Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSTDA-Meta: A Meta-Learning Framework for Few-Shot Traffic Prediction
As the development of cities, traffic congestion becomes an increasingly pressing issue, and traffic prediction is a classic method to relieve that issue. Traffic prediction is one specific application of spatio-temporal prediction learning, like taxi scheduling, weather prediction, and ship trajectory prediction. Against these problems, classical spatio-temporal prediction learning methods including deep learning, require large amounts of training data. In reality, some newly developed cities with insufficient sensors would not hold that assumption, and the data scarcity makes predictive performance worse. In such situation, the learning method on insufficient data is known as few-shot learning (FSL), and the FSL of traffic prediction remains challenges. On the one hand, graph structures' irregularity and dynamic nature of graphs cannot hold the performance of spatio-temporal learning method. On the other hand, conventional domain adaptation methods cannot work well on insufficient training data, when transferring knowledge from different domains to the intended target domain.To address these challenges, we propose a novel spatio-temporal domain adaptation (STDA) method that learns transferable spatio-temporal meta-knowledge from data-sufficient cities in an adversarial manner. This learned meta-knowledge can improve the prediction performance of data-scarce cities. Specifically, we train the STDA model using a Model-Agnostic Meta-Learning (MAML) based episode learning process, which is a model-agnostic meta-learning framework that enables the model to solve new learning tasks using only a small number of training samples. We conduct numerous experiments on four traffic prediction datasets, and our results show that the prediction performance of our model has improved by 7\% compared to baseline models on the two metrics of MAE and RMSE.
Meta Pruning via Graph Metanetworks : A Meta Learning Framework for Network Pruning
Network pruning, aimed at reducing network size while preserving accuracy, has attracted significant research interest. Numerous pruning techniques have been proposed over time. They are becoming increasingly effective, but more complex and harder to interpret as well. Given the inherent complexity of neural networks, we argue that manually designing pruning criteria has reached a bottleneck. To address this, we propose a novel approach in which we "use a neural network to prune neural networks". More specifically, we introduce the newly developed idea of metanetwork from meta-learning into pruning. A metanetwork is a network that takes another network as input and produces a modified network as output. In this paper, we first establish a bijective mapping between neural networks and graphs, and then employ a graph neural network as our metanetwork. We train a metanetwork that learns the pruning strategy automatically which can transform a network that is hard to prune into another network that is much easier to prune. Once the metanetwork is trained, our pruning needs nothing more than a feedforward through the metanetwork and the standard finetuning to prune at state-of-the-art. Our method achieved outstanding results on many popular and representative pruning tasks (including ResNet56 on CIFAR10, VGG19 on CIFAR100, ResNet50 on ImageNet). Our code is available at https://github.com/Yewei-Liu/MetaPruning
Meta-Learning for Speeding Up Large Model Inference in Decentralized Environments
The deployment of large-scale models, such as large language models (LLMs) and sophisticated image generation systems, incurs substantial costs due to their computational demands. To mitigate these costs and address challenges related to scalability and data security, there is a growing shift towards decentralized systems for deploying such models. In these decentralized environments, efficient inference acceleration becomes crucial to manage computational resources effectively and enhance system responsiveness. In this work, we address the challenge of selecting optimal acceleration methods in decentralized systems by introducing a meta-learning-based framework. This framework automates the selection process by learning from historical performance data of various acceleration techniques across different tasks. Unlike traditional methods that rely on random selection or expert intuition, our approach systematically identifies the best acceleration strategies based on the specific characteristics of each task. We demonstrate that our meta-learning framework not only streamlines the decision-making process but also consistently outperforms conventional methods in terms of efficiency and performance. Our results highlight the potential of meta-learning to revolutionize inference acceleration in decentralized AI systems, offering a path towards more democratic and economically feasible artificial intelligence solutions.
System Prompt Optimization with Meta-Learning
Large Language Models (LLMs) have shown remarkable capabilities, with optimizing their input prompts playing a pivotal role in maximizing their performance. However, while LLM prompts consist of both the task-agnostic system prompts and task-specific user prompts, existing work on prompt optimization has focused on user prompts specific to individual queries or tasks, and largely overlooked the system prompt that is, once optimized, applicable across different tasks and domains. Motivated by this, we introduce the novel problem of bilevel system prompt optimization, whose objective is to design system prompts that are robust to diverse user prompts and transferable to unseen tasks. To tackle this problem, we then propose a meta-learning framework, which meta-learns the system prompt by optimizing it over various user prompts across multiple datasets, while simultaneously updating the user prompts in an iterative manner to ensure synergy between them. We conduct experiments on 14 unseen datasets spanning 5 different domains, on which we show that our approach produces system prompts that generalize effectively to diverse user prompts. Also, our findings reveal that the optimized system prompt enables rapid adaptation even to unseen tasks, requiring fewer optimization steps for test-time user prompts while achieving improved performance.
Generalizable Decision Boundaries: Dualistic Meta-Learning for Open Set Domain Generalization
Domain generalization (DG) is proposed to deal with the issue of domain shift, which occurs when statistical differences exist between source and target domains. However, most current methods do not account for a common realistic scenario where the source and target domains have different classes. To overcome this deficiency, open set domain generalization (OSDG) then emerges as a more practical setting to recognize unseen classes in unseen domains. An intuitive approach is to use multiple one-vs-all classifiers to define decision boundaries for each class and reject the outliers as unknown. However, the significant class imbalance between positive and negative samples often causes the boundaries biased towards positive ones, resulting in misclassification for known samples in the unseen target domain. In this paper, we propose a novel meta-learning-based framework called dualistic MEta-learning with joint DomaIn-Class matching (MEDIC), which considers gradient matching towards inter-domain and inter-class splits simultaneously to find a generalizable boundary balanced for all tasks. Experimental results demonstrate that MEDIC not only outperforms previous methods in open set scenarios, but also maintains competitive close set generalization ability at the same time. Our code is available at https://github.com/zzwdx/MEDIC.
Meta-Learning a Dynamical Language Model
We consider the task of word-level language modeling and study the possibility of combining hidden-states-based short-term representations with medium-term representations encoded in dynamical weights of a language model. Our work extends recent experiments on language models with dynamically evolving weights by casting the language modeling problem into an online learning-to-learn framework in which a meta-learner is trained by gradient-descent to continuously update a language model weights.
Long Short-Term Temporal Meta-learning in Online Recommendation
An effective online recommendation system should jointly capture users' long-term and short-term preferences in both users' internal behaviors (from the target recommendation task) and external behaviors (from other tasks). However, it is extremely challenging to conduct fast adaptations to real-time new trends while making full use of all historical behaviors in large-scale systems, due to the real-world limitations in real-time training efficiency and external behavior acquisition. To address these practical challenges, we propose a novel Long Short-Term Temporal Meta-learning framework (LSTTM) for online recommendation. It arranges user multi-source behaviors in a global long-term graph and an internal short-term graph, and conducts different GAT-based aggregators and training strategies to learn user short-term and long-term preferences separately. To timely capture users' real-time interests, we propose a temporal meta-learning method based on MAML under an asynchronous optimization strategy for fast adaptation, which regards recommendations at different time periods as different tasks. In experiments, LSTTM achieves significant improvements on both offline and online evaluations. It has been deployed on a widely-used online recommendation system named WeChat Top Stories, affecting millions of users.
Prompt-MII: Meta-Learning Instruction Induction for LLMs
A popular method to adapt large language models (LLMs) to new tasks is in-context learning (ICL), which is effective but incurs high inference costs as context length grows. In this paper we propose a method to perform instruction induction, where we take training examples and reduce them to a compact but descriptive prompt that can achieve performance comparable to ICL over the full training set. Specifically, we propose PROMPT-MII, a reinforcement learning (RL) based framework to meta-learn an instruction induction model that can generate compact instructions on the fly for an arbitrary new dataset. We train on over 3,000 diverse classification datasets from the HuggingFace hub, and evaluate on 90 unseen tasks. PROMPT-MII improves downstream model quality by 4-9 F1 points (10-20% relative), matching ICL performance while requiring 3-13x fewer tokens.
Meta-PerSER: Few-Shot Listener Personalized Speech Emotion Recognition via Meta-learning
This paper introduces Meta-PerSER, a novel meta-learning framework that personalizes Speech Emotion Recognition (SER) by adapting to each listener's unique way of interpreting emotion. Conventional SER systems rely on aggregated annotations, which often overlook individual subtleties and lead to inconsistent predictions. In contrast, Meta-PerSER leverages a Model-Agnostic Meta-Learning (MAML) approach enhanced with Combined-Set Meta-Training, Derivative Annealing, and per-layer per-step learning rates, enabling rapid adaptation with only a few labeled examples. By integrating robust representations from pre-trained self-supervised models, our framework first captures general emotional cues and then fine-tunes itself to personal annotation styles. Experiments on the IEMOCAP corpus demonstrate that Meta-PerSER significantly outperforms baseline methods in both seen and unseen data scenarios, highlighting its promise for personalized emotion recognition.
MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning
Zero- and few-shot visual anomaly segmentation relies on powerful vision-language models that detect unseen anomalies using manually designed textual prompts. However, visual representations are inherently independent of language. In this paper, we explore the potential of a pure visual foundation model as an alternative to widely used vision-language models for universal visual anomaly segmentation. We present a novel paradigm that unifies anomaly segmentation into change segmentation. This paradigm enables us to leverage large-scale synthetic image pairs, featuring object-level and local region changes, derived from existing image datasets, which are independent of target anomaly datasets. We propose a one-prompt Meta-learning framework for Universal Anomaly Segmentation (MetaUAS) that is trained on this synthetic dataset and then generalizes well to segment any novel or unseen visual anomalies in the real world. To handle geometrical variations between prompt and query images, we propose a soft feature alignment module that bridges paired-image change perception and single-image semantic segmentation. This is the first work to achieve universal anomaly segmentation using a pure vision model without relying on special anomaly detection datasets and pre-trained visual-language models. Our method effectively and efficiently segments any anomalies with only one normal image prompt and enjoys training-free without guidance from language. Our MetaUAS significantly outperforms previous zero-shot, few-shot, and even full-shot anomaly segmentation methods. The code and pre-trained models are available at https://github.com/gaobb/MetaUAS.
Neural Context Flows for Meta-Learning of Dynamical Systems
Neural Ordinary Differential Equations (NODEs) often struggle to adapt to new dynamic behaviors caused by parameter changes in the underlying physical system, even when these dynamics are similar to previously observed behaviors. This problem becomes more challenging when the changing parameters are unobserved, meaning their value or influence cannot be directly measured when collecting data. To address this issue, we introduce Neural Context Flow (NCF), a robust and interpretable Meta-Learning framework that includes uncertainty estimation. NCF uses Taylor expansion to enable contextual self-modulation, allowing context vectors to influence dynamics from other domains while also modulating themselves. After establishing theoretical guarantees, we empirically test NCF and compare it to related adaptation methods. Our results show that NCF achieves state-of-the-art Out-of-Distribution performance on 5 out of 6 linear and non-linear benchmark problems. Through extensive experiments, we explore the flexible model architecture of NCF and the encoded representations within the learned context vectors. Our findings highlight the potential implications of NCF for foundational models in the physical sciences, offering a promising approach to improving the adaptability and generalization of NODEs in various scientific applications. Our code is openly available at https://github.com/ddrous/ncflow.
learn2learn: A Library for Meta-Learning Research
Meta-learning researchers face two fundamental issues in their empirical work: prototyping and reproducibility. Researchers are prone to make mistakes when prototyping new algorithms and tasks because modern meta-learning methods rely on unconventional functionalities of machine learning frameworks. In turn, reproducing existing results becomes a tedious endeavour -- a situation exacerbated by the lack of standardized implementations and benchmarks. As a result, researchers spend inordinate amounts of time on implementing software rather than understanding and developing new ideas. This manuscript introduces learn2learn, a library for meta-learning research focused on solving those prototyping and reproducibility issues. learn2learn provides low-level routines common across a wide-range of meta-learning techniques (e.g. meta-descent, meta-reinforcement learning, few-shot learning), and builds standardized interfaces to algorithms and benchmarks on top of them. In releasing learn2learn under a free and open source license, we hope to foster a community around standardized software for meta-learning research.
AutoMLBench: A Comprehensive Experimental Evaluation of Automated Machine Learning Frameworks
With the booming demand for machine learning applications, it has been recognized that the number of knowledgeable data scientists can not scale with the growing data volumes and application needs in our digital world. In response to this demand, several automated machine learning (AutoML) frameworks have been developed to fill the gap of human expertise by automating the process of building machine learning pipelines. Each framework comes with different heuristics-based design decisions. In this study, we present a comprehensive evaluation and comparison of the performance characteristics of six popular AutoML frameworks, namely, AutoWeka, AutoSKlearn, TPOT, Recipe, ATM, and SmartML, across 100 data sets from established AutoML benchmark suites. Our experimental evaluation considers different aspects for its comparison, including the performance impact of several design decisions, including time budget, size of search space, meta-learning, and ensemble construction. The results of our study reveal various interesting insights that can significantly guide and impact the design of AutoML frameworks.
Concrete Subspace Learning based Interference Elimination for Multi-task Model Fusion
Merging models fine-tuned from a common, extensively pre-trained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multi-task model that performs well across diverse tasks. Recent research, exemplified by task arithmetic, highlights that this multi-task model can be derived through arithmetic operations on task vectors. Nevertheless, current merging techniques frequently resolve potential conflicts among parameters from task-specific models by evaluating individual attributes, such as the parameters' magnitude or sign, overlooking their collective impact on the overall functionality of the model. In this work, we propose the CONtinuous relaxation of disCRETE (Concrete) subspace learning method to identify a common low-dimensional subspace and utilize its shared information to track the interference problem without sacrificing much performance. Specifically, we model the problem as a bi-level optimization problem and introduce a meta-learning framework to find the Concrete subspace mask through gradient-based techniques. At the upper level, we focus on learning a shared Concrete mask to identify the subspace, while at the inner level, model merging is performed to maximize the performance of the merged model. We conduct extensive experiments on both vision domain and language domain, and the results demonstrate the effectiveness of our method. The code is available at https://github.com/tanganke/subspace_fusion
Learning to Retain while Acquiring: Combating Distribution-Shift in Adversarial Data-Free Knowledge Distillation
Data-free Knowledge Distillation (DFKD) has gained popularity recently, with the fundamental idea of carrying out knowledge transfer from a Teacher neural network to a Student neural network in the absence of training data. However, in the Adversarial DFKD framework, the student network's accuracy, suffers due to the non-stationary distribution of the pseudo-samples under multiple generator updates. To this end, at every generator update, we aim to maintain the student's performance on previously encountered examples while acquiring knowledge from samples of the current distribution. Thus, we propose a meta-learning inspired framework by treating the task of Knowledge-Acquisition (learning from newly generated samples) and Knowledge-Retention (retaining knowledge on previously met samples) as meta-train and meta-test, respectively. Hence, we dub our method as Learning to Retain while Acquiring. Moreover, we identify an implicit aligning factor between the Knowledge-Retention and Knowledge-Acquisition tasks indicating that the proposed student update strategy enforces a common gradient direction for both tasks, alleviating interference between the two objectives. Finally, we support our hypothesis by exhibiting extensive evaluation and comparison of our method with prior arts on multiple datasets.
