are qualities that are hard to combine in current Large Language Models. The Mixture of Experts (MoE) architecture has been the focus of significant research because its inherent conditional computation enables such desirable properties. In this work, we focus on "upcycling" dense expert models into an MoE, aiming to improve specialization while also adding the ability to adapt to new tasks easily. We introduce Nexus, an enhanced MoE architecture with adaptive routing where the model learns to project expert embeddings from domain representations. This approach allows Nexus to flexibly add new experts after the initial upcycling through separately trained dense models, without requiring large-scale MoE training for unseen data domains. Our experiments show that Nexus achieves a relative gain of up to 2.1% over the baseline for initial upcycling, and a 18.8% relative gain for extending the MoE with a new expert by using limited finetuning data. This flexibility of Nexus is crucial to enable an open-source ecosystem where every user continuously assembles their own MoE-mix according to their needs.
Only-IF:Revealing the Decisive Effect of Instruction Diversity on Generalization
Understanding and accurately following instructions is critical for large language models (LLMs) to be effective across diverse tasks. In this work, we rigorously examine the key factors that enable models to generalize to unseen instructions, providing insights to guide the collection of data for instruction-tuning. Through controlled experiments, inspired by the Turing-complete Markov algorithm, we demonstrate that such generalization only emerges when training data is diversified enough across semantic domains. Our findings also reveal that merely diversifying within limited domains fails to ensure robust generalization. In contrast, cross-domain data diversification, even under constrained data budgets, significantly enhances a model's adaptability. We further extend our analysis to real-world scenarios, including fine-tuning of $textbf{specialist} and textbf{generalist}$ models. In both cases, we demonstrate that 1) better performance can be achieved by increasing the diversity of an established dataset while keeping the data size constant, and 2) when scaling up the data, diversifying the semantics of instructions is more effective than simply increasing the quantity of similar data. Our research provides important insights for dataset collation, particularly when optimizing model performance by expanding training data for both specialist and generalist scenarios. We show that careful consideration of data diversification is key: training specialist models with data extending beyond their core domain leads to significant performance improvements, while generalist models benefit from diverse data mixtures that enhance their overall instruction-following capabilities across a wide range of applications. Our results highlight the critical role of strategic diversification and offer clear guidelines for improving data quality.
Data Engineering for Scaling Language Models to 128K Context
We study the continual pretraining recipe for scaling language models' context lengths to 128K, with a focus on data engineering. We hypothesize that long context modeling, in particular the ability to utilize information at arbitrary input locations, is a capability that is mostly already acquired through large-scale pretraining, and that this capability can be readily extended to contexts substantially longer than seen during training~(e.g., 4K to 128K) through lightweight continual pretraining on appropriate data mixture. We investigate the quantity and quality of the data for continual pretraining: (1) for quantity, we show that 500 million to 5 billion tokens are enough to enable the model to retrieve information anywhere within the 128K context; (2) for quality, our results equally emphasize domain balance and length upsampling. Concretely, we find that naively upsampling longer data on certain domains like books, a common practice of existing work, gives suboptimal performance, and that a balanced domain mixture is important. We demonstrate that continual pretraining of the full model on 1B-5B tokens of such data is an effective and affordable strategy for scaling the context length of language models to 128K. Our recipe outperforms strong open-source long-context models and closes the gap to frontier models like GPT-4 128K.
INRFlow: Flow Matching for INRs in Ambient Space
Flow matching models have emerged as a powerful method for generative modeling on domains like images or videos, and even on irregular or unstructured data like 3D point clouds or even protein structures. These models are commonly trained in two stages: first, a data compressor is trained, and in a subsequent training stage a flow matching generative model is trained in the latent space of the data compressor. This two-stage paradigm sets obstacles for unifying models across data domains, as hand-crafted compressors architectures are used for different data modalities. To this end, we introduce INRFlow, a domain-agnostic approach to learn flow matching transformers directly in ambient space. Drawing inspiration from INRs, we introduce a conditionally independent point-wise training objective that enables INRFlow to make predictions continuously in coordinate space. Our empirical results demonstrate that INRFlow effectively handles different data modalities such as images, 3D point clouds and protein structure data, achieving strong performance in different domains and outperforming comparable approaches. INRFlow is a promising step towards domain-agnostic flow matching generative models that can be trivially adopted in different data domains.
