new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Explain Less, Understand More: Jargon Detection via Personalized Parameter-Efficient Fine-tuning

Personalizing jargon detection and explanation is essential for making technical documents accessible to readers with diverse disciplinary backgrounds. However, tailoring models to individual users typically requires substantial annotation efforts and computational resources due to user-specific finetuning. To address this, we present a systematic study of personalized jargon detection, focusing on methods that are both efficient and scalable for real-world deployment. We explore two personalization strategies: (1) lightweight finetuning using Low-Rank Adaptation (LoRA) on open-source models, and (2) personalized prompting, which tailors model behavior at inference time without retaining. To reflect realistic constraints, we also investigate semi-supervised approaches that combine limited annotated data with self-supervised learning from users' publications. Our personalized LoRA model outperforms GPT-4 with contextual prompting by 21.4% in F1 score and exceeds the best performing oracle baseline by 8.3%. Remarkably, our method achieves comparable performance using only 10% of the annotated training data, demonstrating its practicality for resource-constrained settings. Our study offers the first work to systematically explore efficient, low-resource personalization of jargon detection using open-source language models, offering a practical path toward scalable, user-adaptive NLP system.

  • 3 authors
·
May 22, 2025

MoS: Unleashing Parameter Efficiency of Low-Rank Adaptation with Mixture of Shards

The rapid scaling of large language models necessitates more lightweight finetuning methods to reduce the explosive GPU memory overhead when numerous customized models are served simultaneously. Targeting more parameter-efficient low-rank adaptation (LoRA), parameter sharing presents a promising solution. Empirically, our research into high-level sharing principles highlights the indispensable role of differentiation in reversing the detrimental effects of pure sharing. Guided by this finding, we propose Mixture of Shards (MoS), incorporating both inter-layer and intra-layer sharing schemes, and integrating four nearly cost-free differentiation strategies, namely subset selection, pair dissociation, vector sharding, and shard privatization. Briefly, it selects a designated number of shards from global pools with a Mixture-of-Experts (MoE)-like routing mechanism before sequentially concatenating them to low-rank matrices. Hence, it retains all the advantages of LoRA while offering enhanced parameter efficiency, and effectively circumvents the drawbacks of peer parameter-sharing methods. Our empirical experiments demonstrate approximately 8x parameter savings in a standard LoRA setting. The ablation study confirms the significance of each component. Our insights into parameter sharing and MoS method may illuminate future developments of more parameter-efficient finetuning methods.

  • 8 authors
·
Oct 1, 2024

A Benchmark for Learning to Translate a New Language from One Grammar Book

Large language models (LLMs) can perform impressive feats with in-context learning or lightweight finetuning. It is natural to wonder how well these models adapt to genuinely new tasks, but how does one find tasks that are unseen in internet-scale training sets? We turn to a field that is explicitly motivated and bottlenecked by a scarcity of web data: low-resource languages. In this paper, we introduce MTOB (Machine Translation from One Book), a benchmark for learning to translate between English and Kalamang -- a language with less than 200 speakers and therefore virtually no presence on the web -- using several hundred pages of field linguistics reference materials. This task framing is novel in that it asks a model to learn a language from a single human-readable book of grammar explanations, rather than a large mined corpus of in-domain data, more akin to L2 learning than L1 acquisition. We demonstrate that baselines using current LLMs are promising but fall short of human performance, achieving 44.7 chrF on Kalamang to English translation and 45.8 chrF on English to Kalamang translation, compared to 51.6 and 57.0 chrF by a human who learned Kalamang from the same reference materials. We hope that MTOB will help measure LLM capabilities along a new dimension, and that the methods developed to solve it could help expand access to language technology for underserved communities by leveraging qualitatively different kinds of data than traditional machine translation.

  • 5 authors
·
Sep 28, 2023

Routing Manifold Alignment Improves Generalization of Mixture-of-Experts LLMs

Sparse Mixture-of-Experts (MoE) have been widely adopted in recent large language models since it can efficiently scale up the model capability without increasing the inference cost. However, evaluations on broad downstream tasks reveal a consistent suboptimality of the routers in existing MoE LLMs, which results in a severe performance gap (e.g., 10-20% in accuracy) to the optimal routing. In this paper, we show that aligning the manifold of routing weights with that of task embedding can effectively reduce the gap and improve MoE LLMs' generalization performance. Our method, "Routing Manifold Alignment (RoMA)", introduces an additional manifold regularization term in the post-training objective and only requires lightweight finetuning of routers (with other parameters frozen). Specifically, the regularization encourages the routing weights of each sample to be close to those of its successful neighbors (whose routing weights lead to correct answers) in a task embedding space. Consequently, samples targeting similar tasks will share similar expert choices across layers. Building such bindings between tasks and experts over different samples is essential to achieve better generalization. Moreover, RoMA demonstrates the advantage of unifying the task understanding (by embedding models) with solution generation (by MoE LLMs). In experiments, we finetune routers in OLMoE, DeepSeekMoE, and Qwen3-MoE using RoMA. Evaluations on diverse benchmarks and extensive comparisons with baselines show the substantial improvement brought by RoMA.

  • 3 authors
·
Nov 10, 2025 2

LAFR: Efficient Diffusion-based Blind Face Restoration via Latent Codebook Alignment Adapter

Blind face restoration from low-quality (LQ) images is a challenging task that requires not only high-fidelity image reconstruction but also the preservation of facial identity. While diffusion models like Stable Diffusion have shown promise in generating high-quality (HQ) images, their VAE modules are typically trained only on HQ data, resulting in semantic misalignment when encoding LQ inputs. This mismatch significantly weakens the effectiveness of LQ conditions during the denoising process. Existing approaches often tackle this issue by retraining the VAE encoder, which is computationally expensive and memory-intensive. To address this limitation efficiently, we propose LAFR (Latent Alignment for Face Restoration), a novel codebook-based latent space adapter that aligns the latent distribution of LQ images with that of HQ counterparts, enabling semantically consistent diffusion sampling without altering the original VAE. To further enhance identity preservation, we introduce a multi-level restoration loss that combines constraints from identity embeddings and facial structural priors. Additionally, by leveraging the inherent structural regularity of facial images, we show that lightweight finetuning of diffusion prior on just 0.9% of FFHQ dataset is sufficient to achieve results comparable to state-of-the-art methods, reduce training time by 70%. Extensive experiments on both synthetic and real-world face restoration benchmarks demonstrate the effectiveness and efficiency of LAFR, achieving high-quality, identity-preserving face reconstruction from severely degraded inputs.

  • 4 authors
·
May 29, 2025

Identifying and Mitigating the Influence of the Prior Distribution in Large Language Models

Large language models (LLMs) sometimes fail to respond appropriately to deterministic tasks -- such as counting or forming acronyms -- because the implicit prior distribution they have learned over sequences of tokens influences their responses. In this work, we show that, in at least some cases, LLMs actually compute the information needed to perform these tasks correctly, and we identify some interventions that can allow them to access this information to improve their performance. First, we show that simply prompting the language model to not rely on its prior knowledge leads to dramatic improvements in prior-dominated tasks. We then use mechanistic interpretability techniques to localize the prior within the LLM and manipulate the extent to which that prior influences its responses. Specifically, we show that it is possible to identify layers of the underlying neural network that correlate with the prior probability of a response and that lightweight finetuning of these layers with basic prompts on prior-dominated tasks achieves high performance on held-out answers. These results suggest that the information required to produce a correct response is contained within the representations of the problems formed by the models. Furthermore, we show that this finetuning is significantly more effective for prior-dominated tasks, and that the error after finetuning is no longer correlated with the prior. Our results suggest that it may be possible to define effective methods for manipulating the extent to which LLMs rely upon their priors in solving problems, potentially increasing their performance in settings where LLMs hallucinate for reasons related to the prior probability of token sequences.