MetaGCD: Learning to Continually Learn in Generalized Category Discovery
In this paper, we consider a real-world scenario where a model that is trained on pre-defined classes continually encounters unlabeled data that contains both known and novel classes. The goal is to continually discover novel classes while maintaining the performance in known classes. We name the setting Continual Generalized Category Discovery (C-GCD). Existing methods for novel class discovery cannot directly handle the C-GCD setting due to some unrealistic assumptions, such as the unlabeled data only containing novel classes. Furthermore, they fail to discover novel classes in a continual fashion. In this work, we lift all these assumptions and propose an approach, called MetaGCD, to learn how to incrementally discover with less forgetting. Our proposed method uses a meta-learning framework and leverages the offline labeled data to simulate the testing incremental learning process. A meta-objective is defined to revolve around two conflicting learning objectives to achieve novel class discovery without forgetting. Furthermore, a soft neighborhood-based contrastive network is proposed to discriminate uncorrelated images while attracting correlated images. We build strong baselines and conduct extensive experiments on three widely used benchmarks to demonstrate the superiority of our method.
FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic descriptions, and Conceptual Relations
We present a meta-learning framework for learning new visual concepts quickly, from just one or a few examples, guided by multiple naturally occurring data streams: simultaneously looking at images, reading sentences that describe the objects in the scene, and interpreting supplemental sentences that relate the novel concept with other concepts. The learned concepts support downstream applications, such as answering questions by reasoning about unseen images. Our model, namely FALCON, represents individual visual concepts, such as colors and shapes, as axis-aligned boxes in a high-dimensional space (the "box embedding space"). Given an input image and its paired sentence, our model first resolves the referential expression in the sentence and associates the novel concept with particular objects in the scene. Next, our model interprets supplemental sentences to relate the novel concept with other known concepts, such as "X has property Y" or "X is a kind of Y". Finally, it infers an optimal box embedding for the novel concept that jointly 1) maximizes the likelihood of the observed instances in the image, and 2) satisfies the relationships between the novel concepts and the known ones. We demonstrate the effectiveness of our model on both synthetic and real-world datasets.
Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information
We develop a portfolio allocation framework that leverages deep learning techniques to address challenges arising from high-dimensional, non-stationary, and low-signal-to-noise market information. Our approach includes a dynamic embedding method that reduces the non-stationary, high-dimensional state space into a lower-dimensional representation. We design a reinforcement learning (RL) framework that integrates generative autoencoders and online meta-learning to dynamically embed market information, enabling the RL agent to focus on the most impactful parts of the state space for portfolio allocation decisions. Empirical analysis based on the top 500 U.S. stocks demonstrates that our framework outperforms common portfolio benchmarks and the predict-then-optimize (PTO) approach using machine learning, particularly during periods of market stress. Traditional factor models do not fully explain this superior performance. The framework's ability to time volatility reduces its market exposure during turbulent times. Ablation studies confirm the robustness of this performance across various reinforcement learning algorithms. Additionally, the embedding and meta-learning techniques effectively manage the complexities of high-dimensional, noisy, and non-stationary financial data, enhancing both portfolio performance and risk management.
Zero-shot causal learning
Predicting how different interventions will causally affect a specific individual is important in a variety of domains such as personalized medicine, public policy, and online marketing. There are a large number of methods to predict the effect of an existing intervention based on historical data from individuals who received it. However, in many settings it is important to predict the effects of novel interventions (e.g., a newly invented drug), which these methods do not address. Here, we consider zero-shot causal learning: predicting the personalized effects of a novel intervention. We propose CaML, a causal meta-learning framework which formulates the personalized prediction of each intervention's effect as a task. CaML trains a single meta-model across thousands of tasks, each constructed by sampling an intervention, along with its recipients and nonrecipients. By leveraging both intervention information (e.g., a drug's attributes) and individual features~(e.g., a patient's history), CaML is able to predict the personalized effects of novel interventions that do not exist at the time of training. Experimental results on real world datasets in large-scale medical claims and cell-line perturbations demonstrate the effectiveness of our approach. Most strikingly, CaML's zero-shot predictions outperform even strong baselines trained directly on data from the test interventions.
Continuous Learning in a Hierarchical Multiscale Neural Network
We reformulate the problem of encoding a multi-scale representation of a sequence in a language model by casting it in a continuous learning framework. We propose a hierarchical multi-scale language model in which short time-scale dependencies are encoded in the hidden state of a lower-level recurrent neural network while longer time-scale dependencies are encoded in the dynamic of the lower-level network by having a meta-learner update the weights of the lower-level neural network in an online meta-learning fashion. We use elastic weights consolidation as a higher-level to prevent catastrophic forgetting in our continuous learning framework.
MVP: Meta Visual Prompt Tuning for Few-Shot Remote Sensing Image Scene Classification
Vision Transformer (ViT) models have recently emerged as powerful and versatile models for various visual tasks. Recently, a work called PMF has achieved promising results in few-shot image classification by utilizing pre-trained vision transformer models. However, PMF employs full fine-tuning for learning the downstream tasks, leading to significant overfitting and storage issues, especially in the remote sensing domain. In order to tackle these issues, we turn to the recently proposed parameter-efficient tuning methods, such as VPT, which updates only the newly added prompt parameters while keeping the pre-trained backbone frozen. Inspired by VPT, we propose the Meta Visual Prompt Tuning (MVP) method. Specifically, we integrate the VPT method into the meta-learning framework and tailor it to the remote sensing domain, resulting in an efficient framework for Few-Shot Remote Sensing Scene Classification (FS-RSSC). Furthermore, we introduce a novel data augmentation strategy based on patch embedding recombination to enhance the representation and diversity of scenes for classification purposes. Experiment results on the FS-RSSC benchmark demonstrate the superior performance of the proposed MVP over existing methods in various settings, such as various-way-various-shot, various-way-one-shot, and cross-domain adaptation.
MetaF2N: Blind Image Super-Resolution by Learning Efficient Model Adaptation from Faces
Due to their highly structured characteristics, faces are easier to recover than natural scenes for blind image super-resolution. Therefore, we can extract the degradation representation of an image from the low-quality and recovered face pairs. Using the degradation representation, realistic low-quality images can then be synthesized to fine-tune the super-resolution model for the real-world low-quality image. However, such a procedure is time-consuming and laborious, and the gaps between recovered faces and the ground-truths further increase the optimization uncertainty. To facilitate efficient model adaptation towards image-specific degradations, we propose a method dubbed MetaF2N, which leverages the contained Faces to fine-tune model parameters for adapting to the whole Natural image in a Meta-learning framework. The degradation extraction and low-quality image synthesis steps are thus circumvented in our MetaF2N, and it requires only one fine-tuning step to get decent performance. Considering the gaps between the recovered faces and ground-truths, we further deploy a MaskNet for adaptively predicting loss weights at different positions to reduce the impact of low-confidence areas. To evaluate our proposed MetaF2N, we have collected a real-world low-quality dataset with one or multiple faces in each image, and our MetaF2N achieves superior performance on both synthetic and real-world datasets. Source code, pre-trained models, and collected datasets are available at https://github.com/yinzhicun/MetaF2N.
Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement
The rapid advancement of large language models (LLMs) has significantly enhanced the capabilities of AI-driven agents across various tasks. However, existing agentic systems, whether based on fixed pipeline algorithms or pre-defined meta-learning frameworks, cannot search the whole agent design space due to the restriction of human-designed components, and thus might miss the globally optimal agent design. In this paper, we introduce G\"odel Agent, a self-evolving framework inspired by the G\"odel machine, enabling agents to recursively improve themselves without relying on predefined routines or fixed optimization algorithms. G\"odel Agent leverages LLMs to dynamically modify its own logic and behavior, guided solely by high-level objectives through prompting. Experimental results on mathematical reasoning and complex agent tasks demonstrate that implementation of G\"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
Learning to Navigate the Web
Learning in environments with large state and action spaces, and sparse rewards, can hinder a Reinforcement Learning (RL) agent's learning through trial-and-error. For instance, following natural language instructions on the Web (such as booking a flight ticket) leads to RL settings where input vocabulary and number of actionable elements on a page can grow very large. Even though recent approaches improve the success rate on relatively simple environments with the help of human demonstrations to guide the exploration, they still fail in environments where the set of possible instructions can reach millions. We approach the aforementioned problems from a different perspective and propose guided RL approaches that can generate unbounded amount of experience for an agent to learn from. Instead of learning from a complicated instruction with a large vocabulary, we decompose it into multiple sub-instructions and schedule a curriculum in which an agent is tasked with a gradually increasing subset of these relatively easier sub-instructions. In addition, when the expert demonstrations are not available, we propose a novel meta-learning framework that generates new instruction following tasks and trains the agent more effectively. We train DQN, deep reinforcement learning agent, with Q-value function approximated with a novel QWeb neural network architecture on these smaller, synthetic instructions. We evaluate the ability of our agent to generalize to new instructions on World of Bits benchmark, on forms with up to 100 elements, supporting 14 million possible instructions. The QWeb agent outperforms the baseline without using any human demonstration achieving 100% success rate on several difficult environments.
HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning
The purpose of offline multi-task reinforcement learning (MTRL) is to develop a unified policy applicable to diverse tasks without the need for online environmental interaction. Recent advancements approach this through sequence modeling, leveraging the Transformer architecture's scalability and the benefits of parameter sharing to exploit task similarities. However, variations in task content and complexity pose significant challenges in policy formulation, necessitating judicious parameter sharing and management of conflicting gradients for optimal policy performance. In this work, we introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task. We approach this as a bi-level optimization problem, employing a meta-learning framework that leverages gradient-based techniques. The upper level of this framework is dedicated to learning a task-specific mask that delineates the harmony subspace, while the inner level focuses on updating parameters to enhance the overall performance of the unified policy. Empirical evaluations on a series of benchmarks demonstrate the superiority of HarmoDT, verifying the effectiveness of our approach.
Towards Omni-generalizable Neural Methods for Vehicle Routing Problems
Learning heuristics for vehicle routing problems (VRPs) has gained much attention due to the less reliance on hand-crafted rules. However, existing methods are typically trained and tested on the same task with a fixed size and distribution (of nodes), and hence suffer from limited generalization performance. This paper studies a challenging yet realistic setting, which considers generalization across both size and distribution in VRPs. We propose a generic meta-learning framework, which enables effective training of an initialized model with the capability of fast adaptation to new tasks during inference. We further develop a simple yet efficient approximation method to reduce the training overhead. Extensive experiments on both synthetic and benchmark instances of the traveling salesman problem (TSP) and capacitated vehicle routing problem (CVRP) demonstrate the effectiveness of our method. The code is available at: https://github.com/RoyalSkye/Omni-VRP.
CoLLEGe: Concept Embedding Generation for Large Language Models
Current language models are unable to quickly learn new concepts on the fly, often requiring a more involved finetuning process to learn robustly. Prompting in-context is not robust to context distractions, and often fails to confer much information about the new concepts. Classic methods for few-shot word learning in NLP, relying on global word vectors, are less applicable to large language models. In this paper, we introduce a novel approach named CoLLEGe (Concept Learning with Language Embedding Generation) to modernize few-shot concept learning. CoLLEGe is a meta-learning framework capable of generating flexible embeddings for new concepts using a small number of example sentences or definitions. Our primary meta-learning objective is simply to facilitate a language model to make next word predictions in forthcoming sentences, making it compatible with language model pretraining. We design a series of tasks to test new concept learning in challenging real-world scenarios, including new word acquisition, definition inference, and verbal reasoning, and demonstrate that our method succeeds in each setting without task-specific training.
Discovered Policy Optimisation
Tremendous progress has been made in reinforcement learning (RL) over the past decade. Most of these advancements came through the continual development of new algorithms, which were designed using a combination of mathematical derivations, intuitions, and experimentation. Such an approach of creating algorithms manually is limited by human understanding and ingenuity. In contrast, meta-learning provides a toolkit for automatic machine learning method optimisation, potentially addressing this flaw. However, black-box approaches which attempt to discover RL algorithms with minimal prior structure have thus far not outperformed existing hand-crafted algorithms. Mirror Learning, which includes RL algorithms, such as PPO, offers a potential middle-ground starting point: while every method in this framework comes with theoretical guarantees, components that differentiate them are subject to design. In this paper we explore the Mirror Learning space by meta-learning a "drift" function. We refer to the immediate result as Learnt Policy Optimisation (LPO). By analysing LPO we gain original insights into policy optimisation which we use to formulate a novel, closed-form RL algorithm, Discovered Policy Optimisation (DPO). Our experiments in Brax environments confirm state-of-the-art performance of LPO and DPO, as well as their transfer to unseen settings.
Concept-free Causal Disentanglement with Variational Graph Auto-Encoder
In disentangled representation learning, the goal is to achieve a compact representation that consists of all interpretable generative factors in the observational data. Learning disentangled representations for graphs becomes increasingly important as graph data rapidly grows. Existing approaches often rely on Variational Auto-Encoder (VAE) or its causal structure learning-based refinement, which suffer from sub-optimality in VAEs due to the independence factor assumption and unavailability of concept labels, respectively. In this paper, we propose an unsupervised solution, dubbed concept-free causal disentanglement, built on a theoretically provable tight upper bound approximating the optimal factor. This results in an SCM-like causal structure modeling that directly learns concept structures from data. Based on this idea, we propose Concept-free Causal VGAE (CCVGAE) by incorporating a novel causal disentanglement layer into Variational Graph Auto-Encoder. Furthermore, we prove concept consistency under our concept-free causal disentanglement framework, hence employing it to enhance the meta-learning framework, called concept-free causal Meta-Graph (CC-Meta-Graph). We conduct extensive experiments to demonstrate the superiority of the proposed models: CCVGAE and CC-Meta-Graph, reaching up to 29% and 11% absolute improvements over baselines in terms of AUC, respectively.
Chameleon: A Data-Efficient Generalist for Dense Visual Prediction in the Wild
Large language models have evolved data-efficient generalists, benefiting from the universal language interface and large-scale pre-training. However, constructing a data-efficient generalist for dense visual prediction presents a distinct challenge due to the variation in label structures across different tasks. Consequently, generalization to unseen dense prediction tasks in the low-data regime is not straightforward and has received less attention from previous vision generalists. In this study, we explore a universal model that can flexibly adapt to unseen dense label structures with a few examples, enabling it to serve as a data-efficient vision generalist in diverse real-world scenarios. To this end, we base our method on a powerful meta-learning framework and explore several axes to improve its performance and versatility for real-world problems, such as flexible adaptation mechanisms and scalability. We evaluate our model across a spectrum of unseen real-world scenarios where low-shot learning is desirable, including video, 3D, medical, biological, and user-interactive tasks. Equipped with a generic architecture and an effective adaptation mechanism, our model flexibly adapts to all of these tasks with at most 50 labeled images, showcasing a significant advancement over existing data-efficient generalist approaches. Codes are available at https://github.com/GitGyun/chameleon.