Un-Mixing Test-Time Normalization Statistics: Combatting Label Temporal Correlation
Recent test-time adaptation methods heavily rely on nuanced adjustments of batch normalization (BN) parameters. However, one critical assumption often goes overlooked: that of independently and identically distributed (i.i.d.) test batches with respect to unknown labels. This oversight leads to skewed BN statistics and undermines the reliability of the model under non-i.i.d. scenarios. To tackle this challenge, this paper presents a novel method termed 'Un-Mixing Test-Time Normalization Statistics' (UnMix-TNS). Our method re-calibrates the statistics for each instance within a test batch by mixing it with multiple distinct statistics components, thus inherently simulating the i.i.d. scenario. The core of this method hinges on a distinctive online unmixing procedure that continuously updates these statistics components by incorporating the most similar instances from new test batches. Remarkably generic in its design, UnMix-TNS seamlessly integrates with a wide range of leading test-time adaptation methods and pre-trained architectures equipped with BN layers. Empirical evaluations corroborate the robustness of UnMix-TNS under varied scenarios-ranging from single to continual and mixed domain shifts, particularly excelling with temporally correlated test data and corrupted non-i.i.d. real-world streams. This adaptability is maintained even with very small batch sizes or single instances. Our results highlight UnMix-TNS's capacity to markedly enhance stability and performance across various benchmarks. Our code is publicly available at https://github.com/devavratTomar/unmixtns.
Stochastic Process Learning via Operator Flow Matching
Expanding on neural operators, we propose a novel framework for stochastic process learning across arbitrary domains. In particular, we develop operator flow matching (OFM) for learning stochastic process priors on function spaces. OFM provides the probability density of the values of any collection of points and enables mathematically tractable functional regression at new points with mean and density estimation. Our method outperforms state-of-the-art models in stochastic process learning, functional regression, and prior learning.
Selecting and Merging: Towards Adaptable and Scalable Named Entity Recognition with Large Language Models
Supervised fine-tuning (SFT) is widely used to align large language models (LLMs) with information extraction (IE) tasks, such as named entity recognition (NER). However, annotating such fine-grained labels and training domain-specific models is costly. Existing works typically train a unified model across multiple domains, but such approaches lack adaptation and scalability since not all training data benefits target domains and scaling trained models remains challenging. We propose the SaM framework, which dynamically Selects and Merges expert models at inference time. Specifically, for a target domain, we select domain-specific experts pre-trained on existing domains based on (i) domain similarity to the target domain and (ii) performance on sampled instances, respectively. The experts are then merged to create task-specific models optimized for the target domain. By dynamically merging experts beneficial to target domains, we improve generalization across various domains without extra training. Additionally, experts can be added or removed conveniently, leading to great scalability. Extensive experiments on multiple benchmarks demonstrate our framework's effectiveness, which outperforms the unified model by an average of 10%. We further provide insights into potential improvements, practical experience, and extensions of our framework.
Test-Time Style Shifting: Handling Arbitrary Styles in Domain Generalization
In domain generalization (DG), the target domain is unknown when the model is being trained, and the trained model should successfully work on an arbitrary (and possibly unseen) target domain during inference. This is a difficult problem, and despite active studies in recent years, it remains a great challenge. In this paper, we take a simple yet effective approach to tackle this issue. We propose test-time style shifting, which shifts the style of the test sample (that has a large style gap with the source domains) to the nearest source domain that the model is already familiar with, before making the prediction. This strategy enables the model to handle any target domains with arbitrary style statistics, without additional model update at test-time. Additionally, we propose style balancing, which provides a great platform for maximizing the advantage of test-time style shifting by handling the DG-specific imbalance issues. The proposed ideas are easy to implement and successfully work in conjunction with various other DG schemes. Experimental results on different datasets show the effectiveness of our methods.
LLM Pretraining with Continuous Concepts
Next token prediction has been the standard training objective used in large language model pretraining. Representations are learned as a result of optimizing for token-level perplexity. We propose Continuous Concept Mixing (CoCoMix), a novel pretraining framework that combines discrete next token prediction with continuous concepts. Specifically, CoCoMix predicts continuous concepts learned from a pretrained sparse autoencoder and mixes them into the model's hidden state by interleaving with token hidden representations. Through experiments on multiple benchmarks, including language modeling and downstream reasoning tasks, we show that CoCoMix is more sample efficient and consistently outperforms standard next token prediction, knowledge distillation and inserting pause tokens. We find that combining both concept learning and interleaving in an end-to-end framework is critical to performance gains. Furthermore, CoCoMix enhances interpretability and steerability by allowing direct inspection and modification of the predicted concept, offering a transparent way to guide the model's internal reasoning process.
Souper-Model: How Simple Arithmetic Unlocks State-of-the-Art LLM Performance
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains, but their training remains resource- and time-intensive, requiring massive compute power and careful orchestration of training procedures. Model souping-the practice of averaging weights from multiple models of the same architecture-has emerged as a promising pre- and post-training technique that can enhance performance without expensive retraining. In this paper, we introduce Soup Of Category Experts (SoCE), a principled approach for model souping that utilizes benchmark composition to identify optimal model candidates and applies non-uniform weighted averaging to maximize performance. Contrary to previous uniform-averaging approaches, our method leverages the observation that benchmark categories often exhibit low inter-correlations in model performance. SoCE identifies "expert" models for each weakly-correlated category cluster and combines them using optimized weighted averaging rather than uniform weights. We demonstrate that the proposed method improves performance and robustness across multiple domains, including multilingual capabilities, tool calling, and math and achieves state-of-the-art results on the Berkeley Function Calling Leaderboard.
