new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Effective and Transparent RAG: Adaptive-Reward Reinforcement Learning for Decision Traceability

Retrieval-Augmented Generation (RAG) has significantly improved the performance of large language models (LLMs) on knowledge-intensive domains. However, although RAG achieved successes across distinct domains, there are still some unsolved challenges: 1) Effectiveness. Existing research mainly focuses on developing more powerful RAG retrievers, but how to enhance the generator's (LLM's) ability to utilize the retrieved information for reasoning and generation? 2) Transparency. Most RAG methods ignore which retrieved content actually contributes to the reasoning process, resulting in a lack of interpretability and visibility. To address this, we propose ARENA (Adaptive-Rewarded Evidence Navigation Agent), a transparent RAG generator framework trained via reinforcement learning (RL) with our proposed rewards. Based on the structured generation and adaptive reward calculation, our RL-based training enables the model to identify key evidence, perform structured reasoning, and generate answers with interpretable decision traces. Applied to Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct, abundant experiments with various RAG baselines demonstrate that our model achieves 10-30% improvements on all multi-hop QA datasets, which is comparable with the SOTA Commercially-developed LLMs (e.g., OpenAI-o1, DeepSeek-R1). Further analyses show that ARENA has strong flexibility to be adopted on new datasets without extra training. Our models and codes are publicly released.

  • 6 authors
·
May 19, 2025

BioReason: Incentivizing Multimodal Biological Reasoning within a DNA-LLM Model

Unlocking deep, interpretable biological reasoning from complex genomic data is a major AI challenge hindering scientific discovery. Current DNA foundation models, despite strong sequence representation, struggle with multi-step reasoning and lack inherent transparent, biologically intuitive explanations. We introduce BioReason, a pioneering architecture that, for the first time, deeply integrates a DNA foundation model with a Large Language Model (LLM). This novel connection enables the LLM to directly process and reason with genomic information as a fundamental input, fostering a new form of multimodal biological understanding. BioReason's sophisticated multi-step reasoning is developed through supervised fine-tuning and targeted reinforcement learning, guiding the system to generate logical, biologically coherent deductions. On biological reasoning benchmarks including KEGG-based disease pathway prediction - where accuracy improves from 88% to 97% - and variant effect prediction, BioReason demonstrates an average 15% performance gain over strong single-modality baselines. BioReason reasons over unseen biological entities and articulates decision-making through interpretable, step-by-step biological traces, offering a transformative approach for AI in biology that enables deeper mechanistic insights and accelerates testable hypothesis generation from genomic data. Data, code, and checkpoints are publicly available at https://github.com/bowang-lab/BioReason

  • 11 authors
·
May 29, 2025

Laser: Governing Long-Horizon Agentic Search via Structured Protocol and Context Register

Recent advances in Large Language Models (LLMs) and Large Reasoning Models (LRMs) have enabled agentic search systems that interleave multi-step reasoning with external tool use. However, existing frameworks largely rely on unstructured natural-language reasoning and accumulate raw intermediate traces in the context, which often leads to unstable reasoning trajectories, context overflow, and degraded performance on complex multi-hop queries. In this study, we introduce Laser, a general framework for stabilizing and scaling agentic search. Laser defines a symbolic action protocol that organizes agent behaviors into three spaces: planning, task-solving, and retrospection. Each action is specified with explicit semantics and a deterministic execution format, enabling structured and logical reasoning processes and reliable action parsing. This design makes intermediate decisions interpretable and traceable, enhancing explicit retrospection and fine-grained control over reasoning trajectories. In coordination with parsable actions, Laser further maintains a compact context register that stores only essential states of the reasoning process, allowing the agent to reason over long horizons without uncontrolled context expansion. Experiments on Qwen2.5/3-series models across challenging multi-hop QA datasets show that Laser consistently outperforms existing agentic search baselines under both prompting-only and fine-tuning settings, demonstrating that Laser provides a principled and effective foundation for robust, scalable agentic search.

  • 6 authors
·
Dec 23, 2025

PathMR: Multimodal Visual Reasoning for Interpretable Pathology Diagnosis

Deep learning based automated pathological diagnosis has markedly improved diagnostic efficiency and reduced variability between observers, yet its clinical adoption remains limited by opaque model decisions and a lack of traceable rationale. To address this, recent multimodal visual reasoning architectures provide a unified framework that generates segmentation masks at the pixel level alongside semantically aligned textual explanations. By localizing lesion regions and producing expert style diagnostic narratives, these models deliver the transparent and interpretable insights necessary for dependable AI assisted pathology. Building on these advancements, we propose PathMR, a cell-level Multimodal visual Reasoning framework for Pathological image analysis. Given a pathological image and a textual query, PathMR generates expert-level diagnostic explanations while simultaneously predicting cell distribution patterns. To benchmark its performance, we evaluated our approach on the publicly available PathGen dataset as well as on our newly developed GADVR dataset. Extensive experiments on these two datasets demonstrate that PathMR consistently outperforms state-of-the-art visual reasoning methods in text generation quality, segmentation accuracy, and cross-modal alignment. These results highlight the potential of PathMR for improving interpretability in AI-driven pathological diagnosis. The code will be publicly available in https://github.com/zhangye-zoe/PathMR.

  • 14 authors
·
Aug 28, 2025