Improving Both Domain Robustness and Domain Adaptability in Machine Translation
We consider two problems of NMT domain adaptation using meta-learning. First, we want to reach domain robustness, i.e., we want to reach high quality on both domains seen in the training data and unseen domains. Second, we want our systems to be adaptive, i.e., making it possible to finetune systems with just hundreds of in-domain parallel sentences. We study the domain adaptability of meta-learning when improving the domain robustness of the model. In this paper, we propose a novel approach, RMLNMT (Robust Meta-Learning Framework for Neural Machine Translation Domain Adaptation), which improves the robustness of existing meta-learning models. More specifically, we show how to use a domain classifier in curriculum learning and we integrate the word-level domain mixing model into the meta-learning framework with a balanced sampling strategy. Experiments on EnglishrightarrowGerman and EnglishrightarrowChinese translation show that RMLNMT improves in terms of both domain robustness and domain adaptability in seen and unseen domains. Our source code is available at https://github.com/lavine-lmu/RMLNMT.
Domain-General Crowd Counting in Unseen Scenarios
Domain shift across crowd data severely hinders crowd counting models to generalize to unseen scenarios. Although domain adaptive crowd counting approaches close this gap to a certain extent, they are still dependent on the target domain data to adapt (e.g. finetune) their models to the specific domain. In this paper, we aim to train a model based on a single source domain which can generalize well on any unseen domain. This falls into the realm of domain generalization that remains unexplored in crowd counting. We first introduce a dynamic sub-domain division scheme which divides the source domain into multiple sub-domains such that we can initiate a meta-learning framework for domain generalization. The sub-domain division is dynamically refined during the meta-learning. Next, in order to disentangle domain-invariant information from domain-specific information in image features, we design the domain-invariant and -specific crowd memory modules to re-encode image features. Two types of losses, i.e. feature reconstruction and orthogonal losses, are devised to enable this disentanglement. Extensive experiments on several standard crowd counting benchmarks i.e. SHA, SHB, QNRF, and NWPU, show the strong generalizability of our method.
AlteredAvatar: Stylizing Dynamic 3D Avatars with Fast Style Adaptation
This paper presents a method that can quickly adapt dynamic 3D avatars to arbitrary text descriptions of novel styles. Among existing approaches for avatar stylization, direct optimization methods can produce excellent results for arbitrary styles but they are unpleasantly slow. Furthermore, they require redoing the optimization process from scratch for every new input. Fast approximation methods using feed-forward networks trained on a large dataset of style images can generate results for new inputs quickly, but tend not to generalize well to novel styles and fall short in quality. We therefore investigate a new approach, AlteredAvatar, that combines those two approaches using the meta-learning framework. In the inner loop, the model learns to optimize to match a single target style well; while in the outer loop, the model learns to stylize efficiently across many styles. After training, AlteredAvatar learns an initialization that can quickly adapt within a small number of update steps to a novel style, which can be given using texts, a reference image, or a combination of both. We show that AlteredAvatar can achieve a good balance between speed, flexibility and quality, while maintaining consistency across a wide range of novel views and facial expressions.
Deceptive Fairness Attacks on Graphs via Meta Learning
We study deceptive fairness attacks on graphs to answer the following question: How can we achieve poisoning attacks on a graph learning model to exacerbate the bias deceptively? We answer this question via a bi-level optimization problem and propose a meta learning-based framework named FATE. FATE is broadly applicable with respect to various fairness definitions and graph learning models, as well as arbitrary choices of manipulation operations. We further instantiate FATE to attack statistical parity and individual fairness on graph neural networks. We conduct extensive experimental evaluations on real-world datasets in the task of semi-supervised node classification. The experimental results demonstrate that FATE could amplify the bias of graph neural networks with or without fairness consideration while maintaining the utility on the downstream task. We hope this paper provides insights into the adversarial robustness of fair graph learning and can shed light on designing robust and fair graph learning in future studies.
Meta-RTL: Reinforcement-Based Meta-Transfer Learning for Low-Resource Commonsense Reasoning
Meta learning has been widely used to exploit rich-resource source tasks to improve the performance of low-resource target tasks. Unfortunately, most existing meta learning approaches treat different source tasks equally, ignoring the relatedness of source tasks to the target task in knowledge transfer. To mitigate this issue, we propose a reinforcement-based multi-source meta-transfer learning framework (Meta-RTL) for low-resource commonsense reasoning. In this framework, we present a reinforcement-based approach to dynamically estimating source task weights that measure the contribution of the corresponding tasks to the target task in the meta-transfer learning. The differences between the general loss of the meta model and task-specific losses of source-specific temporal meta models on sampled target data are fed into the policy network of the reinforcement learning module as rewards. The policy network is built upon LSTMs that capture long-term dependencies on source task weight estimation across meta learning iterations. We evaluate the proposed Meta-RTL using both BERT and ALBERT as the backbone of the meta model on three commonsense reasoning benchmark datasets. Experimental results demonstrate that Meta-RTL substantially outperforms strong baselines and previous task selection strategies and achieves larger improvements on extremely low-resource settings.
Robust Task Representations for Offline Meta-Reinforcement Learning via Contrastive Learning
We study offline meta-reinforcement learning, a practical reinforcement learning paradigm that learns from offline data to adapt to new tasks. The distribution of offline data is determined jointly by the behavior policy and the task. Existing offline meta-reinforcement learning algorithms cannot distinguish these factors, making task representations unstable to the change of behavior policies. To address this problem, we propose a contrastive learning framework for task representations that are robust to the distribution mismatch of behavior policies in training and test. We design a bi-level encoder structure, use mutual information maximization to formalize task representation learning, derive a contrastive learning objective, and introduce several approaches to approximate the true distribution of negative pairs. Experiments on a variety of offline meta-reinforcement learning benchmarks demonstrate the advantages of our method over prior methods, especially on the generalization to out-of-distribution behavior policies. The code is available at https://github.com/PKU-AI-Edge/CORRO.
Self-supervised Meta-Prompt Learning with Meta-Gradient Regularization for Few-shot Generalization
Prompt tuning is a parameter-efficient method, which learns soft prompts and conditions frozen language models to perform specific downstream tasks. Though effective, prompt tuning under few-shot settings on the one hand heavily relies on a good initialization of soft prompts. On the other hand, it can easily overfit to few-shot training samples, thereby undermining generalizability. Existing works leverage pre-training or supervised meta-learning to initialize soft prompts but they fail to data-efficiently generalize to unseen downstream tasks. To address the above problems, this paper proposes a novel Self-sUpervised meta-Prompt learning framework with MEta-gradient Regularization for few-shot generalization (SUPMER). SUPMER leverages self-supervised meta-learning with a diverse set of well-designed meta-training tasks to learn a universal prompt initialization for efficient adaptation using only unlabeled data. Additionally, it jointly meta-learns a gradient regularization function to transform raw gradients into a domain-generalizable direction, thus alleviating the problem of overfitting. Extensive experiments show that SUPMER achieves better performance for different few-shot downstream tasks, and also exhibits a stronger domain generalization ability. The code for SUPMER will be available at https://github.com/beepkh/SUPMER.
Gradient-Regulated Meta-Prompt Learning for Generalizable Vision-Language Models
Prompt tuning, a recently emerging paradigm, enables the powerful vision-language pre-training models to adapt to downstream tasks in a parameter -- and data -- efficient way, by learning the ``soft prompts'' to condition frozen pre-training models. Though effective, it is particularly problematic in the few-shot scenario, where prompt tuning performance is sensitive to the initialization and requires a time-consuming process to find a good initialization, thus restricting the fast adaptation ability of the pre-training models. In addition, prompt tuning could undermine the generalizability of the pre-training models, because the learnable prompt tokens are easy to overfit to the limited training samples. To address these issues, we introduce a novel Gradient-RegulAted Meta-prompt learning (GRAM) framework that jointly meta-learns an efficient soft prompt initialization for better adaptation and a lightweight gradient regulating function for strong cross-domain generalizability in a meta-learning paradigm using only the unlabeled image-text pre-training data. Rather than designing a specific prompt tuning method, our GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way, and comprehensive experiments show that GRAM brings about consistent improvement for them in several settings (i.e., few-shot learning, cross-domain generalization, cross-dataset generalization, etc.) over 11 datasets. Further, experiments show that GRAM enables the orthogonal methods of textual and visual prompt tuning to work in a mutually-enhanced way, offering better generalizability beyond the uni-modal prompt tuning methods.
AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based on Meta Learning
Large-scale pretraining followed by task-specific finetuning has achieved great success in various NLP tasks. Since finetuning all parameters of large pretrained models poses substantial computational and memory challenges, several efficient finetuning methods have been developed. Among them, low-rank adaptation (LoRA), which finetunes low-rank incremental update matrices on top of frozen pretrained weights, has proven particularly effective. Nonetheless, LoRA's uniform rank assignment across all layers, along with its reliance on an exhaustive search to find the best rank, leads to high computation costs and suboptimal finetuning performance. To address these limitations, we introduce AutoLoRA, a meta learning based framework for automatically identifying the optimal rank of each LoRA layer. AutoLoRA associates each rank-1 matrix in a low-rank update matrix with a selection variable, which determines whether the rank-1 matrix should be discarded. A meta learning based method is developed to learn these selection variables. The optimal rank is determined by thresholding the values of these variables. Our comprehensive experiments on natural language understanding, generation, and sequence labeling demonstrate the effectiveness of AutoLoRA.
Towards Cross-Lingual Audio Abuse Detection in Low-Resource Settings with Few-Shot Learning
Online abusive content detection, particularly in low-resource settings and within the audio modality, remains underexplored. We investigate the potential of pre-trained audio representations for detecting abusive language in low-resource languages, in this case, in Indian languages using Few Shot Learning (FSL). Leveraging powerful representations from models such as Wav2Vec and Whisper, we explore cross-lingual abuse detection using the ADIMA dataset with FSL. Our approach integrates these representations within the Model-Agnostic Meta-Learning (MAML) framework to classify abusive language in 10 languages. We experiment with various shot sizes (50-200) evaluating the impact of limited data on performance. Additionally, a feature visualization study was conducted to better understand model behaviour. This study highlights the generalization ability of pre-trained models in low-resource scenarios and offers valuable insights into detecting abusive language in multilingual contexts.
InstructRAG: Leveraging Retrieval-Augmented Generation on Instruction Graphs for LLM-Based Task Planning
Recent advancements in large language models (LLMs) have enabled their use as agents for planning complex tasks. Existing methods typically rely on a thought-action-observation (TAO) process to enhance LLM performance, but these approaches are often constrained by the LLMs' limited knowledge of complex tasks. Retrieval-augmented generation (RAG) offers new opportunities by leveraging external databases to ground generation in retrieved information. In this paper, we identify two key challenges (enlargability and transferability) in applying RAG to task planning. We propose InstructRAG, a novel solution within a multi-agent meta-reinforcement learning framework, to address these challenges. InstructRAG includes a graph to organize past instruction paths (sequences of correct actions), an RL-Agent with Reinforcement Learning to expand graph coverage for enlargability, and an ML-Agent with Meta-Learning to improve task generalization for transferability. The two agents are trained end-to-end to optimize overall planning performance. Our experiments on four widely used task planning datasets demonstrate that InstructRAG significantly enhances performance and adapts efficiently to new tasks, achieving up to a 19.2% improvement over the best existing approach.
Meta-optimized Contrastive Learning for Sequential Recommendation
Contrastive Learning (CL) performances as a rising approach to address the challenge of sparse and noisy recommendation data. Although having achieved promising results, most existing CL methods only perform either hand-crafted data or model augmentation for generating contrastive pairs to find a proper augmentation operation for different datasets, which makes the model hard to generalize. Additionally, since insufficient input data may lead the encoder to learn collapsed embeddings, these CL methods expect a relatively large number of training data (e.g., large batch size or memory bank) to contrast. However, not all contrastive pairs are always informative and discriminative enough for the training processing. Therefore, a more general CL-based recommendation model called Meta-optimized Contrastive Learning for sequential Recommendation (MCLRec) is proposed in this work. By applying both data augmentation and learnable model augmentation operations, this work innovates the standard CL framework by contrasting data and model augmented views for adaptively capturing the informative features hidden in stochastic data augmentation. Moreover, MCLRec utilizes a meta-learning manner to guide the updating of the model augmenters, which helps to improve the quality of contrastive pairs without enlarging the amount of input data. Finally, a contrastive regularization term is considered to encourage the augmentation model to generate more informative augmented views and avoid too similar contrastive pairs within the meta updating. The experimental results on commonly used datasets validate the effectiveness of MCLRec.
Thompson Sampling with Diffusion Generative Prior
In this work, we initiate the idea of using denoising diffusion models to learn priors for online decision making problems. Our special focus is on the meta-learning for bandit framework, with the goal of learning a strategy that performs well across bandit tasks of a same class. To this end, we train a diffusion model that learns the underlying task distribution and combine Thompson sampling with the learned prior to deal with new tasks at test time. Our posterior sampling algorithm is designed to carefully balance between the learned prior and the noisy observations that come from the learner's interaction with the environment. To capture realistic bandit scenarios, we also propose a novel diffusion model training procedure that trains even from incomplete and/or noisy data, which could be of independent interest. Finally, our extensive experimental evaluations clearly demonstrate the potential of the proposed approach.
MACFE: A Meta-learning and Causality Based Feature Engineering Framework
Feature engineering has become one of the most important steps to improve model prediction performance, and to produce quality datasets. However, this process requires non-trivial domain-knowledge which involves a time-consuming process. Thereby, automating such process has become an active area of research and of interest in industrial applications. In this paper, a novel method, called Meta-learning and Causality Based Feature Engineering (MACFE), is proposed; our method is based on the use of meta-learning, feature distribution encoding, and causality feature selection. In MACFE, meta-learning is used to find the best transformations, then the search is accelerated by pre-selecting "original" features given their causal relevance. Experimental evaluations on popular classification datasets show that MACFE can improve the prediction performance across eight classifiers, outperforms the current state-of-the-art methods in average by at least 6.54%, and obtains an improvement of 2.71% over the best previous works.