M2D2: A Massively Multi-domain Language Modeling Dataset
We present M2D2, a fine-grained, massively multi-domain corpus for studying domain adaptation in language models (LMs). M2D2 consists of 8.5B tokens and spans 145 domains extracted from Wikipedia and Semantic Scholar. Using ontologies derived from Wikipedia and ArXiv categories, we organize the domains in each data source into 22 groups. This two-level hierarchy enables the study of relationships between domains and their effects on in- and out-of-domain performance after adaptation. We also present a number of insights into the nature of effective domain adaptation in LMs, as examples of the new types of studies M2D2 enables. To improve in-domain performance, we show the benefits of adapting the LM along a domain hierarchy; adapting to smaller amounts of fine-grained domain-specific data can lead to larger in-domain performance gains than larger amounts of weakly relevant data. We further demonstrate a trade-off between in-domain specialization and out-of-domain generalization within and across ontologies, as well as a strong correlation between out-of-domain performance and lexical overlap between domains.
It Takes Two to Tango: Mixup for Deep Metric Learning
Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated loss functions or mining strategies. On the one hand, metric learning losses consider two or more examples at a time. On the other hand, modern data augmentation methods for classification consider two or more examples at a time. The combination of the two ideas is under-studied. In this work, we aim to bridge this gap and improve representations using mixup, which is a powerful data augmentation approach interpolating two or more examples and corresponding target labels at a time. This task is challenging because unlike classification, the loss functions used in metric learning are not additive over examples, so the idea of interpolating target labels is not straightforward. To the best of our knowledge, we are the first to investigate mixing both examples and target labels for deep metric learning. We develop a generalized formulation that encompasses existing metric learning loss functions and modify it to accommodate for mixup, introducing Metric Mix, or Metrix. We also introduce a new metric - utilization, to demonstrate that by mixing examples during training, we are exploring areas of the embedding space beyond the training classes, thereby improving representations. To validate the effect of improved representations, we show that mixing inputs, intermediate representations or embeddings along with target labels significantly outperforms state-of-the-art metric learning methods on four benchmark deep metric learning datasets.
Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing
Unsupervised domain adaptation which aims to adapt models trained on a labeled source domain to a completely unlabeled target domain has attracted much attention in recent years. While many domain adaptation techniques have been proposed for images, the problem of unsupervised domain adaptation in videos remains largely underexplored. In this paper, we introduce Contrast and Mix (CoMix), a new contrastive learning framework that aims to learn discriminative invariant feature representations for unsupervised video domain adaptation. First, unlike existing methods that rely on adversarial learning for feature alignment, we utilize temporal contrastive learning to bridge the domain gap by maximizing the similarity between encoded representations of an unlabeled video at two different speeds as well as minimizing the similarity between different videos played at different speeds. Second, we propose a novel extension to the temporal contrastive loss by using background mixing that allows additional positives per anchor, thus adapting contrastive learning to leverage action semantics shared across both domains. Moreover, we also integrate a supervised contrastive learning objective using target pseudo-labels to enhance discriminability of the latent space for video domain adaptation. Extensive experiments on several benchmark datasets demonstrate the superiority of our proposed approach over state-of-the-art methods. Project page: https://cvir.github.io/projects/comix
MetaMixer Is All You Need
Transformer, composed of self-attention and Feed-Forward Network, has revolutionized the landscape of network design across various vision tasks. FFN is a versatile operator seamlessly integrated into nearly all AI models to effectively harness rich representations. Recent works also show that FFN functions like key-value memories. Thus, akin to the query-key-value mechanism within self-attention, FFN can be viewed as a memory network, where the input serves as query and the two projection weights operate as keys and values, respectively. We hypothesize that the importance lies in query-key-value framework itself rather than in self-attention. To verify this, we propose converting self-attention into a more FFN-like efficient token mixer with only convolutions while retaining query-key-value framework, namely FFNification. Specifically, FFNification replaces query-key and attention coefficient-value interactions with large kernel convolutions and adopts GELU activation function instead of softmax. The derived token mixer, FFNified attention, serves as key-value memories for detecting locally distributed spatial patterns, and operates in the opposite dimension to the ConvNeXt block within each corresponding sub-operation of the query-key-value framework. Building upon the above two modules, we present a family of Fast-Forward Networks. Our FFNet achieves remarkable performance improvements over previous state-of-the-art methods across a wide range of tasks. The strong and general performance of our proposed method validates our hypothesis and leads us to introduce MetaMixer, a general mixer architecture that does not specify sub-operations within the query-key-value framework. We show that using only simple operations like convolution and GELU in the MetaMixer can achieve superior performance.