  • 4 authors
·
Apr 16, 2025

ACE++: Instruction-Based Image Creation and Editing via Context-Aware Content Filling

We report ACE++, an instruction-based diffusion framework that tackles various image generation and editing tasks. Inspired by the input format for the inpainting task proposed by FLUX.1-Fill-dev, we improve the Long-context Condition Unit (LCU) introduced in ACE and extend this input paradigm to any editing and generation tasks. To take full advantage of image generative priors, we develop a two-stage training scheme to minimize the efforts of finetuning powerful text-to-image diffusion models like FLUX.1-dev. In the first stage, we pre-train the model using task data with the 0-ref tasks from the text-to-image model. There are many models in the community based on the post-training of text-to-image foundational models that meet this training paradigm of the first stage. For example, FLUX.1-Fill-dev deals primarily with painting tasks and can be used as an initialization to accelerate the training process. In the second stage, we finetune the above model to support the general instructions using all tasks defined in ACE. To promote the widespread application of ACE++ in different scenarios, we provide a comprehensive set of models that cover both full finetuning and lightweight finetuning, while considering general applicability and applicability in vertical scenarios. The qualitative analysis showcases the superiority of ACE++ in terms of generating image quality and prompt following ability.

  • 7 authors
·
Jan 5, 2025

SemCoT: Accelerating Chain-of-Thought Reasoning through Semantically-Aligned Implicit Tokens

The verbosity of Chain-of-Thought (CoT) reasoning hinders its mass deployment in efficiency-critical applications. Recently, implicit CoT approaches have emerged, which encode reasoning steps within LLM's hidden embeddings (termed ``implicit reasoning'') rather than explicit tokens. This approach accelerates CoT by reducing the reasoning length and bypassing some LLM components. However, existing implicit CoT methods face two significant challenges: (1) they fail to preserve the semantic alignment between the implicit reasoning (when transformed to natural language) and the ground-truth reasoning, resulting in a significant CoT performance degradation, and (2) they focus on reducing the length of the implicit reasoning; however, they neglect the considerable time cost for an LLM to generate one individual implicit reasoning token. To tackle these challenges, we propose a novel semantically-aligned implicit CoT framework termed SemCoT. In particular, for the first challenge, we design a contrastively trained sentence transformer that evaluates semantic alignment between implicit and explicit reasoning, which is used to enforce semantic preservation during implicit reasoning optimization. To address the second challenge, we introduce an efficient implicit reasoning generator by finetuning a lightweight language model using knowledge distillation. This generator is guided by our sentence transformer to distill ground-truth reasoning into semantically aligned implicit reasoning, while also optimizing for accuracy. SemCoT is the first approach that enhances CoT efficiency by jointly optimizing token-level generation speed and preserving semantic alignment with ground-truth reasoning. Extensive experiments demonstrate the superior performance of SemCoT compared to state-of-the-art methods in both efficiency and effectiveness. Our code can be found at https://github.com/YinhanHe123/SemCoT/.

LinkedIn LinkedIn
·
Oct 28, 2025 2

Finetuning a Weather Foundation Model with Lightweight Decoders for Unseen Physical Processes

Recent advances in AI weather forecasting have led to the emergence of so-called "foundation models", typically defined by expensive pretraining and minimal fine-tuning for downstream tasks. However, in the natural sciences, a desirable foundation model should also encode meaningful statistical relationships between the underlying physical variables. This study evaluates the performance of the state-of-the-art Aurora foundation model in predicting hydrological variables, which were not considered during pretraining. We introduce a lightweight approach using shallow decoders trained on the latent representations of the pretrained model to predict these new variables. As a baseline, we compare this to fine-tuning the full model, which allows further optimization of the latent space while incorporating new variables into both inputs and outputs. The decoder-based approach requires 50% less training time and 35% less memory, while achieving strong accuracy across various hydrological variables and preserving desirable properties of the foundation model, such as autoregressive stability. Notably, decoder accuracy depends on the physical correlation between the new variables and those used during pretraining, indicating that Aurora's latent space captures meaningful physical relationships. In this sense, we argue that an important quality metric for foundation models in Earth sciences is their ability to be extended to new variables without a full fine-tuning. This provides a new perspective for making foundation models more accessible to communities with limited computational resources, while supporting broader adoption in Earth sciences.

  • 6 authors
·
Jun 23, 2025

VLSM-Adapter: Finetuning Vision-Language Segmentation Efficiently with Lightweight Blocks

Foundation Vision-Language Models (VLMs) trained using large-scale open-domain images and text pairs have recently been adapted to develop Vision-Language Segmentation Models (VLSMs) that allow providing text prompts during inference to guide image segmentation. If robust and powerful VLSMs can be built for medical images, it could aid medical professionals in many clinical tasks where they must spend substantial time delineating the target structure of interest. VLSMs for medical images resort to fine-tuning base VLM or VLSM pretrained on open-domain natural image datasets due to fewer annotated medical image datasets; this fine-tuning is resource-consuming and expensive as it usually requires updating all or a significant fraction of the pretrained parameters. Recently, lightweight blocks called adapters have been proposed in VLMs that keep the pretrained model frozen and only train adapters during fine-tuning, substantially reducing the computing resources required. We introduce a novel adapter, VLSM-Adapter, that can fine-tune pretrained vision-language segmentation models using transformer encoders. Our experiments in widely used CLIP-based segmentation models show that with only 3 million trainable parameters, the VLSM-Adapter outperforms state-of-the-art and is comparable to the upper bound end-to-end fine-tuning. The source code is available at: https://github.com/naamiinepal/vlsm-adapter.

  • 4 authors
·
May 9, 2024

Residual Off-Policy RL for Finetuning Behavior Cloning Policies

Recent advances in behavior cloning (BC) have enabled impressive visuomotor control policies. However, these approaches are limited by the quality of human demonstrations, the manual effort required for data collection, and the diminishing returns from increasing offline data. In comparison, reinforcement learning (RL) trains an agent through autonomous interaction with the environment and has shown remarkable success in various domains. Still, training RL policies directly on real-world robots remains challenging due to sample inefficiency, safety concerns, and the difficulty of learning from sparse rewards for long-horizon tasks, especially for high-degree-of-freedom (DoF) systems. We present a recipe that combines the benefits of BC and RL through a residual learning framework. Our approach leverages BC policies as black-box bases and learns lightweight per-step residual corrections via sample-efficient off-policy RL. We demonstrate that our method requires only sparse binary reward signals and can effectively improve manipulation policies on high-degree-of-freedom (DoF) systems in both simulation and the real world. In particular, we demonstrate, to the best of our knowledge, the first successful real-world RL training on a humanoid robot with dexterous hands. Our results demonstrate state-of-the-art performance in various vision-based tasks, pointing towards a practical pathway for deploying RL in the real world. Project website: https://residual-offpolicy-rl.github.io

  • 6 authors
·
Sep 23, 2025 2

NLKI: A lightweight Natural Language Knowledge Integration Framework for Improving Small VLMs in Commonsense VQA Tasks

Commonsense visual-question answering often hinges on knowledge that is missing from the image or the question. Small vision-language models (sVLMs) such as ViLT, VisualBERT and FLAVA therefore lag behind their larger generative counterparts. To study the effect of careful commonsense knowledge integration on sVLMs, we present an end-to-end framework (NLKI) that (i) retrieves natural language facts, (ii) prompts an LLM to craft natural language explanations, and (iii) feeds both signals to sVLMs respectively across two commonsense VQA datasets (CRIC, AOKVQA) and a visual-entailment dataset (e-SNLI-VE). Facts retrieved using a fine-tuned ColBERTv2 and an object information-enriched prompt yield explanations that largely cut down hallucinations, while lifting the end-to-end answer accuracy by up to 7% (across 3 datasets), making FLAVA and other models in NLKI match or exceed medium-sized VLMs such as Qwen-2 VL-2B and SmolVLM-2.5B. As these benchmarks contain 10-25% label noise, additional finetuning using noise-robust losses (such as symmetric cross entropy and generalised cross entropy) adds another 2.5% in CRIC, and 5.5% in AOKVQA. Our findings expose when LLM-based commonsense knowledge beats retrieval from commonsense knowledge bases, how noise-aware training stabilises small models in the context of external knowledge augmentation, and why parameter-efficient commonsense reasoning is now within reach for 250M models.