TruthRL: Incentivizing Truthful LLMs via Reinforcement Learning
While large language models (LLMs) have demonstrated strong performance on factoid question answering, they are still prone to hallucination and untruthful responses, particularly when tasks demand information outside their parametric knowledge. Indeed, truthfulness requires more than accuracy -- models must also recognize uncertainty and abstain when unsure to avoid hallucinations. This presents a fundamental challenge for existing methods: approaches that optimize for accuracy often amplify hallucinations, while those that encourage abstention can become overly conservative, sacrificing correct answers. Both extremes ultimately compromise truthfulness. In this work, we present TruthRL, a general reinforcement learning (RL) framework that directly optimizes the truthfulness of LLMs. Specifically, we implement TruthRL using GRPO with a simple yet effective ternary reward that distinguishes correct answers, hallucinations, and abstentions. It incentivizes models to reduce hallucinations not only by providing correct responses, but also by enabling abstention when uncertain, thereby improving truthfulness. Extensive experiments across four knowledge-intensive benchmarks show that, compared to vanilla RL, TruthRL significantly reduces hallucinations by 28.9% and improves truthfulness by 21.1%, with consistent gains across various backbone models (e.g., Qwen, Llama) under both retrieval and non-retrieval setups. In-depth ablation study demonstrates that vanilla accuracy-driven methods, such as supervised fine-tuning or RL with a binary reward, struggle to balance factual correctness and uncertainty. In contrast, our proposed truthfulness-driven TruthRL achieves strong performance in both accuracy and truthfulness, underscoring the importance of learning objective design for developing truthful LLMs.
Meta-Learning Neural Procedural Biases
The goal of few-shot learning is to generalize and achieve high performance on new unseen learning tasks, where each task has only a limited number of examples available. Gradient-based meta-learning attempts to address this challenging task by learning how to learn new tasks by embedding inductive biases informed by prior learning experiences into the components of the learning algorithm. In this work, we build upon prior research and propose Neural Procedural Bias Meta-Learning (NPBML), a novel framework designed to meta-learn task-adaptive procedural biases. Our approach aims to consolidate recent advancements in meta-learned initializations, optimizers, and loss functions by learning them simultaneously and making them adapt to each individual task to maximize the strength of the learned inductive biases. This imbues each learning task with a unique set of procedural biases which is specifically designed and selected to attain strong learning performance in only a few gradient steps. The experimental results show that by meta-learning the procedural biases of a neural network, we can induce strong inductive biases towards a distribution of learning tasks, enabling robust learning performance across many well-established few-shot learning benchmarks.
Exploring Active Learning in Meta-Learning: Enhancing Context Set Labeling
Most meta-learning methods assume that the (very small) context set used to establish a new task at test time is passively provided. In some settings, however, it is feasible to actively select which points to label; the potential gain from a careful choice is substantial, but the setting requires major differences from typical active learning setups. We clarify the ways in which active meta-learning can be used to label a context set, depending on which parts of the meta-learning process use active learning. Within this framework, we propose a natural algorithm based on fitting Gaussian mixtures for selecting which points to label; though simple, the algorithm also has theoretical motivation. The proposed algorithm outperforms state-of-the-art active learning methods when used with various meta-learning algorithms across several benchmark datasets.
Meta-Learning an In-Context Transformer Model of Human Higher Visual Cortex
Understanding functional representations within higher visual cortex is a fundamental question in computational neuroscience. While artificial neural networks pretrained on large-scale datasets exhibit striking representational alignment with human neural responses, learning image-computable models of visual cortex relies on individual-level, large-scale fMRI datasets. The necessity for expensive, time-intensive, and often impractical data acquisition limits the generalizability of encoders to new subjects and stimuli. BraInCoRL uses in-context learning to predict voxelwise neural responses from few-shot examples without any additional finetuning for novel subjects and stimuli. We leverage a transformer architecture that can flexibly condition on a variable number of in-context image stimuli, learning an inductive bias over multiple subjects. During training, we explicitly optimize the model for in-context learning. By jointly conditioning on image features and voxel activations, our model learns to directly generate better performing voxelwise models of higher visual cortex. We demonstrate that BraInCoRL consistently outperforms existing voxelwise encoder designs in a low-data regime when evaluated on entirely novel images, while also exhibiting strong test-time scaling behavior. The model also generalizes to an entirely new visual fMRI dataset, which uses different subjects and fMRI data acquisition parameters. Further, BraInCoRL facilitates better interpretability of neural signals in higher visual cortex by attending to semantically relevant stimuli. Finally, we show that our framework enables interpretable mappings from natural language queries to voxel selectivity.
Meta-Learning Parameterized Skills
We propose a novel parameterized skill-learning algorithm that aims to learn transferable parameterized skills and synthesize them into a new action space that supports efficient learning in long-horizon tasks. We propose to leverage off-policy Meta-RL combined with a trajectory-centric smoothness term to learn a set of parameterized skills. Our agent can use these learned skills to construct a three-level hierarchical framework that models a Temporally-extended Parameterized Action Markov Decision Process. We empirically demonstrate that the proposed algorithms enable an agent to solve a set of difficult long-horizon (obstacle-course and robot manipulation) tasks.
Enhancing Modality-Agnostic Representations via Meta-Learning for Brain Tumor Segmentation
In medical vision, different imaging modalities provide complementary information. However, in practice, not all modalities may be available during inference or even training. Previous approaches, e.g., knowledge distillation or image synthesis, often assume the availability of full modalities for all patients during training; this is unrealistic and impractical due to the variability in data collection across sites. We propose a novel approach to learn enhanced modality-agnostic representations by employing a meta-learning strategy in training, even when only limited full modality samples are available. Meta-learning enhances partial modality representations to full modality representations by meta-training on partial modality data and meta-testing on limited full modality samples. Additionally, we co-supervise this feature enrichment by introducing an auxiliary adversarial learning branch. More specifically, a missing modality detector is used as a discriminator to mimic the full modality setting. Our segmentation framework significantly outperforms state-of-the-art brain tumor segmentation techniques in missing modality scenarios.
Meta-learning of Sequential Strategies
In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.
Towards Foundation Model for Chemical Reactor Modeling: Meta-Learning with Physics-Informed Adaptation
Developing accurate models for chemical reactors is often challenging due to the complexity of reaction kinetics and process dynamics. Traditional approaches require retraining models for each new system, limiting generalizability and efficiency. In this work, we take a step toward foundation models for chemical reactor modeling by introducing a neural network framework that generalizes across diverse reactor types and rapidly adapts to new chemical processes. Our approach leverages meta-learning to pretrain the model on a broad set of reactor dynamics, enabling efficient adaptation to unseen reactions with minimal data. To further enhance generalizability, we incorporate physics-informed fine-tuning, ensuring physically consistent adaptation to new reactor conditions. Our framework is evaluated across three integer-order fundamental reactor types - continuous stirred tank reactors, batch reactors, and plug flow reactors - demonstrating superior few-shot adaptation compared to conventional data-driven, physics-informed, and transfer learning approaches. By combining meta-learning with physics-informed adaptation, this work lays the foundation for a generalizable modeling framework, advancing the development of foundation models for chemical engineering applications. Source code is available at https://github.com/killingbear999/chemical-reactor-foundation-model.
Meta-Learning with Fewer Tasks through Task Interpolation
Meta-learning enables algorithms to quickly learn a newly encountered task with just a few labeled examples by transferring previously learned knowledge. However, the bottleneck of current meta-learning algorithms is the requirement of a large number of meta-training tasks, which may not be accessible in real-world scenarios. To address the challenge that available tasks may not densely sample the space of tasks, we propose to augment the task set through interpolation. By meta-learning with task interpolation (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels. Under both gradient-based and metric-based meta-learning settings, our theoretical analysis shows MLTI corresponds to a data-adaptive meta-regularization and further improves the generalization. Empirically, in our experiments on eight datasets from diverse domains including image recognition, pose prediction, molecule property prediction, and medical image classification, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
We introduce a framework based on bilevel programming that unifies gradient-based hyperparameter optimization and meta-learning. We show that an approximate version of the bilevel problem can be solved by taking into explicit account the optimization dynamics for the inner objective. Depending on the specific setting, the outer variables take either the meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner. We provide sufficient conditions under which solutions of the approximate problem converge to those of the exact problem. We instantiate our approach for meta-learning in the case of deep learning where representation layers are treated as hyperparameters shared across a set of training episodes. In experiments, we confirm our theoretical findings, present encouraging results for few-shot learning and contrast the bilevel approach against classical approaches for learning-to-learn.
OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
Learning to Learn from APIs: Black-Box Data-Free Meta-Learning
Data-free meta-learning (DFML) aims to enable efficient learning of new tasks by meta-learning from a collection of pre-trained models without access to the training data. Existing DFML work can only meta-learn from (i) white-box and (ii) small-scale pre-trained models (iii) with the same architecture, neglecting the more practical setting where the users only have inference access to the APIs with arbitrary model architectures and model scale inside. To solve this issue, we propose a Bi-level Data-free Meta Knowledge Distillation (BiDf-MKD) framework to transfer more general meta knowledge from a collection of black-box APIs to one single meta model. Specifically, by just querying APIs, we inverse each API to recover its training data via a zero-order gradient estimator and then perform meta-learning via a novel bi-level meta knowledge distillation structure, in which we design a boundary query set recovery technique to recover a more informative query set near the decision boundary. In addition, to encourage better generalization within the setting of limited API budgets, we propose task memory replay to diversify the underlying task distribution by covering more interpolated tasks. Extensive experiments in various real-world scenarios show the superior performance of our BiDf-MKD framework.
Amortized Bayesian Meta-Learning for Low-Rank Adaptation of Large Language Models
Fine-tuning large language models (LLMs) with low-rank adaptaion (LoRA) is a cost-effective way to incorporate information from a specific dataset. However, it is often unclear how well the fine-tuned LLM will generalize, i.e., how well it will perform on unseen datasets. Methods have been proposed to improve generalization by optimizing with in-context prompts, or by using meta-learning to fine-tune LLMs. However, these methods are expensive in memory and computation, requiring either long-context prompts or saving copies of parameters and using second-order gradient updates. To address these challenges, we propose Amortized Bayesian Meta-Learning for LoRA (ABMLL). This method builds on amortized Bayesian meta-learning for smaller models, adapting this approach to LLMs while maintaining its computational efficiency. We reframe task-specific and global parameters in the context of LoRA and use a set of new hyperparameters to balance reconstruction accuracy and the fidelity of task-specific parameters to the global ones. ABMLL provides effective generalization and scales to large models such as Llama3-8B. Furthermore, as a result of using a Bayesian framework, ABMLL provides improved uncertainty quantification. We test ABMLL on Unified-QA and CrossFit datasets and find that it outperforms existing methods on these benchmarks in terms of both accuracy and expected calibration error.
A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning
We propose a novel hierarchical Bayesian model for learning with a large (possibly infinite) number of tasks/episodes, which suits well the few-shot meta learning problem. We consider episode-wise random variables to model episode-specific target generative processes, where these local random variables are governed by a higher-level global random variate. The global variable helps memorize the important information from historic episodes while controlling how much the model needs to be adapted to new episodes in a principled Bayesian manner. Within our model framework, the prediction on a novel episode/task can be seen as a Bayesian inference problem. However, a main obstacle in learning with a large/infinite number of local random variables in online nature, is that one is not allowed to store the posterior distribution of the current local random variable for frequent future updates, typical in conventional variational inference. We need to be able to treat each local variable as a one-time iterate in the optimization. We propose a Normal-Inverse-Wishart model, for which we show that this one-time iterate optimization becomes feasible due to the approximate closed-form solutions for the local posterior distributions. The resulting algorithm is more attractive than the MAML in that it is not required to maintain computational graphs for the whole gradient optimization steps per episode. Our approach is also different from existing Bayesian meta learning methods in that unlike dealing with a single random variable for the whole episodes, our approach has a hierarchical structure that allows one-time episodic optimization, desirable for principled Bayesian learning with many/infinite tasks. The code is available at https://github.com/minyoungkim21/niwmeta.
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Automated Machine Learning (AutoML) supports practitioners and researchers with the tedious task of designing machine learning pipelines and has recently achieved substantial success. In this paper, we introduce new AutoML approaches motivated by our winning submission to the second ChaLearn AutoML challenge. We develop PoSH Auto-sklearn, which enables AutoML systems to work well on large datasets under rigid time limits by using a new, simple and meta-feature-free meta-learning technique and by employing a successful bandit strategy for budget allocation. However, PoSH Auto-sklearn introduces even more ways of running AutoML and might make it harder for users to set it up correctly. Therefore, we also go one step further and study the design space of AutoML itself, proposing a solution towards truly hands-free AutoML. Together, these changes give rise to the next generation of our AutoML system, Auto-sklearn 2.0. We verify the improvements by these additions in an extensive experimental study on 39 AutoML benchmark datasets. We conclude the paper by comparing to other popular AutoML frameworks and Auto-sklearn 1.0, reducing the relative error by up to a factor of 4.5, and yielding a performance in 10 minutes that is substantially better than what Auto-sklearn 1.0 achieves within an hour.
HELP: Hardware-Adaptive Efficient Latency Prediction for NAS via Meta-Learning
For deployment, neural architecture search should be hardware-aware, in order to satisfy the device-specific constraints (e.g., memory usage, latency and energy consumption) and enhance the model efficiency. Existing methods on hardware-aware NAS collect a large number of samples (e.g., accuracy and latency) from a target device, either builds a lookup table or a latency estimator. However, such approach is impractical in real-world scenarios as there exist numerous devices with different hardware specifications, and collecting samples from such a large number of devices will require prohibitive computational and monetary cost. To overcome such limitations, we propose Hardware-adaptive Efficient Latency Predictor (HELP), which formulates the device-specific latency estimation problem as a meta-learning problem, such that we can estimate the latency of a model's performance for a given task on an unseen device with a few samples. To this end, we introduce novel hardware embeddings to embed any devices considering them as black-box functions that output latencies, and meta-learn the hardware-adaptive latency predictor in a device-dependent manner, using the hardware embeddings. We validate the proposed HELP for its latency estimation performance on unseen platforms, on which it achieves high estimation performance with as few as 10 measurement samples, outperforming all relevant baselines. We also validate end-to-end NAS frameworks using HELP against ones without it, and show that it largely reduces the total time cost of the base NAS method, in latency-constrained settings. Code is available at https://github.com/HayeonLee/HELP.
Towards Cross Domain Generalization of Hamiltonian Representation via Meta Learning
Recent advances in deep learning for physics have focused on discovering shared representations of target systems by incorporating physics priors or inductive biases into neural networks. While effective, these methods are limited to the system domain, where the type of system remains consistent and thus cannot ensure the adaptation to new, or unseen physical systems governed by different laws. For instance, a neural network trained on a mass-spring system cannot guarantee accurate predictions for the behavior of a two-body system or any other system with different physical laws. In this work, we take a significant leap forward by targeting cross domain generalization within the field of Hamiltonian dynamics. We model our system with a graph neural network and employ a meta learning algorithm to enable the model to gain experience over a distribution of tasks and make it adapt to new physics. Our approach aims to learn a unified Hamiltonian representation that is generalizable across multiple system domains, thereby overcoming the limitations of system-specific models. Our results demonstrate that the meta-trained model not only adapts effectively to new systems but also captures a generalized Hamiltonian representation that is consistent across different physical domains. Overall, through the use of meta learning, we offer a framework that achieves cross domain generalization, providing a step towards a unified model for understanding a wide array of dynamical systems via deep learning.
