- Finsler Metric Clustering in Weighted Projective Spaces This paper develops a hierarchical clustering algorithm for weighted projective spaces P_{q}, utilizing a Finsler metric d_F([z], [w]) and its rational analogue d_{F,Q}([z], [w]) to define distances that preserve the non-Euclidean geometry of these quotient manifolds. Defined via geodesic integrals of a scaling invariant Finsler norm weighted by the grades q = (q_0, q_1, dots, q_n), these metrics satisfy true metric properties including the triangle inequality, overcoming the limitations of the non-metric dissimilarity measure from prior work. 1 authors · May 7, 2025
- Ulrich bundles on double coverings of projective space Fixed a polarised variety X, we can ask if it admits Ulrich bundles and, in case, what is their minimal possible rank. In this thesis, after recalling general properties of Ulrich sheaves, we show that any finite covering of P^n that embeds as a divisor in a weighted projective space with weights (1^{n+1},m) admits Ulrich sheaves, by using matrix factorisations. Among these varieties, we focus on double coverings of with nge3. Through Hartshorne--Serre correspondence, which we review along the way, we prove that the general such X admits a rank 2 Ulrich sheaf if and only if n=3 and m=2,3,4, and characterise the zero loci of their sections. Moreover, we construct generically smooth components of the expected dimension of their moduli spaces, analyse the action of the natural involution on them and the restriction of those bundles to low degree hypersurfaces. For m=2,3, we verify the existence of slope-stable Ulrich bundles of all the possible ranks. 1 authors · Jul 12, 2025
1 Positive Geometries and Canonical Forms Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes. 3 authors · Mar 13, 2017
- Diffusion Variational Autoencoders A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties. 3 authors · Jan 25, 2019
- Stable rationality of hypersurfaces in schön affine varieties In recent years, there has been a development in approaching rationality problems through the motivic methods (cf. [Kontsevich--Tschinkel'19], [Nicaise--Shinder'19], [Nicaise--Ottem'21]). This method requires the explicit construction of degeneration families of curves with favorable properties. While the specific construction is generally difficult, [Nicaise--Ottem'22] combines combinatorial methods to construct degeneration families of hypersurfaces in toric varieties and shows the non-stable rationality of a very general hypersurface in projective spaces. In this paper, we extend the result of [Nicaise--Ottem'22] not only for hypersurfaces in algebraic tori but also to those in sch\"{o}n affine varieties. In application, we show the irrationality of certain hypersurfaces in the complex Grassmannian variety Gr(2, n) using the motivic method, which coincides with the result obtained by the same author in the previous research. 1 authors · Feb 12, 2025
- Frechet Differentiability in Besov Spaces in the Optimal Control of Parabolic Free Boundary Problems We consider the inverse Stefan type free boundary problem, where information on the boundary heat flux and density of the sources are missing and must be found along with the temperature and the free boundary. We pursue optimal control framework where boundary heat flux, density of sources, and free boundary are components of the control vector. The optimality criteria consists of the minimization of the L_2-norm declinations of the temperature measurements at the final moment, phase transition temperature, and final position of the free boundary. We prove the Frechet differentiability in Besov spaces, and derive the formula for the Frechet differential under minimal regularity assumptions on the data. The result implies a necessary condition for optimal control and opens the way to the application of projective gradient methods in Besov spaces for the numerical solution of the inverse Stefan problem. 2 authors · Mar 31, 2016
- Curvature-Aware Optimization of Noisy Variational Quantum Circuits via Weighted Projective Line Geometry We develop a differential-geometric framework for variational quantum circuits in which noisy single- and multi-qubit parameter spaces are modeled by weighted projective lines (WPLs). Starting from the pure-state Bloch sphere CP1, we show that realistic hardware noise induces anisotropic contractions of the Bloch ball that can be represented by a pair of physically interpretable parameters (lambda_perp, lambda_parallel). These parameters determine a unique WPL metric g_WPL(a_over_b, b) whose scalar curvature is R = 2 / b^2, yielding a compact and channel-resolved geometric surrogate for the intrinsic information structure of noisy quantum circuits. We develop a tomography-to-geometry pipeline that extracts (lambda_perp, lambda_parallel) from hardware data and maps them to the WPL parameters (a_over_b, b, R). Experiments on IBM Quantum backends show that the resulting WPL geometries accurately capture anisotropic curvature deformation across calibration periods. Finally, we demonstrate that WPL-informed quantum natural gradients (WPL-QNG) provide stable optimization dynamics for noisy variational quantum eigensolvers and enable curvature-aware mitigation of barren plateaus. 3 authors · Nov 29, 2025
- Asymptotic Analysis of Stochastic Splitting Methods for Multivariate Monotone Inclusions We propose an abstract framework to establish the convergence of the iterates of stochastic versions of a broad range of monotone operator splitting methods in Hilbert spaces. This framework allows for the introduction of stochasticity at several levels: approximation of operators, selection of coordinates and operators in block-iterative implementations, and relaxation parameters. The proposed analysis involves a reduced inclusion model with two operators. At each iteration, stochastic approximations to points in the graphs of these two operators are used to form the update. The results are applied to derive the almost sure and L^2 convergence of stochastic versions of the proximal point algorithm, as well as of randomized block-iterative projective splitting methods for solving systems of coupled inclusions involving a mix of set-valued, cocoercive, and Lipschitzian monotone operators combined via various monotonicity-preserving operations. 2 authors · Dec 2, 2025