Mixture-of-Recursions: Learning Dynamic Recursive Depths for Adaptive Token-Level Computation
Scaling language models unlocks impressive capabilities, but the accompanying computational and memory demands make both training and deployment expensive. Existing efficiency efforts typically target either parameter sharing or adaptive computation, leaving open the question of how to attain both simultaneously. We introduce Mixture-of-Recursions (MoR), a unified framework that combines the two axes of efficiency inside a single Recursive Transformer. MoR reuses a shared stack of layers across recursion steps to achieve parameter efficiency, while lightweight routers enable adaptive token-level thinking by dynamically assigning different recursion depths to individual tokens. This allows MoR to focus quadratic attention computation only among tokens still active at a given recursion depth, further improving memory access efficiency by selectively caching only their key-value pairs. Beyond these core mechanisms, we also propose a KV sharing variant that reuses KV pairs from the first recursion, specifically designed to decrease prefill latency and memory footprint. Across model scales ranging from 135M to 1.7B parameters, MoR forms a new Pareto frontier: at equal training FLOPs and smaller model sizes, it significantly lowers validation perplexity and improves few-shot accuracy, while delivering higher throughput compared with vanilla and existing recursive baselines. These gains demonstrate that MoR is an effective path towards large-model quality without incurring large-model cost.
MoE-Pruner: Pruning Mixture-of-Experts Large Language Model using the Hints from Its Router
Mixture-of-Experts (MoE) architectures face challenges such as high memory consumption and redundancy in experts. Pruning MoE can reduce network weights while maintaining model performance. Motivated by the recent observation of emergent large magnitude features in Large Language Models (LLM) and MoE routing policy, we propose MoE-Pruner, a method that prunes weights with the smallest magnitudes multiplied by the corresponding input activations and router weights, on each output neuron. Our pruning method is one-shot, requiring no retraining or weight updates. We evaluate our method on Mixtral-8x7B and Mixtral-8x22B across multiple language benchmarks. Experimental results show that our pruning method significantly outperforms state-of-the-art LLM pruning methods. Furthermore, our pruned MoE models can benefit from a pretrained teacher model through expert-wise knowledge distillation, improving performance post-pruning. Experimental results demonstrate that the Mixtral-8x7B model with 50% sparsity maintains 99% of the performance of the original model after the expert-wise knowledge distillation.
MambaMixer: Efficient Selective State Space Models with Dual Token and Channel Selection
Recent advances in deep learning have mainly relied on Transformers due to their data dependency and ability to learn at scale. The attention module in these architectures, however, exhibits quadratic time and space in input size, limiting their scalability for long-sequence modeling. Despite recent attempts to design efficient and effective architecture backbone for multi-dimensional data, such as images and multivariate time series, existing models are either data independent, or fail to allow inter- and intra-dimension communication. Recently, State Space Models (SSMs), and more specifically Selective State Space Models, with efficient hardware-aware implementation, have shown promising potential for long sequence modeling. Motivated by the success of SSMs, we present MambaMixer, a new architecture with data-dependent weights that uses a dual selection mechanism across tokens and channels, called Selective Token and Channel Mixer. MambaMixer connects selective mixers using a weighted averaging mechanism, allowing layers to have direct access to early features. As a proof of concept, we design Vision MambaMixer (ViM2) and Time Series MambaMixer (TSM2) architectures based on the MambaMixer block and explore their performance in various vision and time series forecasting tasks. Our results underline the importance of selective mixing across both tokens and channels. In ImageNet classification, object detection, and semantic segmentation tasks, ViM2 achieves competitive performance with well-established vision models and outperforms SSM-based vision models. In time series forecasting, TSM2 achieves outstanding performance compared to state-of-the-art methods while demonstrating significantly improved computational cost. These results show that while Transformers, cross-channel attention, and MLPs are sufficient for good performance in time series forecasting, neither is necessary.
Peregrine: A Pattern-Aware Graph Mining System
Graph mining workloads aim to extract structural properties of a graph by exploring its subgraph structures. General purpose graph mining systems provide a generic runtime to explore subgraph structures of interest with the help of user-defined functions that guide the overall exploration process. However, the state-of-the-art graph mining systems remain largely oblivious to the shape (or pattern) of the subgraphs that they mine. This causes them to: (a) explore unnecessary subgraphs; (b) perform expensive computations on the explored subgraphs; and, (c) hold intermediate partial subgraphs in memory; all of which affect their overall performance. Furthermore, their programming models are often tied to their underlying exploration strategies, which makes it difficult for domain users to express complex mining tasks. In this paper, we develop Peregrine, a pattern-aware graph mining system that directly explores the subgraphs of interest while avoiding exploration of unnecessary subgraphs, and simultaneously bypassing expensive computations throughout the mining process. We design a pattern-based programming model that treats "graph patterns" as first class constructs and enables Peregrine to extract the semantics of patterns, which it uses to guide its exploration. Our evaluation shows that Peregrine outperforms state-of-the-art distributed and single machine graph mining systems, and scales to complex mining tasks on larger graphs, while retaining simplicity and expressivity with its "pattern-first" programming approach.