Learning to acquire novel cognitive tasks with evolution, plasticity and meta-meta-learning
A hallmark of intelligence is the ability to autonomously learn new flexible, cognitive behaviors - that is, behaviors where the appropriate action depends not just on immediate stimuli (as in simple reflexive stimulus-response associations), but on contextual information that must be adequately acquired, stored and processed. While many meta-learning algorithms can design agents that autonomously learn new tasks, cognitive tasks adds another level of learning and memory to typical ``learning-to-learn'' problems. Here we evolve neural networks, endowed with plastic connections and neuromodulation, over a sizable set of simple cognitive tasks adapted from a computational neuroscience framework. The resulting evolved networks can automatically modify their own connectivity to acquire a novel simple cognitive task, never seen during evolution, from stimuli and rewards alone, through the spontaneous operation of their evolved neural organization and plasticity system. Our results emphasize the importance of carefully considering the multiple learning loops involved in the emergence of intelligent behavior.
Meta Compositional Referring Expression Segmentation
Referring expression segmentation aims to segment an object described by a language expression from an image. Despite the recent progress on this task, existing models tackling this task may not be able to fully capture semantics and visual representations of individual concepts, which limits their generalization capability, especially when handling novel compositions of learned concepts. In this work, through the lens of meta learning, we propose a Meta Compositional Referring Expression Segmentation (MCRES) framework to enhance model compositional generalization performance. Specifically, to handle various levels of novel compositions, our framework first uses training data to construct a virtual training set and multiple virtual testing sets, where data samples in each virtual testing set contain a level of novel compositions w.r.t. the virtual training set. Then, following a novel meta optimization scheme to optimize the model to obtain good testing performance on the virtual testing sets after training on the virtual training set, our framework can effectively drive the model to better capture semantics and visual representations of individual concepts, and thus obtain robust generalization performance even when handling novel compositions. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our framework.
Principled Acceleration of Iterative Numerical Methods Using Machine Learning
Iterative methods are ubiquitous in large-scale scientific computing applications, and a number of approaches based on meta-learning have been recently proposed to accelerate them. However, a systematic study of these approaches and how they differ from meta-learning is lacking. In this paper, we propose a framework to analyze such learning-based acceleration approaches, where one can immediately identify a departure from classical meta-learning. We show that this departure may lead to arbitrary deterioration of model performance. Based on our analysis, we introduce a novel training method for learning-based acceleration of iterative methods. Furthermore, we theoretically prove that the proposed method improves upon the existing methods, and demonstrate its significant advantage and versatility through various numerical applications.
Interval Bound Interpolation for Few-shot Learning with Few Tasks
Few-shot learning aims to transfer the knowledge acquired from training on a diverse set of tasks to unseen tasks from the same task distribution with a limited amount of labeled data. The underlying requirement for effective few-shot generalization is to learn a good representation of the task manifold. This becomes more difficult when only a limited number of tasks are available for training. In such a few-task few-shot setting, it is beneficial to explicitly preserve the local neighborhoods from the task manifold and exploit this to generate artificial tasks for training. To this end, we introduce the notion of interval bounds from the provably robust training literature to few-shot learning. The interval bounds are used to characterize neighborhoods around the training tasks. These neighborhoods can then be preserved by minimizing the distance between a task and its respective bounds. We then use a novel strategy to artificially form new tasks for training by interpolating between the available tasks and their respective interval bounds. We apply our framework to both model-agnostic meta-learning as well as prototype-based metric-learning paradigms. The efficacy of our proposed approach is evident from the improved performance on several datasets from diverse domains compared to current methods.
DINOv2-powered Few-Shot Semantic Segmentation: A Unified Framework via Cross-Model Distillation and 4D Correlation Mining
Few-shot semantic segmentation has gained increasing interest due to its generalization capability, i.e., segmenting pixels of novel classes requiring only a few annotated images. Prior work has focused on meta-learning for support-query matching, with extensive development in both prototype-based and aggregation-based methods. To address data scarcity, recent approaches have turned to foundation models to enhance representation transferability for novel class segmentation. Among them, a hybrid dual-modal framework including both DINOv2 and SAM has garnered attention due to their complementary capabilities. We wonder "can we build a unified model with knowledge from both foundation models?" To this end, we propose FS-DINO, with only DINOv2's encoder and a lightweight segmenter. The segmenter features a bottleneck adapter, a meta-visual prompt generator based on dense similarities and semantic embeddings, and a decoder. Through coarse-to-fine cross-model distillation, we effectively integrate SAM's knowledge into our lightweight segmenter, which can be further enhanced by 4D correlation mining on support-query pairs. Extensive experiments on COCO-20i, PASCAL-5i, and FSS-1000 demonstrate the effectiveness and superiority of our method.
Learning To Defer To A Population With Limited Demonstrations
This paper addresses the critical data scarcity that hinders the practical deployment of learning to defer (L2D) systems to the population. We introduce a context-aware, semi-supervised framework that uses meta-learning to generate expert-specific embeddings from only a few demonstrations. We demonstrate the efficacy of a dual-purpose mechanism, where these embeddings are used first to generate a large corpus of pseudo-labels for training, and subsequently to enable on-the-fly adaptation to new experts at test-time. The experiment results on three different datasets confirm that a model trained on these synthetic labels rapidly approaches oracle-level performance, validating the data efficiency of our approach. By resolving a key training bottleneck, this work makes adaptive L2D systems more practical and scalable, paving the way for human-AI collaboration in real-world environments. To facilitate reproducibility and address implementation details not covered in the main text, we provide our source code and training configurations at https://github.com/nil123532/learning-to-defer-to-a-population-with-limited-demonstrations.
Enhancing Customer Churn Prediction in Telecommunications: An Adaptive Ensemble Learning Approach
Customer churn, the discontinuation of services by existing customers, poses a significant challenge to the telecommunications industry. This paper proposes a novel adaptive ensemble learning framework for highly accurate customer churn prediction. The framework integrates multiple base models, including XGBoost, LightGBM, LSTM, a Multi-Layer Perceptron (MLP) neural network, and Support Vector Machine (SVM). These models are strategically combined using a stacking ensemble method, further enhanced by meta-feature generation from base model predictions. A rigorous data preprocessing pipeline, coupled with a multi-faceted feature engineering approach, optimizes model performance. The framework is evaluated on three publicly available telecom churn datasets, demonstrating substantial accuracy improvements over state-of-the-art techniques. The research achieves a remarkable 99.28% accuracy, signifying a major advancement in churn prediction.The implications of this research for developing proactive customer retention strategies withinthe telecommunications industry are discussed.
Protein Multimer Structure Prediction via Prompt Learning
Understanding the 3D structures of protein multimers is crucial, as they play a vital role in regulating various cellular processes. It has been empirically confirmed that the multimer structure prediction~(MSP) can be well handled in a step-wise assembly fashion using provided dimer structures and predicted protein-protein interactions~(PPIs). However, due to the biological gap in the formation of dimers and larger multimers, directly applying PPI prediction techniques can often cause a poor generalization to the MSP task. To address this challenge, we aim to extend the PPI knowledge to multimers of different scales~(i.e., chain numbers). Specifically, we propose \textsc{PromptMSP}, a pre-training and Prompt tuning framework for Multimer Structure Prediction. First, we tailor the source and target tasks for effective PPI knowledge learning and efficient inference, respectively. We design PPI-inspired prompt learning to narrow the gaps of two task formats and generalize the PPI knowledge to multimers of different scales. We provide a meta-learning strategy to learn a reliable initialization of the prompt model, enabling our prompting framework to effectively adapt to limited data for large-scale multimers. Empirically, we achieve both significant accuracy (RMSD and TM-Score) and efficiency improvements compared to advanced MSP models. The code, data and checkpoints are released at https://github.com/zqgao22/PromptMSP.
Toward Evaluative Thinking: Meta Policy Optimization with Evolving Reward Models
Reward-based alignment methods for large language models (LLMs) face two key limitations: vulnerability to reward hacking, where models exploit flaws in the reward signal; and reliance on brittle, labor-intensive prompt engineering when LLMs are used as reward models. We introduce Meta Policy Optimization (MPO), a framework that addresses these challenges by integrating a meta-reward model that dynamically refines the reward model's prompt throughout training. In MPO, the meta-reward model monitors the evolving training context and continuously adjusts the reward model's prompt to maintain high alignment, providing an adaptive reward signal that resists exploitation by the policy. This meta-learning approach promotes a more stable policy optimization, and greatly reduces the need for manual reward prompt design. It yields performance on par with or better than models guided by extensively hand-crafted reward prompts. Furthermore, we show that MPO maintains its effectiveness across diverse tasks, such as question answering and mathematical reasoning, without requiring specialized reward designs. Beyond standard RLAIF, MPO's meta-learning formulation is readily extensible to higher-level alignment frameworks. Overall, this method addresses theoretical and practical challenges in reward-based RL alignment for LLMs, paving the way for more robust and adaptable alignment strategies. The code and models will be publicly shared.
Adaptive Ensemble Learning: Boosting Model Performance through Intelligent Feature Fusion in Deep Neural Networks
In this paper, we present an Adaptive Ensemble Learning framework that aims to boost the performance of deep neural networks by intelligently fusing features through ensemble learning techniques. The proposed framework integrates ensemble learning strategies with deep learning architectures to create a more robust and adaptable model capable of handling complex tasks across various domains. By leveraging intelligent feature fusion methods, the Adaptive Ensemble Learning framework generates more discriminative and effective feature representations, leading to improved model performance and generalization capabilities. We conducted extensive experiments and evaluations on several benchmark datasets, including image classification, object detection, natural language processing, and graph-based learning tasks. The results demonstrate that the proposed framework consistently outperforms baseline models and traditional feature fusion techniques, highlighting its effectiveness in enhancing deep learning models' performance. Furthermore, we provide insights into the impact of intelligent feature fusion on model performance and discuss the potential applications of the Adaptive Ensemble Learning framework in real-world scenarios. The paper also explores the design and implementation of adaptive ensemble models, ensemble training strategies, and meta-learning techniques, which contribute to the framework's versatility and adaptability. In conclusion, the Adaptive Ensemble Learning framework represents a significant advancement in the field of feature fusion and ensemble learning for deep neural networks, with the potential to transform a wide range of applications across multiple domains.
ICM-Fusion: In-Context Meta-Optimized LoRA Fusion for Multi-Task Adaptation
Enabling multi-task adaptation in pre-trained Low-Rank Adaptation (LoRA) models is crucial for enhancing their generalization capabilities. Most existing pre-trained LoRA fusion methods decompose weight matrices, sharing similar parameters while merging divergent ones. However, this paradigm inevitably induces inter-weight conflicts and leads to catastrophic domain forgetting. While incremental learning enables adaptation to multiple tasks, it struggles to achieve generalization in few-shot scenarios. Consequently, when the weight data follows a long-tailed distribution, it can lead to forgetting in the fused weights. To address this issue, we propose In-Context Meta LoRA Fusion (ICM-Fusion), a novel framework that synergizes meta-learning with in-context adaptation. The key innovation lies in our task vector arithmetic, which dynamically balances conflicting optimization directions across domains through learned manifold projections. ICM-Fusion obtains the optimal task vector orientation for the fused model in the latent space by adjusting the orientation of the task vectors. Subsequently, the fused LoRA is reconstructed by a self-designed Fusion VAE (F-VAE) to realize multi-task LoRA generation. We have conducted extensive experiments on visual and linguistic tasks, and the experimental results demonstrate that ICM-Fusion can be adapted to a wide range of architectural models and applied to various tasks. Compared to the current pre-trained LoRA fusion method, ICM-Fusion fused LoRA can significantly reduce the multi-tasking loss and can even achieve task enhancement in few-shot scenarios.
A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton
In recent years, a variety of gradient-based first-order methods have been developed to solve bi-level optimization problems for learning applications. However, theoretical guarantees of these existing approaches heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, we first design a counter-example to illustrate the invalidation of such LLS condition. Then by formulating BLPs from the view point of optimistic bi-level and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for generic bi-level optimization. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules. Additionally, as an interesting byproduct, we also improve these conventional first-order bi-level schemes (under the LLS simplification). Particularly, we establish their convergences with weaker assumptions. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning.
Evading Forensic Classifiers with Attribute-Conditioned Adversarial Faces
The ability of generative models to produce highly realistic synthetic face images has raised security and ethical concerns. As a first line of defense against such fake faces, deep learning based forensic classifiers have been developed. While these forensic models can detect whether a face image is synthetic or real with high accuracy, they are also vulnerable to adversarial attacks. Although such attacks can be highly successful in evading detection by forensic classifiers, they introduce visible noise patterns that are detectable through careful human scrutiny. Additionally, these attacks assume access to the target model(s) which may not always be true. Attempts have been made to directly perturb the latent space of GANs to produce adversarial fake faces that can circumvent forensic classifiers. In this work, we go one step further and show that it is possible to successfully generate adversarial fake faces with a specified set of attributes (e.g., hair color, eye size, race, gender, etc.). To achieve this goal, we leverage the state-of-the-art generative model StyleGAN with disentangled representations, which enables a range of modifications without leaving the manifold of natural images. We propose a framework to search for adversarial latent codes within the feature space of StyleGAN, where the search can be guided either by a text prompt or a reference image. We also propose a meta-learning based optimization strategy to achieve transferable performance on unknown target models. Extensive experiments demonstrate that the proposed approach can produce semantically manipulated adversarial fake faces, which are true to the specified attribute set and can successfully fool forensic face classifiers, while remaining undetectable by humans. Code: https://github.com/koushiksrivats/face_attribute_attack.
Few-Shot Image Quality Assessment via Adaptation of Vision-Language Models
Image Quality Assessment (IQA) remains an unresolved challenge in computer vision due to complex distortions, diverse image content, and limited data availability. Existing Blind IQA (BIQA) methods largely rely on extensive human annotations, which are labor-intensive and costly due to the demanding nature of creating IQA datasets. To reduce this dependency, we propose the Gradient-Regulated Meta-Prompt IQA Framework (GRMP-IQA), designed to efficiently adapt the visual-language pre-trained model, CLIP, to IQA tasks, achieving high accuracy even with limited data. GRMP-IQA consists of two core modules: (i) Meta-Prompt Pre-training Module and (ii) Quality-Aware Gradient Regularization. The Meta Prompt Pre-training Module leverages a meta-learning paradigm to pre-train soft prompts with shared meta-knowledge across different distortions, enabling rapid adaptation to various IQA tasks. On the other hand, the Quality-Aware Gradient Regularization is designed to adjust the update gradients during fine-tuning, focusing the model's attention on quality-relevant features and preventing overfitting to semantic information. Extensive experiments on standard BIQA datasets demonstrate the superior performance to the state-of-the-art BIQA methods under limited data setting. Notably, utilizing just 20% of the training data, GRMP-IQA is competitive with most existing fully supervised BIQA approaches.
