- BEACON: Behavioral Malware Classification with Large Language Model Embeddings and Deep Learning Malware is becoming increasingly complex and widespread, making it essential to develop more effective and timely detection methods. Traditional static analysis often fails to defend against modern threats that employ code obfuscation, polymorphism, and other evasion techniques. In contrast, behavioral malware detection, which monitors runtime activities, provides a more reliable and context-aware solution. In this work, we propose BEACON, a novel deep learning framework that leverages large language models (LLMs) to generate dense, contextual embeddings from raw sandbox-generated behavior reports. These embeddings capture semantic and structural patterns of each sample and are processed by a one-dimensional convolutional neural network (1D CNN) for multi-class malware classification. Evaluated on the Avast-CTU Public CAPE Dataset, our framework consistently outperforms existing methods, highlighting the effectiveness of LLM-based behavioral embeddings and the overall design of BEACON for robust malware classification. 2 authors · Sep 17
- DomURLs_BERT: Pre-trained BERT-based Model for Malicious Domains and URLs Detection and Classification Detecting and classifying suspicious or malicious domain names and URLs is fundamental task in cybersecurity. To leverage such indicators of compromise, cybersecurity vendors and practitioners often maintain and update blacklists of known malicious domains and URLs. However, blacklists frequently fail to identify emerging and obfuscated threats. Over the past few decades, there has been significant interest in developing machine learning models that automatically detect malicious domains and URLs, addressing the limitations of blacklists maintenance and updates. In this paper, we introduce DomURLs_BERT, a pre-trained BERT-based encoder adapted for detecting and classifying suspicious/malicious domains and URLs. DomURLs_BERT is pre-trained using the Masked Language Modeling (MLM) objective on a large multilingual corpus of URLs, domain names, and Domain Generation Algorithms (DGA) dataset. In order to assess the performance of DomURLs_BERT, we have conducted experiments on several binary and multi-class classification tasks involving domain names and URLs, covering phishing, malware, DGA, and DNS tunneling. The evaluations results show that the proposed encoder outperforms state-of-the-art character-based deep learning models and cybersecurity-focused BERT models across multiple tasks and datasets. The pre-training dataset, the pre-trained DomURLs_BERT encoder, and the experiments source code are publicly available. 6 authors · Sep 13, 2024