MergeMix: A Unified Augmentation Paradigm for Visual and Multi-Modal Understanding
Vision-language alignment in multi-modal large language models (MLLMs) typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). SFT is stable and efficient but requires large-scale human annotations and cannot capture subtle preferences, while RL brings in a reward signal for training, but suffers from overhead and instability. These limitations highlight a trade-off between scalability, robustness, and alignment quality. To address this, we propose MergeMix, a training-time augmentation paradigm that bridges SFT and RL. It first applies an attention-aware image mixing via token merge with more cluster representation and spatial context, and then presents a preference-driven training paradigm for MLLMs by building preference pairs with mixed images and raw images, and optimizing via SimPO loss. As a mixup augmentation, MergeMix enhances attention consistency and efficiency, surpassing other heuristic-based methods in classification. Extensive experiments demonstrate that MergeMix achieves competitive accuracy with improved efficiency, providing a scalable approach to preference alignment in classification and MLLMs.
Contrastive Learning and Mixture of Experts Enables Precise Vector Embeddings
The advancement of transformer neural networks has significantly elevated the capabilities of sentence similarity models, particularly in creating effective vector representations of natural language inputs. However, these models face notable challenges in domain-specific contexts, especially in highly specialized scientific sub-fields. Traditional methods often struggle in this regime, either overgeneralizing similarities within a niche or being overly sensitive to minor differences, resulting in inaccurate text classification and subpar vector representation. In an era where retrieval augmentation and search are increasingly crucial, precise and concise numerical representations are essential. In this paper, we target this issue by assembling niche datasets using co-citations as a similarity metric, focusing on biomedical domains. We employ two key strategies for fine-tuning state-of-the-art models: 1. Domain-specific Fine-Tuning, which tailors pretrained models to a single domain, and 2. Universal Applicability with Mixture of Experts (MoE), adapting pretrained models with enforced routing for multiple domains simultaneously. Our training approach emphasizes the use of abstracts for faster training, incorporating Multiple Negative Rankings loss for efficient contrastive learning. Notably, our MoE variants, equipped with N experts, achieve the efficacy of N individual models, heralding a new era of versatile, One-Size-Fits-All transformer networks for various tasks. This methodology marks significant advancements in scientific text classification metrics and holds promise for enhancing vector database search and compilation.
Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series
Large pre-trained models for zero/few-shot learning excel in language and vision domains but encounter challenges in multivariate time series (TS) due to the diverse nature and scarcity of publicly available pre-training data. Consequently, there has been a recent surge in utilizing pre-trained large language models (LLMs) with token adaptations for TS forecasting. These approaches employ cross-domain transfer learning and surprisingly yield impressive results. However, these models are typically very slow and large (~billion parameters) and do not consider cross-channel correlations. To address this, we present Tiny Time Mixers (TTM), a significantly small model based on the lightweight TSMixer architecture. TTM marks the first success in developing fast and tiny general pre-trained models (<1M parameters), exclusively trained on public TS datasets, with effective transfer learning capabilities for forecasting. To tackle the complexity of pre-training on multiple datasets with varied temporal resolutions, we introduce several novel enhancements such as adaptive patching, dataset augmentation via downsampling, and resolution prefix tuning. Moreover, we employ a multi-level modeling strategy to effectively model channel correlations and infuse exogenous signals during fine-tuning, a crucial capability lacking in existing benchmarks. TTM shows significant accuracy gains (12-38\%) over popular benchmarks in few/zero-shot forecasting. It also drastically reduces the compute needs as compared to LLM-TS methods, with a 14X cut in learnable parameters, 106X less total parameters, and substantial reductions in fine-tuning (65X) and inference time (54X). In fact, TTM's zero-shot often surpasses the few-shot results in many popular benchmarks, highlighting the efficacy of our approach. Code and pre-trained models will be open-sourced.
CMR Scaling Law: Predicting Critical Mixture Ratios for Continual Pre-training of Language Models
Large Language Models (LLMs) excel in diverse tasks but often underperform in specialized fields due to limited domain-specific or proprietary corpus. Continual pre-training (CPT) enhances LLM capabilities by imbuing new domain-specific or proprietary knowledge while replaying general corpus to prevent catastrophic forgetting. The data mixture ratio of general corpus and domain-specific corpus, however, has been chosen heuristically, leading to sub-optimal training efficiency in practice. In this context, we attempt to re-visit the scaling behavior of LLMs under the hood of CPT, and discover a power-law relationship between loss, mixture ratio, and training tokens scale. We formalize the trade-off between general and domain-specific capabilities, leading to a well-defined Critical Mixture Ratio (CMR) of general and domain data. By striking the balance, CMR maintains the model's general ability and achieves the desired domain transfer, ensuring the highest utilization of available resources. Considering the balance between efficiency and effectiveness, CMR can be regarded as the optimal mixture ratio. Through extensive experiments, we ascertain the predictability of CMR, propose CMR scaling law and have substantiated its generalization. These findings offer practical guidelines for optimizing LLM training in specialized domains, ensuring both general and domain-specific performance while efficiently managing training resources.