PromptFlow: Training Prompts Like Neural Networks
Large Language Models (LLMs) have demonstrated profound impact on Natural Language Processing (NLP) tasks. However, their effective deployment across diverse domains often require domain-specific adaptation strategies, as generic models may underperform when faced with specialized data distributions. Recent advances in prompt engineering (PE) offer a promising alternative to extensive retraining by refining input instructions to align LLM outputs with task objectives. This paradigm has emerged as a rapid and versatile approach for model fine-tuning. Despite its potential, manual prompt design remains labor-intensive and heavily depends on specialized expertise, often requiring iterative human effort to achieve optimal formulations. To address this limitation, automated prompt engineering methodologies have been developed to systematically generate task-specific prompts. However, current implementations predominantly employ static update rules and lack mechanisms for dynamic strategy selection, resulting in suboptimal adaptation to varying NLP task requirements. Furthermore, most methods treat and update the whole prompts at each step, without considering editing prompt sections at a finer granularity. At last, in particular, the problem of how to recycle experience in LLM is still underexplored. To this end, we propose the PromptFlow, a modular training framework inspired by TensorFlow, which integrates meta-prompts, operators, optimization, and evaluator. Our framework can be equipped with the latest optimization methods and autonomously explores optimal prompt refinement trajectories through gradient-based meta-learning, requiring minimal task-specific training data. Specifically, we devise a reinforcement learning method to recycle experience for LLM in the PE process. Finally, we conduct extensive experiments on various datasets, and demonstrate the effectiveness of PromptFlow.
Overcoming Data Limitation in Medical Visual Question Answering
Traditional approaches for Visual Question Answering (VQA) require large amount of labeled data for training. Unfortunately, such large scale data is usually not available for medical domain. In this paper, we propose a novel medical VQA framework that overcomes the labeled data limitation. The proposed framework explores the use of the unsupervised Denoising Auto-Encoder (DAE) and the supervised Meta-Learning. The advantage of DAE is to leverage the large amount of unlabeled images while the advantage of Meta-Learning is to learn meta-weights that quickly adapt to VQA problem with limited labeled data. By leveraging the advantages of these techniques, it allows the proposed framework to be efficiently trained using a small labeled training set. The experimental results show that our proposed method significantly outperforms the state-of-the-art medical VQA.
Teaching Models to Improve on Tape
Large Language Models (LLMs) often struggle when prompted to generate content under specific constraints. However, in such cases it is often easy to check whether these constraints are satisfied or violated. Recent works have shown that LLMs can benefit from such "corrective feedback". Here we claim that this skill of LLMs can be significantly enhanced via training. We introduce an RL framework for teaching models to use such rewards, by simulating interaction sessions, and rewarding the model according to its ability to satisfy the constraints. We refer to our method as CORGI (Controlled Generation with RL for Guided Interaction), and evaluate it on a variety of controlled generation tasks using unlabeled training data. We find that CORGI consistently outperforms the baseline reinforcement learning method that does not incorporate conversational feedback. Furthermore, CORGI's interactive framework enables meta-learning, allowing the LLM to generalize better to guided interaction in new tasks. Our results clearly show that conversational optimization, when combined with reinforcement learning, significantly improves the effectiveness of LLMs in controlled generation contexts.
LEAF: A Benchmark for Federated Settings
Modern federated networks, such as those comprised of wearable devices, mobile phones, or autonomous vehicles, generate massive amounts of data each day. This wealth of data can help to learn models that can improve the user experience on each device. However, the scale and heterogeneity of federated data presents new challenges in research areas such as federated learning, meta-learning, and multi-task learning. As the machine learning community begins to tackle these challenges, we are at a critical time to ensure that developments made in these areas are grounded with realistic benchmarks. To this end, we propose LEAF, a modular benchmarking framework for learning in federated settings. LEAF includes a suite of open-source federated datasets, a rigorous evaluation framework, and a set of reference implementations, all geared towards capturing the obstacles and intricacies of practical federated environments.
MAMBA: an Effective World Model Approach for Meta-Reinforcement Learning
Meta-reinforcement learning (meta-RL) is a promising framework for tackling challenging domains requiring efficient exploration. Existing meta-RL algorithms are characterized by low sample efficiency, and mostly focus on low-dimensional task distributions. In parallel, model-based RL methods have been successful in solving partially observable MDPs, of which meta-RL is a special case. In this work, we leverage this success and propose a new model-based approach to meta-RL, based on elements from existing state-of-the-art model-based and meta-RL methods. We demonstrate the effectiveness of our approach on common meta-RL benchmark domains, attaining greater return with better sample efficiency (up to 15times) while requiring very little hyperparameter tuning. In addition, we validate our approach on a slate of more challenging, higher-dimensional domains, taking a step towards real-world generalizing agents.
SMART: Self-learning Meta-strategy Agent for Reasoning Tasks
Tasks requiring deductive reasoning, especially those involving multiple steps, often demand adaptive strategies such as intermediate generation of rationales or programs, as no single approach is universally optimal. While Language Models (LMs) can enhance their outputs through iterative self-refinement and strategy adjustments, they frequently fail to apply the most effective strategy in their first attempt. This inefficiency raises the question: Can LMs learn to select the optimal strategy in the first attempt, without a need for refinement? To address this challenge, we introduce SMART (Self-learning Meta-strategy Agent for Reasoning Tasks), a novel framework that enables LMs to autonomously learn and select the most effective strategies for various reasoning tasks. We model the strategy selection process as a Markov Decision Process and leverage reinforcement learning-driven continuous self-improvement to allow the model to find the suitable strategy to solve a given task. Unlike traditional self-refinement methods that rely on multiple inference passes or external feedback, SMART allows an LM to internalize the outcomes of its own reasoning processes and adjust its strategy accordingly, aiming for correct solutions on the first attempt. Our experiments across various reasoning datasets and with different model architectures demonstrate that SMART significantly enhances the ability of models to choose optimal strategies without external guidance (+15 points on the GSM8K dataset). By achieving higher accuracy with a single inference pass, SMART not only improves performance but also reduces computational costs for refinement-based strategies, paving the way for more efficient and intelligent reasoning in LMs.
Unifying Gradient Estimators for Meta-Reinforcement Learning via Off-Policy Evaluation
Model-agnostic meta-reinforcement learning requires estimating the Hessian matrix of value functions. This is challenging from an implementation perspective, as repeatedly differentiating policy gradient estimates may lead to biased Hessian estimates. In this work, we provide a unifying framework for estimating higher-order derivatives of value functions, based on off-policy evaluation. Our framework interprets a number of prior approaches as special cases and elucidates the bias and variance trade-off of Hessian estimates. This framework also opens the door to a new family of estimates, which can be easily implemented with auto-differentiation libraries, and lead to performance gains in practice.
Text-to-Decision Agent: Offline Meta-Reinforcement Learning from Natural Language Supervision
Offline meta-RL usually tackles generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose Text-to-Decision Agent (T2DA), a simple and scalable framework that supervises offline meta-RL with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines. Our code is available at https://github.com/NJU-RL/T2DA.
X-METRA-ADA: Cross-lingual Meta-Transfer Learning Adaptation to Natural Language Understanding and Question Answering
Multilingual models, such as M-BERT and XLM-R, have gained increasing popularity, due to their zero-shot cross-lingual transfer learning capabilities. However, their generalization ability is still inconsistent for typologically diverse languages and across different benchmarks. Recently, meta-learning has garnered attention as a promising technique for enhancing transfer learning under low-resource scenarios: particularly for cross-lingual transfer in Natural Language Understanding (NLU). In this work, we propose X-METRA-ADA, a cross-lingual MEta-TRAnsfer learning ADAptation approach for NLU. Our approach adapts MAML, an optimization-based meta-learning approach, to learn to adapt to new languages. We extensively evaluate our framework on two challenging cross-lingual NLU tasks: multilingual task-oriented dialog and typologically diverse question answering. We show that our approach outperforms naive fine-tuning, reaching competitive performance on both tasks for most languages. Our analysis reveals that X-METRA-ADA can leverage limited data for faster adaptation.
Offline Meta Reinforcement Learning with In-Distribution Online Adaptation
Recent offline meta-reinforcement learning (meta-RL) methods typically utilize task-dependent behavior policies (e.g., training RL agents on each individual task) to collect a multi-task dataset. However, these methods always require extra information for fast adaptation, such as offline context for testing tasks. To address this problem, we first formally characterize a unique challenge in offline meta-RL: transition-reward distribution shift between offline datasets and online adaptation. Our theory finds that out-of-distribution adaptation episodes may lead to unreliable policy evaluation and that online adaptation with in-distribution episodes can ensure adaptation performance guarantee. Based on these theoretical insights, we propose a novel adaptation framework, called In-Distribution online Adaptation with uncertainty Quantification (IDAQ), which generates in-distribution context using a given uncertainty quantification and performs effective task belief inference to address new tasks. We find a return-based uncertainty quantification for IDAQ that performs effectively. Experiments show that IDAQ achieves state-of-the-art performance on the Meta-World ML1 benchmark compared to baselines with/without offline adaptation.
Learning Robust State Abstractions for Hidden-Parameter Block MDPs
Many control tasks exhibit similar dynamics that can be modeled as having common latent structure. Hidden-Parameter Markov Decision Processes (HiP-MDPs) explicitly model this structure to improve sample efficiency in multi-task settings. However, this setting makes strong assumptions on the observability of the state that limit its application in real-world scenarios with rich observation spaces. In this work, we leverage ideas of common structure from the HiP-MDP setting, and extend it to enable robust state abstractions inspired by Block MDPs. We derive instantiations of this new framework for both multi-task reinforcement learning (MTRL) and meta-reinforcement learning (Meta-RL) settings. Further, we provide transfer and generalization bounds based on task and state similarity, along with sample complexity bounds that depend on the aggregate number of samples across tasks, rather than the number of tasks, a significant improvement over prior work that use the same environment assumptions. To further demonstrate the efficacy of the proposed method, we empirically compare and show improvement over multi-task and meta-reinforcement learning baselines.
Meta-DT: Offline Meta-RL as Conditional Sequence Modeling with World Model Disentanglement
A longstanding goal of artificial general intelligence is highly capable generalists that can learn from diverse experiences and generalize to unseen tasks. The language and vision communities have seen remarkable progress toward this trend by scaling up transformer-based models trained on massive datasets, while reinforcement learning (RL) agents still suffer from poor generalization capacity under such paradigms. To tackle this challenge, we propose Meta Decision Transformer (Meta-DT), which leverages the sequential modeling ability of the transformer architecture and robust task representation learning via world model disentanglement to achieve efficient generalization in offline meta-RL. We pretrain a context-aware world model to learn a compact task representation, and inject it as a contextual condition to the causal transformer to guide task-oriented sequence generation. Then, we subtly utilize history trajectories generated by the meta-policy as a self-guided prompt to exploit the architectural inductive bias. We select the trajectory segment that yields the largest prediction error on the pretrained world model to construct the prompt, aiming to encode task-specific information complementary to the world model maximally. Notably, the proposed framework eliminates the requirement of any expert demonstration or domain knowledge at test time. Experimental results on MuJoCo and Meta-World benchmarks across various dataset types show that Meta-DT exhibits superior few and zero-shot generalization capacity compared to strong baselines while being more practical with fewer prerequisites. Our code is available at https://github.com/NJU-RL/Meta-DT.
ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning
Recent research on Reasoning of Large Language Models (LLMs) has sought to further enhance their performance by integrating meta-thinking -- enabling models to monitor, evaluate, and control their reasoning processes for more adaptive and effective problem-solving. However, current single-agent work lacks a specialized design for acquiring meta-thinking, resulting in low efficacy. To address this challenge, we introduce Reinforced Meta-thinking Agents (ReMA), a novel framework that leverages Multi-Agent Reinforcement Learning (MARL) to elicit meta-thinking behaviors, encouraging LLMs to think about thinking. ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions. Through iterative reinforcement learning with aligned objectives, these agents explore and learn collaboration, leading to improved generalization and robustness. Experimental results demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks, including competitive-level mathematical benchmarks and LLM-as-a-Judge benchmarks. Comprehensive ablation studies further illustrate the evolving dynamics of each distinct agent, providing valuable insights into how the meta-thinking reasoning process enhances the reasoning capabilities of LLMs.
KunLunBaizeRAG: Reinforcement Learning Driven Inference Performance Leap for Large Language Models
This paper introduces KunLunBaizeRAG, a reinforcement learning-driven reasoning framework designed to enhance the reasoning capabilities of large language models (LLMs) in complex multi-hop question-answering tasks. The framework addresses key limitations of traditional RAG, such as retrieval drift, information redundancy, and strategy rigidity. Key innovations include the RAG-driven Reasoning Alignment (RDRA) mechanism, the Search-Think Iterative Enhancement (STIE) mechanism, the Network-Local Intelligent Routing (NLR) mechanism, and a progressive hybrid training strategy. Experimental results demonstrate significant improvements in exact match (EM) and LLM-judged score (LJ) across four benchmarks, highlighting the framework's robustness and effectiveness in complex reasoning scenarios.
Meta-Transformer: A Unified Framework for Multimodal Learning
Multimodal learning aims to build models that can process and relate information from multiple modalities. Despite years of development in this field, it still remains challenging to design a unified network for processing various modalities (e.g. natural language, 2D images, 3D point clouds, audio, video, time series, tabular data) due to the inherent gaps among them. In this work, we propose a framework, named Meta-Transformer, that leverages a frozen encoder to perform multimodal perception without any paired multimodal training data. In Meta-Transformer, the raw input data from various modalities are mapped into a shared token space, allowing a subsequent encoder with frozen parameters to extract high-level semantic features of the input data. Composed of three main components: a unified data tokenizer, a modality-shared encoder, and task-specific heads for downstream tasks, Meta-Transformer is the first framework to perform unified learning across 12 modalities with unpaired data. Experiments on different benchmarks reveal that Meta-Transformer can handle a wide range of tasks including fundamental perception (text, image, point cloud, audio, video), practical application (X-Ray, infrared, hyperspectral, and IMU), and data mining (graph, tabular, and time-series). Meta-Transformer indicates a promising future for developing unified multimodal intelligence with transformers. Code will be available at https://github.com/invictus717/MetaTransformer
Towards System 2 Reasoning in LLMs: Learning How to Think With Meta Chain-of-Though
We propose a novel framework, Meta Chain-of-Thought (Meta-CoT), which extends traditional Chain-of-Thought (CoT) by explicitly modeling the underlying reasoning required to arrive at a particular CoT. We present empirical evidence from state-of-the-art models exhibiting behaviors consistent with in-context search, and explore methods for producing Meta-CoT via process supervision, synthetic data generation, and search algorithms. Finally, we outline a concrete pipeline for training a model to produce Meta-CoTs, incorporating instruction tuning with linearized search traces and reinforcement learning post-training. Finally, we discuss open research questions, including scaling laws, verifier roles, and the potential for discovering novel reasoning algorithms. This work provides a theoretical and practical roadmap to enable Meta-CoT in LLMs, paving the way for more powerful and human-like reasoning in artificial intelligence.
