new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Vevo2: Bridging Controllable Speech and Singing Voice Generation via Unified Prosody Learning

Controllable human voice generation, particularly for expressive domains like singing, remains a significant challenge. This paper introduces Vevo2, a unified framework for controllable speech and singing voice generation. To tackle issues like the scarcity of annotated singing data and to enable flexible controllability, Vevo2 introduces two audio tokenizers: (1) a music-notation-free prosody tokenizer that captures prosody and melody from speech, singing, and even instrumental sounds, and (2) a low-frame-rate (12.5 Hz) content-style tokenizer that encodes linguistic content, prosody, and style for both speech and singing, while enabling timbre disentanglement. Vevo2 consists of an auto-regressive (AR) content-style modeling stage, which aims to enable controllability over text, prosody, and style, as well as a flow-matching acoustic modeling stage that allows for timbre control. Particularly, during pre-training of the AR model, we propose both explicit and implicit prosody learning strategies to bridge speech and singing voice. Moreover, to further enhance the AR model's ability to follow text and prosody, we design a multi-objective post-training task that integrates both intelligibility and prosody similarity alignment. Experimental results show that the unified modeling in Vevo2 brings mutual benefits to both speech and singing voice generation. Additionally, Vevo2's effectiveness across a wide range of synthesis, conversion, and editing tasks for both speech and singing further demonstrates its strong generalization ability and versatility. Audio samples are are available at https://versasinger.github.io/.

  • 8 authors
·
Aug 22, 2025

MindGPT-4ov: An Enhanced MLLM via a Multi-Stage Post-Training Paradigm

We present MindGPT-4ov, a multimodal large language model (MLLM) that introduces a general post-training paradigm spanning data production, model training, and efficient deployment. It achieves state-of-the-art performance across multiple benchmarks at low cost, effectively enhancing the foundational capabilities of MLLMs and the generalization ability. Focusing on data construction, supervised fine-tuning strategies, and multimodal reinforcement learning methods, this work proposes three key innovations: (1) An information density-based data generation scheme, integrated with a dual-dimensional tree-structured label system, enabling automated generation of high-quality cross-domain data. (2) A collaborative curriculum supervised fine-tuning approach that balances the injection of domain-specific knowledge with the preservation of general capabilities. (3) A hybrid reinforcement learning paradigm that enhances reasoning ability while simultaneously addressing multi-objective optimization such as diversity exploration, maintenance of multimodal perception, and response conciseness. Moreover, we implement a series of infrastructure optimizations, such as 5D parallel training, operator optimization, and inference quantization to enhance training and inference efficiency while reducing the cost of domain adaptation. Experimental results demonstrate that the MindGPT-4ov model outperforms state-of-the-art models on benchmarks such as MMBench, MMStar, MathVision, and MathVista. In addition, MindGPT-4ov also demonstrates superior user experience in vertical domain tasks, enabling a seamless transition from academic research to industrial deployment. MindGPT-4ov provides a general post-training paradigm applicable to a wide range of MLLMs. The model weights, datasets, and code for the Qwen3-VL-based variants will be recently open-sourced to support the community's development of MLLMs.

  • 17 authors
·
Dec 2, 2025

ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization

Large language models (LLMs) have shown impressive performance on language tasks but face challenges when deployed on resource-constrained devices due to their extensive parameters and reliance on dense multiplications, resulting in high memory demands and latency bottlenecks. Shift-and-add reparameterization offers a promising solution by replacing costly multiplications with hardware-friendly primitives in both the attention and multi-layer perceptron (MLP) layers of an LLM. However, current reparameterization techniques require training from scratch or full parameter fine-tuning to restore accuracy, which is resource-intensive for LLMs. To address this, we propose accelerating pretrained LLMs through post-training shift-and-add reparameterization, creating efficient multiplication-free models, dubbed ShiftAddLLM. Specifically, we quantize each weight matrix into binary matrices paired with group-wise scaling factors. The associated multiplications are reparameterized into (1) shifts between activations and scaling factors and (2) queries and adds according to the binary matrices. To reduce accuracy loss, we present a multi-objective optimization method to minimize both weight and output activation reparameterization errors. Additionally, based on varying sensitivity across layers to reparameterization, we develop an automated bit allocation strategy to further reduce memory usage and latency. Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM, achieving average perplexity improvements of 5.6 and 22.7 points at comparable or lower latency compared to the most competitive quantized LLMs at 3 and 2 bits, respectively, and more than 80% memory and energy reductions over the original LLMs. Codes and models are available at https://github.com/GATECH-EIC/ShiftAddLLM.

  • 9 authors
·
Jun 9, 2024

Clinical-R1: Empowering Large Language Models for Faithful and Comprehensive Reasoning with Clinical Objective Relative Policy Optimization

Recent advances in large language models (LLMs) have shown strong reasoning capabilities through large-scale pretraining and post-training reinforcement learning, demonstrated by DeepSeek-R1. However, current post-training methods, such as Grouped Relative Policy Optimization (GRPO), mainly reward correctness, which is not aligned with the multi-dimensional objectives required in high-stakes fields such as medicine, where reasoning must also be faithful and comprehensive. We introduce Clinical-Objective Relative Policy Optimization (CRPO), a scalable, multi-objective, verifiable reinforcement learning method designed to align LLM post-training with clinical reasoning principles. CRPO integrates rule-based and verifiable reward signals that jointly optimize accuracy, faithfulness, and comprehensiveness without relying on human annotation. To demonstrate its effectiveness, we train Clinical-R1-3B, a 3B-parameter model for clinical reasoning. The experiments on three benchmarks demonstrate that our CRPO substantially improves reasoning on truthfulness and completeness over standard GRPO while maintaining comfortable accuracy enhancements. This framework provides a scalable pathway to align LLM reasoning with clinical objectives, enabling safer and more collaborative AI systems for healthcare while also highlighting the potential of multi-objective, verifiable RL methods in post-training scaling of LLMs for medical domains.

  • 9 authors
·
Nov 29, 2025