  • 4 authors
·
Aug 27, 2025

My3DGen: Building Lightweight Personalized 3D Generative Model

Our paper presents My3DGen, a practical system for creating a personalized and lightweight 3D generative prior using as few as 10 images. My3DGen can reconstruct multi-view consistent images from an input test image, and generate novel appearances by interpolating between any two images of the same individual. While recent studies have demonstrated the effectiveness of personalized generative priors in producing high-quality 2D portrait reconstructions and syntheses, to the best of our knowledge, we are the first to develop a personalized 3D generative prior. Instead of fine-tuning a large pre-trained generative model with millions of parameters to achieve personalization, we propose a parameter-efficient approach. Our method involves utilizing a pre-trained model with fixed weights as a generic prior, while training a separate personalized prior through low-rank decomposition of the weights in each convolution and fully connected layer. However, parameter-efficient few-shot fine-tuning on its own often leads to overfitting. To address this, we introduce a regularization technique based on symmetry of human faces. This regularization enforces that novel view renderings of a training sample, rendered from symmetric poses, exhibit the same identity. By incorporating this symmetry prior, we enhance the quality of reconstruction and synthesis, particularly for non-frontal (profile) faces. Our final system combines low-rank fine-tuning with symmetry regularization and significantly surpasses the performance of pre-trained models, e.g. EG3D. It introduces only approximately 0.6 million additional parameters per identity compared to 31 million for full finetuning of the original model. As a result, our system achieves a 50-fold reduction in model size without sacrificing the quality of the generated 3D faces. Code will be available at our project page: https://luchaoqi.github.io/my3dgen.

  • 4 authors
·
Jul 11, 2023

Structuring Radiology Reports: Challenging LLMs with Lightweight Models

Radiology reports are critical for clinical decision-making but often lack a standardized format, limiting both human interpretability and machine learning (ML) applications. While large language models (LLMs) have shown strong capabilities in reformatting clinical text, their high computational requirements, lack of transparency, and data privacy concerns hinder practical deployment. To address these challenges, we explore lightweight encoder-decoder models (<300M parameters)-specifically T5 and BERT2BERT-for structuring radiology reports from the MIMIC-CXR and CheXpert Plus datasets. We benchmark these models against eight open-source LLMs (1B-70B), adapted using prefix prompting, in-context learning (ICL), and low-rank adaptation (LoRA) finetuning. Our best-performing lightweight model outperforms all LLMs adapted using prompt-based techniques on a human-annotated test set. While some LoRA-finetuned LLMs achieve modest gains over the lightweight model on the Findings section (BLEU 6.4%, ROUGE-L 4.8%, BERTScore 3.6%, F1-RadGraph 1.1%, GREEN 3.6%, and F1-SRR-BERT 4.3%), these improvements come at the cost of substantially greater computational resources. For example, LLaMA-3-70B incurred more than 400 times the inference time, cost, and carbon emissions compared to the lightweight model. These results underscore the potential of lightweight, task-specific models as sustainable and privacy-preserving solutions for structuring clinical text in resource-constrained healthcare settings.

  • 8 authors
·
May 30, 2025

FLORA: Efficient Synthetic Data Generation for Object Detection in Low-Data Regimes via finetuning Flux LoRA

Recent advances in diffusion-based generative models have demonstrated significant potential in augmenting scarce datasets for object detection tasks. Nevertheless, most recent models rely on resource-intensive full fine-tuning of large-scale diffusion models, requiring enterprise-grade GPUs (e.g., NVIDIA V100) and thousands of synthetic images. To address these limitations, we propose Flux LoRA Augmentation (FLORA), a lightweight synthetic data generation pipeline. Our approach uses the Flux 1.1 Dev diffusion model, fine-tuned exclusively through Low-Rank Adaptation (LoRA). This dramatically reduces computational requirements, enabling synthetic dataset generation with a consumer-grade GPU (e.g., NVIDIA RTX 4090). We empirically evaluate our approach on seven diverse object detection datasets. Our results demonstrate that training object detectors with just 500 synthetic images generated by our approach yields superior detection performance compared to models trained on 5000 synthetic images from the ODGEN baseline, achieving improvements of up to 21.3% in [email protected]:.95. This work demonstrates that it is possible to surpass state-of-the-art performance with far greater efficiency, as FLORA achieves superior results using only 10% of the data and a fraction of the computational cost. This work demonstrates that a quality and efficiency-focused approach is more effective than brute-force generation, making advanced synthetic data creation more practical and accessible for real-world scenarios.

  • 3 authors
·
Aug 29, 2025

MoGIC: Boosting Motion Generation via Intention Understanding and Visual Context

Existing text-driven motion generation methods often treat synthesis as a bidirectional mapping between language and motion, but remain limited in capturing the causal logic of action execution and the human intentions that drive behavior. The absence of visual grounding further restricts precision and personalization, as language alone cannot specify fine-grained spatiotemporal details. We propose MoGIC, a unified framework that integrates intention modeling and visual priors into multimodal motion synthesis. By jointly optimizing multimodal-conditioned motion generation and intention prediction, MoGIC uncovers latent human goals, leverages visual priors to enhance generation, and exhibits versatile multimodal generative capability. We further introduce a mixture-of-attention mechanism with adaptive scope to enable effective local alignment between conditional tokens and motion subsequences. To support this paradigm, we curate Mo440H, a 440-hour benchmark from 21 high-quality motion datasets. Experiments show that after finetuning, MoGIC reduces FID by 38.6\% on HumanML3D and 34.6\% on Mo440H, surpasses LLM-based methods in motion captioning with a lightweight text head, and further enables intention prediction and vision-conditioned generation, advancing controllable motion synthesis and intention understanding. The code is available at https://github.com/JunyuShi02/MoGIC

  • 7 authors
·
Oct 3, 2025

ModuleFormer: Learning Modular Large Language Models From Uncurated Data

Large Language Models (LLMs) have achieved remarkable results. But existing models are expensive to train and deploy, and it is also difficult to expand their knowledge beyond pre-training data without forgetting previous knowledge. This paper proposes a new neural network architecture, ModuleFormer, that leverages modularity to improve the efficiency and flexibility of large language models. ModuleFormer is based on the Sparse Mixture of Experts (SMoE). Unlike the previous SMoE-based modular language model [Gururangan et al., 2021], which requires domain-labeled data to learn domain-specific experts, ModuleFormer can induce modularity from uncurated data with its new load balancing and load concentration losses. ModuleFormer is a modular architecture that includes two different types of modules, new stick-breaking attention heads, and feedforward experts. Different modules are sparsely activated conditions on the input token during training and inference. In our experiment, we found that the modular architecture enables three important abilities for large pre-trained language models: 1) Efficiency, since ModuleFormer only activates a subset of its modules for each input token, thus it could achieve the same performance as dense LLMs with more than two times throughput; 2) Extendability, ModuleFormer is more immune to catastrophic forgetting than dense LLMs and can be easily extended with new modules to learn new knowledge that is not included in the training data; 3) Specialisation, finetuning ModuleFormer could specialize a subset of modules to the finetuning task, and the task-unrelated modules could be easily pruned for a lightweight deployment.