MetaFormer: A Unified Meta Framework for Fine-Grained Recognition
Fine-Grained Visual Classification(FGVC) is the task that requires recognizing the objects belonging to multiple subordinate categories of a super-category. Recent state-of-the-art methods usually design sophisticated learning pipelines to tackle this task. However, visual information alone is often not sufficient to accurately differentiate between fine-grained visual categories. Nowadays, the meta-information (e.g., spatio-temporal prior, attribute, and text description) usually appears along with the images. This inspires us to ask the question: Is it possible to use a unified and simple framework to utilize various meta-information to assist in fine-grained identification? To answer this problem, we explore a unified and strong meta-framework(MetaFormer) for fine-grained visual classification. In practice, MetaFormer provides a simple yet effective approach to address the joint learning of vision and various meta-information. Moreover, MetaFormer also provides a strong baseline for FGVC without bells and whistles. Extensive experiments demonstrate that MetaFormer can effectively use various meta-information to improve the performance of fine-grained recognition. In a fair comparison, MetaFormer can outperform the current SotA approaches with only vision information on the iNaturalist2017 and iNaturalist2018 datasets. Adding meta-information, MetaFormer can exceed the current SotA approaches by 5.9% and 5.3%, respectively. Moreover, MetaFormer can achieve 92.3% and 92.7% on CUB-200-2011 and NABirds, which significantly outperforms the SotA approaches. The source code and pre-trained models are released athttps://github.com/dqshuai/MetaFormer.
MOORL: A Framework for Integrating Offline-Online Reinforcement Learning
Sample efficiency and exploration remain critical challenges in Deep Reinforcement Learning (DRL), particularly in complex domains. Offline RL, which enables agents to learn optimal policies from static, pre-collected datasets, has emerged as a promising alternative. However, offline RL is constrained by issues such as out-of-distribution (OOD) actions that limit policy performance and generalization. To overcome these limitations, we propose Meta Offline-Online Reinforcement Learning (MOORL), a hybrid framework that unifies offline and online RL for efficient and scalable learning. While previous hybrid methods rely on extensive design components and added computational complexity to utilize offline data effectively, MOORL introduces a meta-policy that seamlessly adapts across offline and online trajectories. This enables the agent to leverage offline data for robust initialization while utilizing online interactions to drive efficient exploration. Our theoretical analysis demonstrates that the hybrid approach enhances exploration by effectively combining the complementary strengths of offline and online data. Furthermore, we demonstrate that MOORL learns a stable Q-function without added complexity. Extensive experiments on 28 tasks from the D4RL and V-D4RL benchmarks validate its effectiveness, showing consistent improvements over state-of-the-art offline and hybrid RL baselines. With minimal computational overhead, MOORL achieves strong performance, underscoring its potential for practical applications in real-world scenarios.
A Large Language Model-Driven Reward Design Framework via Dynamic Feedback for Reinforcement Learning
Large Language Models (LLMs) have shown significant potential in designing reward functions for Reinforcement Learning (RL) tasks. However, obtaining high-quality reward code often involves human intervention, numerous LLM queries, or repetitive RL training. To address these issues, we propose CARD, a LLM-driven Reward Design framework that iteratively generates and improves reward function code. Specifically, CARD includes a Coder that generates and verifies the code, while a Evaluator provides dynamic feedback to guide the Coder in improving the code, eliminating the need for human feedback. In addition to process feedback and trajectory feedback, we introduce Trajectory Preference Evaluation (TPE), which evaluates the current reward function based on trajectory preferences. If the code fails the TPE, the Evaluator provides preference feedback, avoiding RL training at every iteration and making the reward function better aligned with the task objective. Empirical results on Meta-World and ManiSkill2 demonstrate that our method achieves an effective balance between task performance and token efficiency, outperforming or matching the baselines across all tasks. On 10 out of 12 tasks, CARD shows better or comparable performance to policies trained with expert-designed rewards, and our method even surpasses the oracle on 3 tasks.
PARL: A Unified Framework for Policy Alignment in Reinforcement Learning
We present a novel unified bilevel optimization-based framework, PARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning using utility or preference-based feedback. We identify a major gap within current algorithmic designs for solving policy alignment due to a lack of precise characterization of the dependence of the alignment objective on the data generated by policy trajectories. This shortfall contributes to the sub-optimal performance observed in contemporary algorithms. Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable (optimal policy for the designed reward). Interestingly, from an optimization perspective, our formulation leads to a new class of stochastic bilevel problems where the stochasticity at the upper objective depends upon the lower-level variable. To demonstrate the efficacy of our formulation in resolving alignment issues in RL, we devised an algorithm named A-PARL to solve PARL problem, establishing sample complexity bounds of order O(1/T). Our empirical results substantiate that the proposed PARL can address the alignment concerns in RL by showing significant improvements (up to 63\% in terms of required samples) for policy alignment in large-scale environments of the Deepmind control suite and Meta world tasks.
Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark
Driven by the remarkable progress in diffusion models, text-to-image generation has made significant strides, creating a pressing demand for automatic quality evaluation of generated images. Current state-of-the-art automatic evaluation methods heavily rely on Multi-modal Large Language Models (MLLMs), particularly powerful commercial models like GPT-4o. While these models are highly effective, their substantial costs limit scalability in large-scale evaluations. Adopting open-source MLLMs is an alternative; however, their performance falls short due to significant limitations in processing multi-modal data compared to commercial MLLMs. To tackle these problems, we first propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset, where the complex evaluation task is decoupled into simpler sub-tasks, effectively reducing the learning complexity. Based on this dataset, we design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6. Furthermore, to reliably and comprehensively assess prior works and our proposed model, we manually annotate a meta-evaluation benchmark that includes chain-of-thought explanations alongside quality scores for generated images. Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline, VIEScore, with over 4.6\% improvement in Spearman and Kendall correlations with human judgments.
Learning Deep Time-index Models for Time Series Forecasting
Deep learning has been actively applied to time series forecasting, leading to a deluge of new methods, belonging to the class of historical-value models. Yet, despite the attractive properties of time-index models, such as being able to model the continuous nature of underlying time series dynamics, little attention has been given to them. Indeed, while naive deep time-index models are far more expressive than the manually predefined function representations of classical time-index models, they are inadequate for forecasting, being unable to generalize to unseen time steps due to the lack of inductive bias. In this paper, we propose DeepTime, a meta-optimization framework to learn deep time-index models which overcome these limitations, yielding an efficient and accurate forecasting model. Extensive experiments on real world datasets in the long sequence time-series forecasting setting demonstrate that our approach achieves competitive results with state-of-the-art methods, and is highly efficient. Code is available at https://github.com/salesforce/DeepTime.
Learning Internal Biological Neuron Parameters and Complexity-Based Encoding for Improved Spiking Neural Networks Performance
This study introduces a novel approach by replacing the traditional perceptron neuron model with a biologically inspired probabilistic meta neuron, where the internal neuron parameters are jointly learned, leading to improved classification accuracy of spiking neural networks (SNNs). To validate this innovation, we implement and compare two SNN architectures: one based on standard leaky integrate-and-fire (LIF) neurons and another utilizing the proposed probabilistic meta neuron model. As a second key contribution, we present a new biologically inspired classification framework that uniquely integrates SNNs with Lempel-Ziv complexity (LZC) a measure closely related to entropy rate. By combining the temporal precision and biological plausibility of SNNs with the capacity of LZC to capture structural regularity, the proposed approach enables efficient and interpretable classification of spatiotemporal neural data, an aspect not addressed in existing works. We consider learning algorithms such as backpropagation, spike-timing-dependent plasticity (STDP), and the Tempotron learning rule. To explore neural dynamics, we use Poisson processes to model neuronal spike trains, a well-established method for simulating the stochastic firing behavior of biological neurons. Our results reveal that depending on the training method, the classifier's efficiency can improve by up to 11.00%, highlighting the advantage of learning additional neuron parameters beyond the traditional focus on weighted inputs alone.
End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes
Meta-Bayesian optimisation (meta-BO) aims to improve the sample efficiency of Bayesian optimisation by leveraging data from related tasks. While previous methods successfully meta-learn either a surrogate model or an acquisition function independently, joint training of both components remains an open challenge. This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures. We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data. Early on, we notice that training transformer-based neural processes from scratch with RL is challenging due to insufficient supervision, especially when rewards are sparse. We formalise this claim with a combinatorial analysis showing that the widely used notion of regret as a reward signal exhibits a logarithmic sparsity pattern in trajectory lengths. To tackle this problem, we augment the RL objective with an auxiliary task that guides part of the architecture to learn a valid probabilistic model as an inductive bias. We demonstrate that our method achieves state-of-the-art regret results against various baselines in experiments on standard hyperparameter optimisation tasks and also outperforms others in the real-world problems of mixed-integer programming tuning, antibody design, and logic synthesis for electronic design automation.
MetaICL: Learning to Learn In Context
We introduce MetaICL (Meta-training for In-Context Learning), a new meta-training framework for few-shot learning where a pretrained language model is tuned to do in-context learning on a large set of training tasks. This meta-training enables the model to more effectively learn a new task in context at test time, by simply conditioning on a few training examples with no parameter updates or task-specific templates. We experiment on a large, diverse collection of tasks consisting of 142 NLP datasets including classification, question answering, natural language inference, paraphrase detection and more, across seven different meta-training/target splits. MetaICL outperforms a range of baselines including in-context learning without meta-training and multi-task learning followed by zero-shot transfer. We find that the gains are particularly significant for target tasks that have domain shifts from the meta-training tasks, and that using a diverse set of the meta-training tasks is key to improvements. We also show that MetaICL approaches (and sometimes beats) the performance of models fully finetuned on the target task, and outperforms much bigger models with nearly 8x parameters. Finally, we show that MetaICL is complementary to human-written instructions, and the best performance can be achieved by combining both approaches.
Learning to Generalize without Bias for Open-Vocabulary Action Recognition
Leveraging the effective visual-text alignment and static generalizability from CLIP, recent video learners adopt CLIP initialization with further regularization or recombination for generalization in open-vocabulary action recognition in-context. However, due to the static bias of CLIP, such video learners tend to overfit on shortcut static features, thereby compromising their generalizability, especially to novel out-of-context actions. To address this issue, we introduce Open-MeDe, a novel Meta-optimization framework with static Debiasing for Open-vocabulary action recognition. From a fresh perspective of generalization, Open-MeDe adopts a meta-learning approach to improve known-to-open generalizing and image-to-video debiasing in a cost-effective manner. Specifically, Open-MeDe introduces a cross-batch meta-optimization scheme that explicitly encourages video learners to quickly generalize to arbitrary subsequent data via virtual evaluation, steering a smoother optimization landscape. In effect, the free of CLIP regularization during optimization implicitly mitigates the inherent static bias of the video meta-learner. We further apply self-ensemble over the optimization trajectory to obtain generic optimal parameters that can achieve robust generalization to both in-context and out-of-context novel data. Extensive evaluations show that Open-MeDe not only surpasses state-of-the-art regularization methods tailored for in-context open-vocabulary action recognition but also substantially excels in out-of-context scenarios.Code is released at https://github.com/Mia-YatingYu/Open-MeDe.
Sample-Efficient Automated Deep Reinforcement Learning
Despite significant progress in challenging problems across various domains, applying state-of-the-art deep reinforcement learning (RL) algorithms remains challenging due to their sensitivity to the choice of hyperparameters. This sensitivity can partly be attributed to the non-stationarity of the RL problem, potentially requiring different hyperparameter settings at various stages of the learning process. Additionally, in the RL setting, hyperparameter optimization (HPO) requires a large number of environment interactions, hindering the transfer of the successes in RL to real-world applications. In this work, we tackle the issues of sample-efficient and dynamic HPO in RL. We propose a population-based automated RL (AutoRL) framework to meta-optimize arbitrary off-policy RL algorithms. In this framework, we optimize the hyperparameters and also the neural architecture while simultaneously training the agent. By sharing the collected experience across the population, we substantially increase the sample efficiency of the meta-optimization. We demonstrate the capabilities of our sample-efficient AutoRL approach in a case study with the popular TD3 algorithm in the MuJoCo benchmark suite, where we reduce the number of environment interactions needed for meta-optimization by up to an order of magnitude compared to population-based training.
Society of Mind Meets Real-Time Strategy: A Hierarchical Multi-Agent Framework for Strategic Reasoning
Large Language Models (LLMs) have recently demonstrated impressive action sequence prediction capabilities but often struggle with dynamic, long-horizon tasks such as real-time strategic games. In a game such as StarCraftII (SC2), agents need to manage resource constraints and adapt to evolving battlefield situations in a partially observable environment. This often overwhelms exisiting LLM-based approaches. To address these challenges, we propose a hierarchical multi-agent framework that employs specialized imitation learning agents under a meta-controller called Strategic Planner (SP). By expert demonstrations, each specialized agent learns a distinctive strategy, such as aerial support or defensive maneuvers, and produces coherent, structured multistep action sequences. The SP then orchestrates these proposals into a single, environmentally adaptive plan that ensures local decisions aligning with long-term strategies. We call this HIMA (Hierarchical Imitation Multi-Agent). We also present TEXTSCII-ALL, a comprehensive SC2 testbed that encompasses all race match combinations in SC2. Our empirical results show that HIMA outperforms state of the arts in strategic clarity, adaptability, and computational efficiency, underscoring the potential of combining specialized imitation modules with meta-level orchestration to develop more robust, general-purpose AI agents.
LLaVE: Large Language and Vision Embedding Models with Hardness-Weighted Contrastive Learning
Universal multimodal embedding models play a critical role in tasks such as interleaved image-text retrieval, multimodal RAG, and multimodal clustering. However, our empirical results indicate that existing LMM-based embedding models trained with the standard InfoNCE loss exhibit a high degree of overlap in similarity distribution between positive and negative pairs, making it challenging to distinguish hard negative pairs effectively. To deal with this issue, we propose a simple yet effective framework that dynamically improves the embedding model's representation learning for negative pairs based on their discriminative difficulty. Within this framework, we train a series of models, named LLaVE, and evaluate them on the MMEB benchmark, which covers 4 meta-tasks and 36 datasets. Experimental results show that LLaVE establishes stronger baselines that achieve state-of-the-art (SOTA) performance while demonstrating strong scalability and efficiency. Specifically, LLaVE-2B surpasses the previous SOTA 7B models, while LLaVE-7B achieves a further performance improvement of 6.2 points. Although LLaVE is trained on image-text data, it can generalize to text-video retrieval tasks in a zero-shot manner and achieve strong performance, demonstrating its remarkable potential for transfer to other embedding tasks.
HyperInterval: Hypernetwork approach to training weight interval regions in continual learning
Recently, a new Continual Learning (CL) paradigm was presented to control catastrophic forgetting, called Interval Continual Learning (InterContiNet), which relies on enforcing interval constraints on the neural network parameter space. Unfortunately, InterContiNet training is challenging due to the high dimensionality of the weight space, making intervals difficult to manage. To address this issue, we introduce HyperInterval, a technique that employs interval arithmetic within the embedding space and utilizes a hypernetwork to map these intervals to the target network parameter space. We train interval embeddings for consecutive tasks and train a hypernetwork to transform these embeddings into weights of the target network. An embedding for a given task is trained along with the hypernetwork, preserving the response of the target network for the previous task embeddings. Interval arithmetic works with a more manageable, lower-dimensional embedding space rather than directly preparing intervals in a high-dimensional weight space. Our model allows faster and more efficient training. Furthermore, HyperInterval maintains the guarantee of not forgetting. At the end of training, we can choose one universal embedding to produce a single network dedicated to all tasks. In such a framework, hypernetwork is used only for training and can be seen as a meta-trainer. HyperInterval obtains significantly better results than InterContiNet and gives SOTA results on several benchmarks.