The Construction of Instruction-tuned LLMs for Finance without Instruction Data Using Continual Pretraining and Model Merging
This paper proposes a novel method for constructing instruction-tuned large language models (LLMs) for finance without instruction data. Traditionally, developing such domain-specific LLMs has been resource-intensive, requiring a large dataset and significant computational power for continual pretraining and instruction tuning. Our study proposes a simpler approach that combines domain-specific continual pretraining with model merging. Given that general-purpose pretrained LLMs and their instruction-tuned LLMs are often publicly available, they can be leveraged to obtain the necessary instruction task vector. By merging this with a domain-specific pretrained vector, we can effectively create instruction-tuned LLMs for finance without additional instruction data. Our process involves two steps: first, we perform continual pretraining on financial data; second, we merge the instruction-tuned vector with the domain-specific pretrained vector. Our experiments demonstrate the successful construction of instruction-tuned LLMs for finance. One major advantage of our method is that the instruction-tuned and domain-specific pretrained vectors are nearly independent. This independence makes our approach highly effective. The Japanese financial instruction-tuned LLMs we developed in this study are available at https://huggingface.co/pfnet/nekomata-14b-pfn-qfin-inst-merge.
Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects
We propose an end-to-end music mixing style transfer system that converts the mixing style of an input multitrack to that of a reference song. This is achieved with an encoder pre-trained with a contrastive objective to extract only audio effects related information from a reference music recording. All our models are trained in a self-supervised manner from an already-processed wet multitrack dataset with an effective data preprocessing method that alleviates the data scarcity of obtaining unprocessed dry data. We analyze the proposed encoder for the disentanglement capability of audio effects and also validate its performance for mixing style transfer through both objective and subjective evaluations. From the results, we show the proposed system not only converts the mixing style of multitrack audio close to a reference but is also robust with mixture-wise style transfer upon using a music source separation model.
CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training
Pre-training datasets are typically collected from web content and lack inherent domain divisions. For instance, widely used datasets like Common Crawl do not include explicit domain labels, while manually curating labeled datasets such as The Pile is labor-intensive. Consequently, identifying an optimal pre-training data mixture remains a challenging problem, despite its significant benefits for pre-training performance. To address these challenges, we propose CLustering-based Iterative Data Mixture Bootstrapping (CLIMB), an automated framework that discovers, evaluates, and refines data mixtures in a pre-training setting. Specifically, CLIMB embeds and clusters large-scale datasets in a semantic space and then iteratively searches for optimal mixtures using a smaller proxy model and a predictor. When continuously trained on 400B tokens with this mixture, our 1B model exceeds the state-of-the-art Llama-3.2-1B by 2.0%. Moreover, we observe that optimizing for a specific domain (e.g., Social Sciences) yields a 5% improvement over random sampling. Finally, we introduce ClimbLab, a filtered 1.2-trillion-token corpus with 20 clusters as a research playground, and ClimbMix, a compact yet powerful 400-billion-token dataset designed for efficient pre-training that delivers superior performance under an equal token budget. We analyze the final data mixture, elucidating the characteristics of an optimal data mixture. Our data is available at: https://research.nvidia.com/labs/lpr/climb/
Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts
In this paper, we tackle the problem of domain shift. Most existing methods perform training on multiple source domains using a single model, and the same trained model is used on all unseen target domains. Such solutions are sub-optimal as each target domain exhibits its own specialty, which is not adapted. Furthermore, expecting single-model training to learn extensive knowledge from multiple source domains is counterintuitive. The model is more biased toward learning only domain-invariant features and may result in negative knowledge transfer. In this work, we propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process to address domain shift. Specifically, we incorporate Mixture-of-Experts (MoE) as teachers, where each expert is separately trained on different source domains to maximize their specialty. Given a test-time target domain, a small set of unlabeled data is sampled to query the knowledge from MoE. As the source domains are correlated to the target domains, a transformer-based aggregator then combines the domain knowledge by examining the interconnection among them. The output is treated as a supervision signal to adapt a student prediction network toward the target domain. We further employ meta-learning to enforce the aggregator to distill positive knowledge and the student network to achieve fast adaptation. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art and validates the effectiveness of each proposed component. Our code is available at https://github.com/n3il666/Meta-DMoE.
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
In deep learning, models typically reuse the same parameters for all inputs. Mixture of Experts (MoE) defies this and instead selects different parameters for each incoming example. The result is a sparsely-activated model -- with outrageous numbers of parameters -- but a constant computational cost. However, despite several notable successes of MoE, widespread adoption has been hindered by complexity, communication costs and training instability -- we address these with the Switch Transformer. We simplify the MoE routing algorithm and design intuitive improved models with reduced communication and computational costs. Our proposed training techniques help wrangle the instabilities and we show large sparse models may be trained, for the first time, with lower precision (bfloat16) formats. We design models based off T5-Base and T5-Large to obtain up to 7x increases in pre-training speed with the same computational resources. These improvements extend into multilingual settings where we measure gains over the mT5-Base version across all 101 languages. Finally, we advance the current scale of language models by pre-training up to trillion parameter models on the "Colossal Clean Crawled Corpus" and achieve a 4x speedup over the T5-XXL model.