  • 6 authors
·
Jun 7, 2023

SWIFT:A Scalable lightWeight Infrastructure for Fine-Tuning

Recent development in Large Language Models (LLMs) and Multi-modal Large Language Models (MLLMs) have leverage Attention-based Transformer architectures and achieved superior performance and generalization capabilities. They have since covered extensive areas of traditional learning tasks. For instance, text-based tasks such as text-classification and sequence-labeling, as well as multi-modal tasks like Visual Question Answering (VQA) and Optical Character Recognition (OCR), which were previously addressed using different models, can now be tackled based on one foundation model. Consequently, the training and lightweight fine-tuning of LLMs and MLLMs, especially those based on Transformer architecture, has become particularly important. In recognition of these overwhelming needs, we develop SWIFT, a customizable one-stop infrastructure for large models. With support of over 300+ LLMs and 50+ MLLMs, SWIFT stands as the open-source framework that provide the most comprehensive support for fine-tuning large models. In particular, it is the first training framework that provides systematic support for MLLMs. In addition to the core functionalities of fine-tuning, SWIFT also integrates post-training processes such as inference, evaluation, and model quantization, to facilitate fast adoptions of large models in various application scenarios. With a systematic integration of various training techniques, SWIFT offers helpful utilities such as benchmark comparisons among different training techniques for large models. For fine-tuning models specialized in agent framework, we show that notable improvements on the ToolBench leader-board can be achieved by training with customized dataset on SWIFT, with an increase of 5.2%-21.8% in the Act.EM metric over various baseline models, a reduction in hallucination by 1.6%-14.1%, and an average performance improvement of 8%-17%.

  • 12 authors
·
Aug 10, 2024

Liger: Linearizing Large Language Models to Gated Recurrent Structures

Transformers with linear recurrent modeling offer linear-time training and constant-memory inference. Despite their demonstrated efficiency and performance, pretraining such non-standard architectures from scratch remains costly and risky. The linearization of large language models (LLMs) transforms pretrained standard models into linear recurrent structures, enabling more efficient deployment. However, current linearization methods typically introduce additional feature map modules that require extensive fine-tuning and overlook the gating mechanisms used in state-of-the-art linear recurrent models. To address these issues, this paper presents Liger, short for Linearizing LLMs to gated recurrent structures. Liger is a novel approach for converting pretrained LLMs into gated linear recurrent models without adding extra parameters. It repurposes the pretrained key matrix weights to construct diverse gating mechanisms, facilitating the formation of various gated recurrent structures while avoiding the need to train additional components from scratch. Using lightweight fine-tuning with Low-Rank Adaptation (LoRA), Liger restores the performance of the linearized gated recurrent models to match that of the original LLMs. Additionally, we introduce Liger Attention, an intra-layer hybrid attention mechanism, which significantly recovers 93\% of the Transformer-based LLM at 0.02\% pre-training tokens during the linearization process, achieving competitive results across multiple benchmarks, as validated on models ranging from 1B to 8B parameters. Code is available at https://github.com/OpenSparseLLMs/Linearization.

  • 5 authors
·
Mar 3, 2025 2

FuseChat: Knowledge Fusion of Chat Models

While training large language models (LLMs) from scratch can indeed lead to models with distinct capabilities and strengths, it incurs substantial costs and may lead to redundancy in competencies. Knowledge fusion aims to integrate existing LLMs of diverse architectures and capabilities into a more potent LLM through lightweight continual training, thereby reducing the need for costly LLM development. In this work, we propose a new framework for the knowledge fusion of chat LLMs through two main stages, resulting in FuseChat. Firstly, we conduct pairwise knowledge fusion on source chat LLMs of varying structures and scales to create multiple target LLMs with identical structure and size via lightweight fine-tuning. During this process, a statistics-based token alignment approach is introduced as the cornerstone for fusing LLMs with different structures. Secondly, we merge these target LLMs within the parameter space, where we propose a novel method for determining the merging coefficients based on the magnitude of parameter updates before and after fine-tuning. We implement and validate FuseChat using six prominent chat LLMs with diverse architectures and scales, including OpenChat-3.5-7B, Starling-LM-7B-alpha, NH2-SOLAR-10.7B, InternLM2-Chat-20B, Mixtral-8x7B-Instruct, and Qwen-1.5-Chat-72B. Experimental results on two instruction-following benchmarks, AlpacaEval 2.0 and MT-Bench, demonstrate the superiority of FuseChat-7B over baselines of various sizes. Our model is even comparable to the larger Mixtral-8x7B-Instruct and approaches GPT-3.5-Turbo-1106 on MT-Bench. Our code, model weights, and data are public at https://github.com/fanqiwan/FuseAI.

  • 5 authors
·
Aug 15, 2024 2

PhyDetEx: Detecting and Explaining the Physical Plausibility of T2V Models

Driven by the growing capacity and training scale, Text-to-Video (T2V) generation models have recently achieved substantial progress in video quality, length, and instruction-following capability. However, whether these models can understand physics and generate physically plausible videos remains a question. While Vision-Language Models (VLMs) have been widely used as general-purpose evaluators in various applications, they struggle to identify the physically impossible content from generated videos. To investigate this issue, we construct a PID (Physical Implausibility Detection) dataset, which consists of a test split of 500 manually annotated videos and a train split of 2,588 paired videos, where each implausible video is generated by carefully rewriting the caption of its corresponding real-world video to induce T2V models producing physically implausible content. With the constructed dataset, we introduce a lightweight fine-tuning approach, enabling VLMs to not only detect physically implausible events but also generate textual explanations on the violated physical principles. Taking the fine-tuned VLM as a physical plausibility detector and explainer, namely PhyDetEx, we benchmark a series of state-of-the-art T2V models to assess their adherence to physical laws. Our findings show that although recent T2V models have made notable progress toward generating physically plausible content, understanding and adhering to physical laws remains a challenging issue, especially for open-source models. Our dataset, training code, and checkpoints are available at https://github.com/Zeqing-Wang/PhyDetEx{https://github.com/Zeqing-Wang/PhyDetEx}.