DETA: Denoised Task Adaptation for Few-Shot Learning
Test-time task adaptation in few-shot learning aims to adapt a pre-trained task-agnostic model for capturing taskspecific knowledge of the test task, rely only on few-labeled support samples. Previous approaches generally focus on developing advanced algorithms to achieve the goal, while neglecting the inherent problems of the given support samples. In fact, with only a handful of samples available, the adverse effect of either the image noise (a.k.a. X-noise) or the label noise (a.k.a. Y-noise) from support samples can be severely amplified. To address this challenge, in this work we propose DEnoised Task Adaptation (DETA), a first, unified image- and label-denoising framework orthogonal to existing task adaptation approaches. Without extra supervision, DETA filters out task-irrelevant, noisy representations by taking advantage of both global visual information and local region details of support samples. On the challenging Meta-Dataset, DETA consistently improves the performance of a broad spectrum of baseline methods applied on various pre-trained models. Notably, by tackling the overlooked image noise in Meta-Dataset, DETA establishes new state-of-the-art results. Code is released at https://github.com/nobody-1617/DETA.
SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning
Process reward models (PRMs) that provide dense, step-level feedback have shown promise for reinforcement learning, yet their adoption remains limited by the need for expensive step-level annotations or ground truth references. We propose SPARK: a three-stage framework where in the first stage a generator model produces diverse solutions and a verifier model evaluates them using parallel scaling (self-consistency) and sequential scaling (meta-critique). In the second stage, we use these verification outputs as synthetic training data to fine-tune generative process reward models, which subsequently serve as reward signals during training. We show that aggregating multiple independent verifications at the step level produces training data for process reward models that surpass ground-truth outcome supervision, achieving 67.5 F1 on ProcessBench (a benchmark for identifying erroneous steps in mathematical reasoning) compared to 66.4 for reference-guided training and 61.9 for GPT-4o. In the final stage, we apply our generative PRM with chain-of-thought verification (PRM-CoT) as the reward model in RL experiments on mathematical reasoning, and introduce format constraints to prevent reward hacking. Using Qwen2.5-Math-7B, we achieve 47.4% average accuracy across six mathematical reasoning benchmarks, outperforming ground-truth-based RLVR (43.9%). Our work enables reference-free RL training that exceeds ground-truth methods, opening new possibilities for domains lacking verifiable answers or accessible ground truth.
Towards Fairness in Personalized Ads Using Impression Variance Aware Reinforcement Learning
Variances in ad impression outcomes across demographic groups are increasingly considered to be potentially indicative of algorithmic bias in personalized ads systems. While there are many definitions of fairness that could be applicable in the context of personalized systems, we present a framework which we call the Variance Reduction System (VRS) for achieving more equitable outcomes in Meta's ads systems. VRS seeks to achieve a distribution of impressions with respect to selected protected class (PC) attributes that more closely aligns the demographics of an ad's eligible audience (a function of advertiser targeting criteria) with the audience who sees that ad, in a privacy-preserving manner. We first define metrics to quantify fairness gaps in terms of ad impression variances with respect to PC attributes including gender and estimated race. We then present the VRS for re-ranking ads in an impression variance-aware manner. We evaluate VRS via extensive simulations over different parameter choices and study the effect of the VRS on the chosen fairness metric. We finally present online A/B testing results from applying VRS to Meta's ads systems, concluding with a discussion of future work. We have deployed the VRS to all users in the US for housing ads, resulting in significant improvement in our fairness metric. VRS is the first large-scale deployed framework for pursuing fairness for multiple PC attributes in online advertising.
SINC: Self-Supervised In-Context Learning for Vision-Language Tasks
Large Pre-trained Transformers exhibit an intriguing capacity for in-context learning. Without gradient updates, these models can rapidly construct new predictors from demonstrations presented in the inputs. Recent works promote this ability in the vision-language domain by incorporating visual information into large language models that can already make in-context predictions. However, these methods could inherit issues in the language domain, such as template sensitivity and hallucination. Also, the scale of these language models raises a significant demand for computations, making learning and operating these models resource-intensive. To this end, we raise a question: ``How can we enable in-context learning without relying on the intrinsic in-context ability of large language models?". To answer it, we propose a succinct and general framework, Self-supervised IN-Context learning (SINC), that introduces a meta-model to learn on self-supervised prompts consisting of tailored demonstrations. The learned models can be transferred to downstream tasks for making in-context predictions on-the-fly. Extensive experiments show that SINC outperforms gradient-based methods in various vision-language tasks under few-shot settings. Furthermore, the designs of SINC help us investigate the benefits of in-context learning across different tasks, and the analysis further reveals the essential components for the emergence of in-context learning in the vision-language domain.
Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving
We present the Process Engineering Operations Assistant (PEOA), an AI-driven framework designed to solve complex problems in the chemical and process industries. The framework employs a modular architecture orchestrated by a meta-agent, which serves as the central coordinator, managing an action generator and instruction-tuned small-scale language models (expert models). The action generator decomposes complex problems into sub-tasks and identifies suitable expert models to execute each, delivering precise solutions for multi-step problem-solving. Key techniques include advanced knowledge modeling using property graphs for improved information retrieval, facilitating more accurate and contextually relevant solutions. Additionally, the framework utilizes a teacher-student transfer-learning approach with GPT-4 (Omni) to fine-tune the action generator and expert models for domain adaptation, alongside an iterative problem-solving mechanism with sophisticated error handling. Custom datasets were developed to evaluate the framework against leading proprietary language models on various engineering tasks. The results demonstrate the framework effectiveness in automating calculations, accelerating prototyping, and providing AI-augmented decision support for industrial processes, marking a significant advancement in process engineering capabilities.
VeriOS: Query-Driven Proactive Human-Agent-GUI Interaction for Trustworthy OS Agents
With the rapid progress of multimodal large language models, operating system (OS) agents become increasingly capable of automating tasks through on-device graphical user interfaces (GUIs). However, most existing OS agents are designed for idealized settings, whereas real-world environments often present untrustworthy conditions. To mitigate risks of over-execution in such scenarios, we propose a query-driven human-agent-GUI interaction framework that enables OS agents to decide when to query humans for more reliable task completion. Built upon this framework, we introduce VeriOS-Agent, a trustworthy OS agent trained with a two-stage learning paradigm that falicitate the decoupling and utilization of meta-knowledge. Concretely, VeriOS-Agent autonomously executes actions in normal conditions while proactively querying humans in untrustworthy scenarios. Experiments show that VeriOS-Agent improves the average step-wise success rate by 20.64\% in untrustworthy scenarios over the state-of-the-art, without compromising normal performance. Analysis highlights VeriOS-Agent's rationality, generalizability, and scalability. The codes, datasets and models are available at https://github.com/Wuzheng02/VeriOS.
RecGPT-V2 Technical Report
Large language models (LLMs) have demonstrated remarkable potential in transforming recommender systems from implicit behavioral pattern matching to explicit intent reasoning. While RecGPT-V1 successfully pioneered this paradigm by integrating LLM-based reasoning into user interest mining and item tag prediction, it suffers from four fundamental limitations: (1) computational inefficiency and cognitive redundancy across multiple reasoning routes; (2) insufficient explanation diversity in fixed-template generation; (3) limited generalization under supervised learning paradigms; and (4) simplistic outcome-focused evaluation that fails to match human standards. To address these challenges, we present RecGPT-V2 with four key innovations. First, a Hierarchical Multi-Agent System restructures intent reasoning through coordinated collaboration, eliminating cognitive duplication while enabling diverse intent coverage. Combined with Hybrid Representation Inference that compresses user-behavior contexts, our framework reduces GPU consumption by 60% and improves exclusive recall from 9.39% to 10.99%. Second, a Meta-Prompting framework dynamically generates contextually adaptive prompts, improving explanation diversity by +7.3%. Third, constrained reinforcement learning mitigates multi-reward conflicts, achieving +24.1% improvement in tag prediction and +13.0% in explanation acceptance. Fourth, an Agent-as-a-Judge framework decomposes assessment into multi-step reasoning, improving human preference alignment. Online A/B tests on Taobao demonstrate significant improvements: +2.98% CTR, +3.71% IPV, +2.19% TV, and +11.46% NER. RecGPT-V2 establishes both the technical feasibility and commercial viability of deploying LLM-powered intent reasoning at scale, bridging the gap between cognitive exploration and industrial utility.
A Survey on Large Language Models for Mathematical Reasoning
Mathematical reasoning has long represented one of the most fundamental and challenging frontiers in artificial intelligence research. In recent years, large language models (LLMs) have achieved significant advances in this area. This survey examines the development of mathematical reasoning abilities in LLMs through two high-level cognitive phases: comprehension, where models gain mathematical understanding via diverse pretraining strategies, and answer generation, which has progressed from direct prediction to step-by-step Chain-of-Thought (CoT) reasoning. We review methods for enhancing mathematical reasoning, ranging from training-free prompting to fine-tuning approaches such as supervised fine-tuning and reinforcement learning, and discuss recent work on extended CoT and "test-time scaling". Despite notable progress, fundamental challenges remain in terms of capacity, efficiency, and generalization. To address these issues, we highlight promising research directions, including advanced pretraining and knowledge augmentation techniques, formal reasoning frameworks, and meta-generalization through principled learning paradigms. This survey tries to provide some insights for researchers interested in enhancing reasoning capabilities of LLMs and for those seeking to apply these techniques to other domains.
Generalizable Heuristic Generation Through Large Language Models with Meta-Optimization
Heuristic design with large language models (LLMs) has emerged as a promising approach for tackling combinatorial optimization problems (COPs). However, existing approaches often rely on manually predefined evolutionary computation (EC) optimizers and single-task training schemes, which may constrain the exploration of diverse heuristic algorithms and hinder the generalization of the resulting heuristics. To address these issues, we propose Meta-Optimization of Heuristics (MoH), a novel framework that operates at the optimizer level, discovering effective optimizers through the principle of meta-learning. Specifically, MoH leverages LLMs to iteratively refine a meta-optimizer that autonomously constructs diverse optimizers through (self-)invocation, thereby eliminating the reliance on a predefined EC optimizer. These constructed optimizers subsequently evolve heuristics for downstream tasks, enabling broader heuristic exploration. Moreover, MoH employs a multi-task training scheme to promote its generalization capability. Experiments on classic COPs demonstrate that MoH constructs an effective and interpretable meta-optimizer, achieving state-of-the-art performance across various downstream tasks, particularly in cross-size settings.
Deciphering Trajectory-Aided LLM Reasoning: An Optimization Perspective
We propose a novel framework for comprehending the reasoning capabilities of large language models (LLMs) through the perspective of meta-learning. By conceptualizing reasoning trajectories as pseudo-gradient descent updates to the LLM's parameters, we identify parallels between LLM reasoning and various meta-learning paradigms. We formalize the training process for reasoning tasks as a meta-learning setup, with each question treated as an individual task, and reasoning trajectories serving as the inner loop optimization for adapting model parameters. Once trained on a diverse set of questions, the LLM develops fundamental reasoning capabilities that can generalize to previously unseen questions. Extensive empirical evaluations substantiate the strong connection between LLM reasoning and meta-learning, exploring several issues of significant interest from a meta-learning standpoint. Our work not only enhances the understanding of LLM reasoning but also provides practical insights for improving these models through established meta-learning techniques.
GM-DF: Generalized Multi-Scenario Deepfake Detection
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we elaborately investigate the generalization capacity of deepfake detection models when jointly trained on multiple face forgery detection datasets. We first find a rapid degradation of detection accuracy when models are directly trained on combined datasets due to the discrepancy across collection scenarios and generation methods. To address the above issue, a Generalized Multi-Scenario Deepfake Detection framework (GM-DF) is proposed to serve multiple real-world scenarios by a unified model. First, we propose a hybrid expert modeling approach for domain-specific real/forgery feature extraction. Besides, as for the commonality representation, we use CLIP to extract the common features for better aligning visual and textual features across domains. Meanwhile, we introduce a masked image reconstruction mechanism to force models to capture rich forged details. Finally, we supervise the models via a domain-aware meta-learning strategy to further enhance their generalization capacities. Specifically, we design a novel domain alignment loss to strongly align the distributions of the meta-test domains and meta-train domains. Thus, the updated models are able to represent both specific and common real/forgery features across multiple datasets. In consideration of the lack of study of multi-dataset training, we establish a new benchmark leveraging multi-source data to fairly evaluate the models' generalization capacity on unseen scenarios. Both qualitative and quantitative experiments on five datasets conducted on traditional protocols as well as the proposed benchmark demonstrate the effectiveness of our approach.
Retrieval-Augmented Meta Learning for Low-Resource Text Classification
Meta learning have achieved promising performance in low-resource text classification which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. However, due to the limited training data in the meta-learning scenario and the inherent properties of parameterized neural networks, poor generalization performance has become a pressing problem that needs to be addressed. To deal with this issue, we propose a meta-learning based method called Retrieval-Augmented Meta Learning(RAML). It not only uses parameterization for inference but also retrieves non-parametric knowledge from an external corpus to make inferences, which greatly alleviates the problem of poor generalization performance caused by the lack of diverse training data in meta-learning. This method differs from previous models that solely rely on parameters, as it explicitly emphasizes the importance of non-parametric knowledge, aiming to strike a balance between parameterized neural networks and non-parametric knowledge. The model is required to determine which knowledge to access and utilize during inference. Additionally, our multi-view passages fusion network module can effectively and efficiently integrate the retrieved information into low-resource classification task. The extensive experiments demonstrate that RAML significantly outperforms current SOTA low-resource text classification models.
LLMs as In-Context Meta-Learners for Model and Hyperparameter Selection
Model and hyperparameter selection are critical but challenging in machine learning, typically requiring expert intuition or expensive automated search. We investigate whether large language models (LLMs) can act as in-context meta-learners for this task. By converting each dataset into interpretable metadata, we prompt an LLM to recommend both model families and hyperparameters. We study two prompting strategies: (1) a zero-shot mode relying solely on pretrained knowledge, and (2) a meta-informed mode augmented with examples of models and their performance on past tasks. Across synthetic and real-world benchmarks, we show that LLMs can exploit dataset metadata to recommend competitive models and hyperparameters without search, and that improvements from meta-informed prompting demonstrate their capacity for in-context meta-learning. These results highlight a promising new role for LLMs as lightweight, general-purpose assistants for model selection and hyperparameter optimization.
Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need?
The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of self-distillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms. Code is available at: http://github.com/WangYueFt/rfs/.