ADMIRE-BayesOpt: Accelerated Data MIxture RE-weighting for Language Models with Bayesian Optimization
Determining the optimal data mixture for large language model training remains a challenging problem with an outsized impact on performance. In practice, language model developers continue to rely on heuristic exploration since no learning-based approach has emerged as a reliable solution. In this work, we propose to view the selection of training data mixtures as a black-box hyperparameter optimization problem, for which Bayesian Optimization is a well-established class of appropriate algorithms. Firstly, we cast data mixture learning as a sequential decision-making problem, in which we aim to find a suitable trade-off between the computational cost of training exploratory (proxy-) models and final mixture performance. Secondly, we systematically explore the properties of transferring mixtures learned at a small scale to larger-scale experiments, providing insights and highlighting opportunities for research at a modest scale. By proposing Multi-fidelity Bayesian Optimization as a suitable method in this common scenario, we introduce a natural framework to balance experiment cost with model fit, avoiding the risks of overfitting to smaller scales while minimizing the number of experiments at high cost. We present results for pre-training and instruction finetuning across models ranging from 1 million to 7 billion parameters, varying from simple architectures to state-of-the-art models and benchmarks spanning dozens of datasets. We demonstrate consistently strong results relative to a wide range of baselines, resulting inspeed-ups of over 500% in determining the best data mixture on our largest experiments. In addition, we broaden access to research by sharing ADMIRE IFT Runs, a dataset of 460 full training & evaluation runs worth over 13,000 GPU hours, greatly reducing the cost of conducting research in this area.
Boosting Domain Incremental Learning: Selecting the Optimal Parameters is All You Need
Deep neural networks (DNNs) often underperform in real-world, dynamic settings where data distributions change over time. Domain Incremental Learning (DIL) offers a solution by enabling continual model adaptation, with Parameter-Isolation DIL (PIDIL) emerging as a promising paradigm to reduce knowledge conflicts. However, existing PIDIL methods struggle with parameter selection accuracy, especially as the number of domains and corresponding classes grows. To address this, we propose SOYO, a lightweight framework that improves domain selection in PIDIL. SOYO introduces a Gaussian Mixture Compressor (GMC) and Domain Feature Resampler (DFR) to store and balance prior domain data efficiently, while a Multi-level Domain Feature Fusion Network (MDFN) enhances domain feature extraction. Our framework supports multiple Parameter-Efficient Fine-Tuning (PEFT) methods and is validated across tasks such as image classification, object detection, and speech enhancement. Experimental results on six benchmarks demonstrate SOYO's consistent superiority over existing baselines, showcasing its robustness and adaptability in complex, evolving environments. The codes will be released in https://github.com/qwangcv/SOYO.
JustDense: Just using Dense instead of Sequence Mixer for Time Series analysis
Sequence and channel mixers, the core mechanism in sequence models, have become the de facto standard in time series analysis (TSA). However, recent studies have questioned the necessity of complex sequence mixers, such as attention mechanisms, demonstrating that simpler architectures can achieve comparable or even superior performance. This suggests that the benefits attributed to complex sequencemixers might instead emerge from other architectural or optimization factors. Based on this observation, we pose a central question: Are common sequence mixers necessary for time-series analysis? Therefore, we propose JustDense, an empirical study that systematically replaces sequence mixers in various well-established TSA models with dense layers. Grounded in the MatrixMixer framework, JustDense treats any sequence mixer as a mixing matrix and replaces it with a dense layer. This substitution isolates the mixing operation, enabling a clear theoretical foundation for understanding its role. Therefore, we conducted extensive experiments on 29 benchmarks covering five representative TSA tasks using seven state-of-the-art TSA models to address our research question. The results show that replacing sequence mixers with dense layers yields comparable or even superior performance. In the cases where dedicated sequence mixers still offer benefits, JustDense challenges the assumption that "deeper and more complex architectures are inherently better" in TSA.
A Comparative Study of DSL Code Generation: Fine-Tuning vs. Optimized Retrieval Augmentation
Natural Language to Code Generation has made significant progress in recent years with the advent of Large Language Models(LLMs). While generation for general-purpose languages like C, C++, and Python has improved significantly, LLMs struggle with custom function names in Domain Specific Languages or DSLs. This leads to higher hallucination rates and syntax errors, specially for DSLs having a high number of custom function names. Additionally, constant updates to function names add to the challenge as LLMs need to stay up-to-date. In this paper, we present optimizations for using Retrieval Augmented Generation (or RAG) with LLMs for DSL generation along with an ablation study comparing these strategies. We generated a train as well as test dataset with a DSL to represent automation tasks across roughly 700 APIs in public domain. We used the training dataset to fine-tune a Codex model for this DSL. Our results showed that the fine-tuned model scored the best on code similarity metric. With our RAG optimizations, we achieved parity for similarity metric. The compilation rate, however, showed that both the models still got the syntax wrong many times, with RAG-based method being 2 pts better. Conversely, hallucination rate for RAG model lagged by 1 pt for API names and by 2 pts for API parameter keys. We conclude that an optimized RAG model can match the quality of fine-tuned models and offer advantages for new, unseen APIs.