  • 3 authors
·
Dec 1, 2025

FuseChat: Knowledge Fusion of Chat Models

While training large language models (LLMs) from scratch can indeed lead to models with distinct capabilities and strengths, this approach incurs substantial costs and may lead to potential redundancy in competencies. An alternative strategy is to combine existing LLMs into a more robust LLM, thereby diminishing the necessity for expensive pre-training. However, due to the diverse architectures of LLMs, direct parameter blending proves to be unfeasible. Recently, FuseLLM introduced the concept of knowledge fusion to transfer the collective knowledge of multiple structurally varied LLMs into a target LLM through lightweight continual training. In this report, we extend the scalability and flexibility of the FuseLLM framework to realize the fusion of chat LLMs, resulting in FuseChat. FuseChat comprises two main stages. Firstly, we undertake knowledge fusion for structurally and scale-varied source LLMs to derive multiple target LLMs of identical structure and size via lightweight fine-tuning. Then, these target LLMs are merged within the parameter space, wherein we propose a novel method for determining the merging weights based on the variation ratio of parameter matrices before and after fine-tuning. We validate our approach using three prominent chat LLMs with diverse architectures and scales, namely NH2-Mixtral-8x7B, NH2-Solar-10.7B, and OpenChat-3.5-7B. Experimental results spanning various chat domains demonstrate the superiority of \textsc{FuseChat-7B} across a broad spectrum of chat LLMs at 7B and 34B scales, even surpassing GPT-3.5 (March) and approaching Mixtral-8x7B-Instruct. Our code, model weights, and data are openly accessible at https://github.com/fanqiwan/FuseLLM.

  • 6 authors
·
Feb 25, 2024 5

Exploring and Evaluating Personalized Models for Code Generation

Large Transformer models achieved the state-of-the-art status for Natural Language Understanding tasks and are increasingly becoming the baseline model architecture for modeling source code. Transformers are usually pre-trained on large unsupervised corpora, learning token representations and transformations relevant to modeling generally available text, and are then fine-tuned on a particular downstream task of interest. While fine-tuning is a tried-and-true method for adapting a model to a new domain -- for example, question-answering on a given topic -- generalization remains an on-going challenge. In this paper, we explore and evaluate transformer model fine-tuning for personalization. In the context of generating unit tests for Java methods, we evaluate learning to personalize to a specific software project using several personalization techniques. We consider three key approaches: (i) custom fine-tuning, which allows all the model parameters to be tuned; (ii) lightweight fine-tuning, which freezes most of the model's parameters, allowing tuning of the token embeddings and softmax layer only or the final layer alone; (iii) prefix tuning, which keeps model parameters frozen, but optimizes a small project-specific prefix vector. Each of these techniques offers a trade-off in total compute cost and predictive performance, which we evaluate by code and task-specific metrics, training time, and total computational operations. We compare these fine-tuning strategies for code generation and discuss the potential generalization and cost benefits of each in various deployment scenarios.

  • 6 authors
·
Aug 29, 2022

Optimal Control Meets Flow Matching: A Principled Route to Multi-Subject Fidelity

Text-to-image (T2I) models excel on single-entity prompts but struggle with multi-subject descriptions, often showing attribute leakage, identity entanglement, and subject omissions. We introduce the first theoretical framework with a principled, optimizable objective for steering sampling dynamics toward multi-subject fidelity. Viewing flow matching (FM) through stochastic optimal control (SOC), we formulate subject disentanglement as control over a trained FM sampler. This yields two architecture-agnostic algorithms: (i) a training-free test-time controller that perturbs the base velocity with a single-pass update, and (ii) Adjoint Matching, a lightweight fine-tuning rule that regresses a control network to a backward adjoint signal while preserving base-model capabilities. The same formulation unifies prior attention heuristics, extends to diffusion models via a flow-diffusion correspondence, and provides the first fine-tuning route explicitly designed for multi-subject fidelity. Empirically, on Stable Diffusion 3.5, FLUX, and Stable Diffusion XL, both algorithms consistently improve multi-subject alignment while maintaining base-model style. Test-time control runs efficiently on commodity GPUs, and fine-tuned controllers trained on limited prompts generalize to unseen ones. We further highlight FOCUS (Flow Optimal Control for Unentangled Subjects), which achieves state-of-the-art multi-subject fidelity across models.

  • 3 authors
·
Oct 2, 2025 2

MOSAIC: A Multilingual, Taxonomy-Agnostic, and Computationally Efficient Approach for Radiological Report Classification

Radiology reports contain rich clinical information that can be used to train imaging models without relying on costly manual annotation. However, existing approaches face critical limitations: rule-based methods struggle with linguistic variability, supervised models require large annotated datasets, and recent LLM-based systems depend on closed-source or resource-intensive models that are unsuitable for clinical use. Moreover, current solutions are largely restricted to English and single-modality, single-taxonomy datasets. We introduce MOSAIC, a multilingual, taxonomy-agnostic, and computationally efficient approach for radiological report classification. Built on a compact open-access language model (MedGemma-4B), MOSAIC supports both zero-/few-shot prompting and lightweight fine-tuning, enabling deployment on consumer-grade GPUs. We evaluate MOSAIC across seven datasets in English, Spanish, French, and Danish, spanning multiple imaging modalities and label taxonomies. The model achieves a mean macro F1 score of 88 across five chest X-ray datasets, approaching or exceeding expert-level performance, while requiring only 24 GB of GPU memory. With data augmentation, as few as 80 annotated samples are sufficient to reach a weighted F1 score of 82 on Danish reports, compared to 86 with the full 1600-sample training set. MOSAIC offers a practical alternative to large or proprietary LLMs in clinical settings. Code and models are open-source. We invite the community to evaluate and extend MOSAIC on new languages, taxonomies, and modalities.

  • 9 authors
·
Aug 29, 2025

FlexLLM: A System for Co-Serving Large Language Model Inference and Parameter-Efficient Finetuning

Parameter-efficient finetuning (PEFT) is a widely used technique to adapt large language models for different tasks. Service providers typically create separate systems for users to perform PEFT model finetuning and inference tasks. This is because existing systems cannot handle workloads that include a mix of inference and PEFT finetuning requests. As a result, shared GPU resources are underutilized, leading to inefficiencies. To address this problem, we present FlexLLM, the first system that can serve inference and parameter-efficient finetuning requests in the same iteration. Our system leverages the complementary nature of these two tasks and utilizes shared GPU resources to run them jointly, using a method called co-serving. To achieve this, FlexLLM introduces a novel token-level finetuning mechanism, which breaks down the finetuning computation of a sequence into smaller token-level computations and uses dependent parallelization and graph pruning, two static compilation optimizations, to minimize the memory overhead and latency for co-serving. Compared to existing systems, FlexLLM's co-serving approach reduces the activation GPU memory overhead by up to 8x, and the end-to-end GPU memory requirement of finetuning by up to 36% while maintaining a low inference latency and improving finetuning throughput. For example, under a heavy inference workload, FlexLLM can still preserve more than 80% of the peak finetuning throughput, whereas existing systems cannot make any progress with finetuning. The source code of FlexLLM is publicly available at https://github.com/flexflow/FlexFlow.

  • 6 authors
·
Feb 28, 2024

Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models

Finetuning large language models (LLMs) has been empirically effective on a variety of downstream tasks. Existing approaches to finetuning an LLM either focus on parameter-efficient finetuning, which only updates a small number of trainable parameters, or attempt to reduce the memory footprint during the training phase of the finetuning. Typically, the memory footprint during finetuning stems from three contributors: model weights, optimizer states, and intermediate activations. However, existing works still require considerable memory and none can simultaneously mitigate memory footprint for all three sources. In this paper, we present Quantized Side Tuing (QST), which enables memory-efficient and fast finetuning of LLMs by operating through a dual-stage process. First, QST quantizes an LLM's model weights into 4-bit to reduce the memory footprint of the LLM's original weights; QST also introduces a side network separated from the LLM, which utilizes the hidden states of the LLM to make task-specific predictions. Using a separate side network avoids performing backpropagation through the LLM, thus reducing the memory requirement of the intermediate activations. Furthermore, QST leverages several low-rank adaptors and gradient-free downsample modules to significantly reduce the trainable parameters, so as to save the memory footprint of the optimizer states. Experiments show that QST can reduce the total memory footprint by up to 2.3 times and speed up the finetuning process by up to 3 times while achieving competent performance compared with the state-of-the-art. When it comes to full finetuning, QST can reduce the total memory footprint up to 7 times.

  • 7 authors
·
Jan 13, 2024

Aligning Text to Image in Diffusion Models is Easier Than You Think

While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.

  • 4 authors
·
Mar 11, 2025

ZeroSearch: Incentivize the Search Capability of LLMs without Searching

Effective information searching is essential for enhancing the reasoning and generation capabilities of large language models (LLMs). Recent research has explored using reinforcement learning (RL) to improve LLMs' search capabilities by interacting with live search engines in real-world environments. While these approaches show promising results, they face two major challenges: (1) Uncontrolled Document Quality: The quality of documents returned by search engines is often unpredictable, introducing noise and instability into the training process. (2) Prohibitively High API Costs: RL training requires frequent rollouts, potentially involving hundreds of thousands of search requests, which incur substantial API expenses and severely constrain scalability. To address these challenges, we introduce ZeroSearch, a reinforcement learning framework that incentivizes the search capabilities of LLMs without interacting with real search engines. Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both relevant and noisy documents in response to a query. During RL training, we employ a curriculum-based rollout strategy that incrementally degrades the quality of generated documents, progressively eliciting the model's reasoning ability by exposing it to increasingly challenging retrieval scenarios. Extensive experiments demonstrate that ZeroSearch effectively incentivizes the search capabilities of LLMs using a 3B LLM as the retrieval module. Remarkably, a 7B retrieval module achieves comparable performance to the real search engine, while a 14B retrieval module even surpasses it. Furthermore, it generalizes well across both base and instruction-tuned models of various parameter sizes and is compatible with a wide range of RL algorithms.

  • 9 authors
·
May 7, 2025 8

CorDA: Context-Oriented Decomposition Adaptation of Large Language Models

Current parameter-efficient fine-tuning (PEFT) methods build adapters without considering the context of downstream task to learn, or the context of important knowledge to maintain. As a result, there is often a performance gap compared to full-parameter finetuning, and meanwhile the finetuned model suffers from catastrophic forgetting of the pre-trained world knowledge. In this paper, we propose CorDA, a Context-oriented Decomposition Adaptation method that builds learnable adapters from weight decomposition oriented by the context of downstream task or world knowledge. Concretely, we collect a few data samples, and perform singular value decomposition for each linear layer of a pre-trained LLM multiplied by the covariance matrix of the input activation using these samples. By doing so, the context of the representative samples is captured through deciding the factorizing orientation. Our method enables two options, the knowledge-preserved adaptation and the instruction-previewed adaptation. For the former, we use question-answering samples to obtain the covariance matrices, and use the decomposed components with the smallest r singular values to initialize a learnable adapter, with the others frozen such that the world knowledge is better preserved. For the latter, we use the instruction data from the finetuning task, such as math or coding, to orientate the decomposition and train the largest r components that capture the main characteristics of the task to learn. We conduct extensive experiments on Math, Code, and Instruction Following tasks. Our knowledge-preserved adaptation not only achieves better performance than LoRA on finetuning tasks, but also mitigates the forgetting of world knowledge. Our instruction-previewed adaptation is able to further enhance the finetuning performance, surpassing full-parameter finetuning and the state-of-the-art PEFT methods.

  • 7 authors
·
Jun 7, 2024

PAT: Pruning-Aware Tuning for Large Language Models

Large language models (LLMs) excel in language tasks, especially with supervised fine-tuning after pre-training. However, their substantial memory and computational requirements hinder practical applications. Structural pruning, which reduces less significant weight dimensions, is one solution. Yet, traditional post-hoc pruning often leads to significant performance loss, with limited recovery from further fine-tuning due to reduced capacity. Since the model fine-tuning refines the general and chaotic knowledge in pre-trained models, we aim to incorporate structural pruning with the fine-tuning, and propose the Pruning-Aware Tuning (PAT) paradigm to eliminate model redundancy while preserving the model performance to the maximum extend. Specifically, we insert the innovative Hybrid Sparsification Modules (HSMs) between the Attention and FFN components to accordingly sparsify the upstream and downstream linear modules. The HSM comprises a lightweight operator and a globally shared trainable mask. The lightweight operator maintains a training overhead comparable to that of LoRA, while the trainable mask unifies the channels to be sparsified, ensuring structural pruning. Additionally, we propose the Identity Loss which decouples the transformation and scaling properties of the HSMs to enhance training robustness. Extensive experiments demonstrate that PAT excels in both performance and efficiency. For example, our Llama2-7b model with a 25\% pruning ratio achieves 1.33times speedup while outperforming the LoRA-finetuned model by up to 1.26\% in accuracy with a similar training cost. Code: https://github.com/kriskrisliu/PAT_Pruning-Aware-Tuning

  • 7 authors
·
Aug 26, 2024

DreamFit: Garment-Centric Human Generation via a Lightweight Anything-Dressing Encoder

Diffusion models for garment-centric human generation from text or image prompts have garnered emerging attention for their great application potential. However, existing methods often face a dilemma: lightweight approaches, such as adapters, are prone to generate inconsistent textures; while finetune-based methods involve high training costs and struggle to maintain the generalization capabilities of pretrained diffusion models, limiting their performance across diverse scenarios. To address these challenges, we propose DreamFit, which incorporates a lightweight Anything-Dressing Encoder specifically tailored for the garment-centric human generation. DreamFit has three key advantages: (1) Lightweight training: with the proposed adaptive attention and LoRA modules, DreamFit significantly minimizes the model complexity to 83.4M trainable parameters. (2)Anything-Dressing: Our model generalizes surprisingly well to a wide range of (non-)garments, creative styles, and prompt instructions, consistently delivering high-quality results across diverse scenarios. (3) Plug-and-play: DreamFit is engineered for smooth integration with any community control plugins for diffusion models, ensuring easy compatibility and minimizing adoption barriers. To further enhance generation quality, DreamFit leverages pretrained large multi-modal models (LMMs) to enrich the prompt with fine-grained garment descriptions, thereby reducing the prompt gap between training and inference. We conduct comprehensive experiments on both 768 times 512 high-resolution benchmarks and in-the-wild images. DreamFit surpasses all existing methods, highlighting its state-of-the-art capabilities of garment-centric human generation.

  • 7 authors
·
Dec 23, 2024

ALLoRA: Adaptive Learning Rate Mitigates LoRA Fatal Flaws

Low-Rank Adaptation (LoRA) is the bread and butter of Large Language Model (LLM) finetuning. LoRA learns an additive low-rank perturbation, AB, of a pretrained matrix parameter W to align the model to a new task or dataset with W+AB. We identify three core limitations to LoRA for finetuning--a setting that employs limited amount of data and training steps. First, LoRA employs Dropout to prevent overfitting. We prove that Dropout is only suitable for long training episodes but fails to converge to a reliable regularizer for short training episodes. Second, LoRA's initialization of B at 0 creates a slow training dynamic between A and B. That dynamic is also exacerbated by Dropout that further slows the escape from 0 for B which is particularly harmful for short training episodes. Third, the scaling factor multiplying each LoRA additive perturbation creates ``short-sighted'' interactions between the LoRA modules of different layers. Motivated by principled analysis of those limitations, we find an elegant solution: a Dropout-free, scaling-free, LoRA with Adaptive Learning rate--coined ALLoRA. By scaling the per sample and per parameter gradients with a coefficient inversely proportional to parameters' ell_2 norm, ALLoRA alleviates those three limitations. As a by-product, ALLoRA removes two hyper-parameters from LoRA: the scaling factor and the dropout rate. Empirical results show that ALLoRA admits better accuracy than LoRA on various settings, including against recent LoRA variants such as Weight-Decomposed Low-Rank Adaptation (DoRA). Ablation studies show our solution is the optimal in a family of weight-dependent / output-dependent approaches on various LLMs including the latest Llama3.