Self-Corrected Flow Distillation for Consistent One-Step and Few-Step Text-to-Image Generation
Flow matching has emerged as a promising framework for training generative models, demonstrating impressive empirical performance while offering relative ease of training compared to diffusion-based models. However, this method still requires numerous function evaluations in the sampling process. To address these limitations, we introduce a self-corrected flow distillation method that effectively integrates consistency models and adversarial training within the flow-matching framework. This work is a pioneer in achieving consistent generation quality in both few-step and one-step sampling. Our extensive experiments validate the effectiveness of our method, yielding superior results both quantitatively and qualitatively on CelebA-HQ and zero-shot benchmarks on the COCO dataset. Our implementation is released at https://github.com/VinAIResearch/SCFlow
QuaDMix: Quality-Diversity Balanced Data Selection for Efficient LLM Pretraining
Quality and diversity are two critical metrics for the training data of large language models (LLMs), positively impacting performance. Existing studies often optimize these metrics separately, typically by first applying quality filtering and then adjusting data proportions. However, these approaches overlook the inherent trade-off between quality and diversity, necessitating their joint consideration. Given a fixed training quota, it is essential to evaluate both the quality of each data point and its complementary effect on the overall dataset. In this paper, we introduce a unified data selection framework called QuaDMix, which automatically optimizes the data distribution for LLM pretraining while balancing both quality and diversity. Specifically, we first propose multiple criteria to measure data quality and employ domain classification to distinguish data points, thereby measuring overall diversity. QuaDMix then employs a unified parameterized data sampling function that determines the sampling probability of each data point based on these quality and diversity related labels. To accelerate the search for the optimal parameters involved in the QuaDMix framework, we conduct simulated experiments on smaller models and use LightGBM for parameters searching, inspired by the RegMix method. Our experiments across diverse models and datasets demonstrate that QuaDMix achieves an average performance improvement of 7.2% across multiple benchmarks. These results outperform the independent strategies for quality and diversity, highlighting the necessity and ability to balance data quality and diversity.
Improving Spoken Language Identification with Map-Mix
The pre-trained multi-lingual XLSR model generalizes well for language identification after fine-tuning on unseen languages. However, the performance significantly degrades when the languages are not very distinct from each other, for example, in the case of dialects. Low resource dialect classification remains a challenging problem to solve. We present a new data augmentation method that leverages model training dynamics of individual data points to improve sampling for latent mixup. The method works well in low-resource settings where generalization is paramount. Our datamaps-based mixup technique, which we call Map-Mix improves weighted F1 scores by 2% compared to the random mixup baseline and results in a significantly well-calibrated model. The code for our method is open sourced on https://github.com/skit-ai/Map-Mix.
Once is Enough: A Light-Weight Cross-Attention for Fast Sentence Pair Modeling
Transformer-based models have achieved great success on sentence pair modeling tasks, such as answer selection and natural language inference (NLI). These models generally perform cross-attention over input pairs, leading to prohibitive computational costs. Recent studies propose dual-encoder and late interaction architectures for faster computation. However, the balance between the expressive of cross-attention and computation speedup still needs better coordinated. To this end, this paper introduces a novel paradigm MixEncoder for efficient sentence pair modeling. MixEncoder involves a light-weight cross-attention mechanism. It conducts query encoding only once while modeling the query-candidate interaction in parallel. Extensive experiments conducted on four tasks demonstrate that our MixEncoder can speed up sentence pairing by over 113x while achieving comparable performance as the more expensive cross-attention models.
On the Effectiveness of Large Language Models in Domain-Specific Code Generation
Large language models (LLMs) such as ChatGPT have shown remarkable capabilities in code generation. Despite their great success, their effectiveness within particular domains (e.g., web development) necessitates further evaluation. In this study, we conduct an empirical study of domain-specific code generation with LLMs. We demonstrate that LLMs exhibit sub-optimal performance in generating domain-specific code, due to their limited proficiency in utilizing domain-specific libraries. We further observe that incorporating API knowledge as prompts can empower LLMs to generate more professional code. Based on these findings, we further investigate how to efficiently incorporate API knowledge into the code generation process. We experiment with three strategies for incorporating domain knowledge, namely, external knowledge inquirer, chain-of-thought prompting, and chain-of-thought fine-tuning. We refer to these strategies as a new code generation approach called DomCoder. Experimental results show that all strategies of DomCoder lead to improvement in the effectiveness of domain-specific code generation under certain settings. The results also show that there is still ample room for further improvement, based on which we suggest possible future works.