  • 2 authors
·
Oct 12, 2024

LIFT the Veil for the Truth: Principal Weights Emerge after Rank Reduction for Reasoning-Focused Supervised Fine-Tuning

Recent studies have shown that supervised fine-tuning of LLMs on a small number of high-quality datasets can yield strong reasoning capabilities. However, full fine-tuning (Full FT), while powerful, is computationally expensive and susceptible to overfitting and catastrophic forgetting, particularly when data is limited. Sparse fine-tuning, which previously achieved notable success by updating only a small subset of model parameters, offers a promising trade-off between efficiency and effectiveness. Yet, it has lagged behind in the LLM era due to the difficulty of identifying parameters truly critical for reasoning. In this work, we state that weights with the largest magnitude after low-rank approximation are critical weights for fine-tuning, which we call Principal Weights. Surprisingly, while magnitude-based sparse fine-tuning performs poorly as a baseline on LLM fine-tuning, it becomes highly effective after rank reduction. These insights motivate our method: Low-rank Informed Sparse Fine-Tuning (LIFT). LIFT only updates the top 5% Principal Weights throughout training and consistently achieves better performance on reasoning tasks than Full FT, while maintaining memory efficiency on par with popular parameter-efficient fine-tuning methods. In addition to strong performance on target domains such as arithmetic reasoning, LIFT also retains up to 20% more source-domain knowledge, compared to Full FT and LoRA. Our code is available at: https://github.com/zihanghliu/LIFT.

  • 8 authors
·
May 31, 2025 2

From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients

Modern Large Language Models (LLMs) are composed of matrices with billions of elements, making their storage and processing quite demanding in terms of computational resources and memory usage. Being significantly large, such matrices can often be expressed in low-rank format with potential to relax resource requirements. Unlike prior works which focus on developing novel matrix decomposition algorithms, in this work we first study the emergence of low-rank structures across matrices within different layers of LLMs and establish a consequential relationship between the gradient dynamics and emerging low-rank expressiveness of matrices. Our findings reveal that different layers exhibit varying levels of converged low-rank structure, necessitating a non-uniform rank reduction across them to minimize performance drop due to compression. In view of that, we present Weight Low-Rank Projection (WeLore) that unifies weight compression and memory-efficient fine-tuning as ONE, in a data-agnostic and one-shot way. WeLore capitalizes the heavy-tail distribution of singular values to identify a suitable rank reduction ratio for matrices within LLMs. Going beyond only as a compression technique, WeLore categorizes weight matrices into Low-rank Components (LRCs) and Non-Low-rank Components (N-LRCs) based on their ability to express themselves as low-rank. Our gradient perspective and extensive experiments illustrate that LRCs tend to have better finetuning capabilities and can closely mimic (sometimes outperform) the training loss trajectory and performance of full-finetuning with notable memory and compute footprint reduction. For example, finetuning a 50\% compressed LLaMa-2 7B model using only a fraction of parameters in LRCs (WeLore) can outperform its full finetuning with ~3x better throughput and ~0.6x GPU requirement. Our codes are available at https://github.com/VITA-Group/welore

  • 7 authors
·
Jul 15, 2024 2

Sparse Finetuning for Inference Acceleration of Large Language Models

We consider the problem of accurate sparse finetuning of large language models (LLMs), that is, finetuning pretrained LLMs on specialized tasks, while inducing sparsity in their weights. On the accuracy side, we observe that standard loss-based finetuning may fail to recover accuracy, especially at high sparsities. To address this, we perform a detailed study of distillation-type losses, determining an L2-based distillation approach we term SquareHead which enables accurate recovery even at higher sparsities, across all model types. On the practical efficiency side, we show that sparse LLMs can be executed with speedups by taking advantage of sparsity, for both CPU and GPU runtimes. While the standard approach is to leverage sparsity for computational reduction, we observe that in the case of memory-bound LLMs sparsity can also be leveraged for reducing memory bandwidth. We exhibit end-to-end results showing speedups due to sparsity, while recovering accuracy, on T5 (language translation), Whisper (speech translation), and open GPT-type (MPT for text generation). For MPT text generation, we show for the first time that sparse finetuning can reach 75% sparsity without accuracy drops, provide notable end-to-end speedups for both CPU and GPU inference, and highlight that sparsity is also compatible with quantization approaches. Models and software for reproducing our results are provided in Section 6.

  • 5 authors
·
Oct 10, 2023 1

D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement

We introduce D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD). FDR transforms the regression process from predicting fixed coordinates to iteratively refining probability distributions, providing a fine-grained intermediate representation that significantly enhances localization accuracy. GO-LSD is a bidirectional optimization strategy that transfers localization knowledge from refined distributions to shallower layers through self-distillation, while also simplifying the residual prediction tasks for deeper layers. Additionally, D-FINE incorporates lightweight optimizations in computationally intensive modules and operations, achieving a better balance between speed and accuracy. Specifically, D-FINE-L / X achieves 54.0% / 55.8% AP on the COCO dataset at 124 / 78 FPS on an NVIDIA T4 GPU. When pretrained on Objects365, D-FINE-L / X attains 57.1% / 59.3% AP, surpassing all existing real-time detectors. Furthermore, our method significantly enhances the performance of a wide range of DETR models by up to 5.3% AP with negligible extra parameters and training costs. Our code and pretrained models: https://github.com/Peterande/D-FINE.

  • 6 authors
·
Oct 17, 2024

Efficient Model Development through Fine-tuning Transfer

Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or language-specific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector from one source model version, which represents the weight changes from fine-tuning, and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the target base model, often achieving performance comparable to its fine-tuned counterpart. For example, reusing the fine-tuning updates from Llama 3.0 8B leads to an absolute accuracy improvement of 10.7% on GPQA over the base Llama 3.1 8B without additional training, surpassing Llama 3.1 8B Instruct. In a multilingual model development setting, we show that this approach can significantly increase performance on target-language tasks without retraining, achieving an absolute improvement of 4.7% and 15.5% on Global MMLU for Malagasy and Turkish, respectively, compared to Llama 3.1 8B Instruct. Our controlled experiments reveal that fine-tuning transfer is most effective when the source and target models are linearly connected in the parameter space. Additionally, we demonstrate that fine-tuning transfer offers a stronger and more computationally efficient starting point for further fine-tuning. Finally, we propose an iterative recycling-then-finetuning approach for continuous model development, which improves both efficiency and effectiveness. Our findings suggest that fine-tuning transfer is a viable strategy to reduce training costs while maintaining model performance.

  • 5 authors
·
Mar 25, 2025 2

Fast Inference in Denoising Diffusion Models via MMD Finetuning

Denoising Diffusion Models (DDMs) have become a popular tool for generating high-quality samples from complex data distributions. These models are able to capture sophisticated patterns and structures in the data, and can generate samples that are highly diverse and representative of the underlying distribution. However, one of the main limitations of diffusion models is the complexity of sample generation, since a large number of inference timesteps is required to faithfully capture the data distribution. In this paper, we present MMD-DDM, a novel method for fast sampling of diffusion models. Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps. This allows the finetuned model to significantly improve the speed-quality trade-off, by substantially increasing fidelity in inference regimes with few steps or, equivalently, by reducing the required number of steps to reach a target fidelity, thus paving the way for a more practical adoption of diffusion models in a wide range of applications. We evaluate our approach on unconditional image generation with extensive experiments across the CIFAR-10, CelebA, ImageNet and LSUN-Church datasets. Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models, and outperforms state-of-the-art techniques for accelerated sampling. Code is available at: https://github.com/diegovalsesia/MMD-DDM.

  • 3 authors
·
Jan 19, 2023

SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation

In recent years, the development of diffusion models has led to significant progress in image and video generation tasks, with pre-trained models like the Stable Diffusion series playing a crucial role. Inspired by model pruning which lightens large pre-trained models by removing unimportant parameters, we propose a novel model fine-tuning method to make full use of these ineffective parameters and enable the pre-trained model with new task-specified capabilities. In this work, we first investigate the importance of parameters in pre-trained diffusion models, and discover that the smallest 10% to 20% of parameters by absolute values do not contribute to the generation process. Based on this observation, we propose a method termed SaRA that re-utilizes these temporarily ineffective parameters, equating to optimizing a sparse weight matrix to learn the task-specific knowledge. To mitigate overfitting, we propose a nuclear-norm-based low-rank sparse training scheme for efficient fine-tuning. Furthermore, we design a new progressive parameter adjustment strategy to make full use of the re-trained/finetuned parameters. Finally, we propose a novel unstructural backpropagation strategy, which significantly reduces memory costs during fine-tuning. Our method enhances the generative capabilities of pre-trained models in downstream applications and outperforms traditional fine-tuning methods like LoRA in maintaining model's generalization ability. We validate our approach through fine-tuning experiments on SD models, demonstrating significant improvements. SaRA also offers a practical advantage that requires only a single line of code modification for efficient implementation and is seamlessly compatible with existing methods.

  • 6 authors
·
Sep 10, 2024 2

SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation

Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods still depend largely on a confined set of training datasets. In this work, we investigate scaling up EHPS towards the first generalist foundation model (dubbed SMPLer-X), with up to ViT-Huge as the backbone and training with up to 4.5M instances from diverse data sources. With big data and the large model, SMPLer-X exhibits strong performance across diverse test benchmarks and excellent transferability to even unseen environments. 1) For the data scaling, we perform a systematic investigation on 32 EHPS datasets, including a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. 2) For the model scaling, we take advantage of vision transformers to study the scaling law of model sizes in EHPS. Moreover, our finetuning strategy turn SMPLer-X into specialist models, allowing them to achieve further performance boosts. Notably, our foundation model SMPLer-X consistently delivers state-of-the-art results on seven benchmarks such as AGORA (107.2 mm NMVE), UBody (57.4 mm PVE), EgoBody (63.6 mm PVE), and EHF (62.3 mm PVE without finetuning). Homepage: https://caizhongang.github.io/projects/SMPLer-X/

  • 13 authors
·
Sep 29, 2023

Composable Sparse Fine-Tuning for Cross-Lingual Transfer

Fine-tuning the entire set of parameters of a large pretrained model has become the mainstream approach for transfer learning. To increase its efficiency and prevent catastrophic forgetting and interference, techniques like adapters and sparse fine-tuning have been developed. Adapters are modular, as they can be combined to adapt a model towards different facets of knowledge (e.g., dedicated language and/or task adapters). Sparse fine-tuning is expressive, as it controls the behavior of all model components. In this work, we introduce a new fine-tuning method with both these desirable properties. In particular, we learn sparse, real-valued masks based on a simple variant of the Lottery Ticket Hypothesis. Task-specific masks are obtained from annotated data in a source language, and language-specific masks from masked language modeling in a target language. Both these masks can then be composed with the pretrained model. Unlike adapter-based fine-tuning, this method neither increases the number of parameters at inference time nor alters the original model architecture. Most importantly, it outperforms adapters in zero-shot cross-lingual transfer by a large margin in a series of multilingual benchmarks, including Universal Dependencies, MasakhaNER, and AmericasNLI. Based on an in-depth analysis, we additionally find that sparsity is crucial to prevent both 1) interference between the fine-tunings to be composed and 2) overfitting. We release the code and models at https://github.com/cambridgeltl/composable-sft.

  • 4 authors
·
Oct 14, 2021

S^{2}FT: Efficient, Scalable and Generalizable LLM Fine-tuning by Structured Sparsity

Current PEFT methods for LLMs can achieve either high quality, efficient training, or scalable serving, but not all three simultaneously. To address this limitation, we investigate sparse fine-tuning and observe a remarkable improvement in generalization ability. Utilizing this key insight, we propose a family of Structured Sparse Fine-Tuning (S^{2}FT) methods for LLMs, which concurrently achieve state-of-the-art fine-tuning performance, training efficiency, and inference scalability. S^{2}FT accomplishes this by "selecting sparsely and computing densely". It selects a few heads and channels in the MHA and FFN modules for each Transformer block, respectively. Next, it co-permutes weight matrices on both sides of the coupled structures in LLMs to connect the selected components in each layer into a dense submatrix. Finally, S^{2}FT performs in-place gradient updates on all submatrices. Through theoretical analysis and empirical results, our method prevents forgetting while simplifying optimization, delivers SOTA performance on both commonsense and arithmetic reasoning with 4.6% and 1.3% average improvements compared to LoRA, and surpasses full FT by 11.5% when generalizing to various domains after instruction tuning. Using our partial backpropagation algorithm, S^{2}FT saves training memory up to 3times and improves latency by 1.5-2.7times compared to full FT, while delivering an average 10% improvement over LoRA on both metrics. We further demonstrate that the weight updates in S^{2}FT can be decoupled into adapters, enabling effective fusion, fast switch, and efficient parallelism for serving multiple fine-tuned models.

  • 8 authors
·
Dec 9, 2024

MFTCoder: Boosting Code LLMs with Multitask Fine-Tuning

Code LLMs have emerged as a specialized research field, with remarkable studies dedicated to enhancing model's coding capabilities through fine-tuning on pre-trained models. Previous fine-tuning approaches were typically tailored to specific downstream tasks or scenarios, which meant separate fine-tuning for each task, requiring extensive training resources and posing challenges in terms of deployment and maintenance. Furthermore, these approaches failed to leverage the inherent interconnectedness among different code-related tasks. To overcome these limitations, we present a multi-task fine-tuning framework, MFTcoder, that enables simultaneous and parallel fine-tuning on multiple tasks. By incorporating various loss functions, we effectively address common challenges in multi-task learning, such as data imbalance, varying difficulty levels, and inconsistent convergence speeds. Extensive experiments have conclusively demonstrated that our multi-task fine-tuning approach outperforms both individual fine-tuning on single tasks and fine-tuning on a mixed ensemble of tasks. Moreover, MFTcoder offers efficient training capabilities, including efficient data tokenization modes and PEFT fine-tuning, resulting in significantly improved speed compared to traditional fine-tuning methods. MFTcoder seamlessly integrates with several mainstream open-source LLMs, such as CodeLLama and Qwen. Leveraging the CodeLLama foundation, our MFTcoder fine-tuned model, CodeFuse-CodeLLama-34B, achieves an impressive pass@1 score of 74.4\% on the HumaneEval benchmark, surpassing GPT-4 performance (67\%, zero-shot). MFTCoder is open-sourced at https://github.com/codefuse-ai/MFTCOder

codefuse-ai CodeFuse AI
·
Nov 3, 2023 1