new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

Revisiting Data Challenges of Computational Pathology: A Pack-based Multiple Instance Learning Framework

Computational pathology (CPath) digitizes pathology slides into whole slide images (WSIs), enabling analysis for critical healthcare tasks such as cancer diagnosis and prognosis. However, WSIs possess extremely long sequence lengths (up to 200K), significant length variations (from 200 to 200K), and limited supervision. These extreme variations in sequence length lead to high data heterogeneity and redundancy. Conventional methods often compromise on training efficiency and optimization to preserve such heterogeneity under limited supervision. To comprehensively address these challenges, we propose a pack-based MIL framework. It packs multiple sampled, variable-length feature sequences into fixed-length ones, enabling batched training while preserving data heterogeneity. Moreover, we introduce a residual branch that composes discarded features from multiple slides into a hyperslide which is trained with tailored labels. It offers multi-slide supervision while mitigating feature loss from sampling. Meanwhile, an attention-driven downsampler is introduced to compress features in both branches to reduce redundancy. By alleviating these challenges, our approach achieves an accuracy improvement of up to 8% while using only 12% of the training time in the PANDA(UNI). Extensive experiments demonstrate that focusing data challenges in CPath holds significant potential in the era of foundation models. The code is https://github.com/FangHeng/PackMIL

  • 5 authors
·
Sep 25

Latent Diffusion Model without Variational Autoencoder

Recent progress in diffusion-based visual generation has largely relied on latent diffusion models with variational autoencoders (VAEs). While effective for high-fidelity synthesis, this VAE+diffusion paradigm suffers from limited training efficiency, slow inference, and poor transferability to broader vision tasks. These issues stem from a key limitation of VAE latent spaces: the lack of clear semantic separation and strong discriminative structure. Our analysis confirms that these properties are crucial not only for perception and understanding tasks, but also for the stable and efficient training of latent diffusion models. Motivated by this insight, we introduce SVG, a novel latent diffusion model without variational autoencoders, which leverages self-supervised representations for visual generation. SVG constructs a feature space with clear semantic discriminability by leveraging frozen DINO features, while a lightweight residual branch captures fine-grained details for high-fidelity reconstruction. Diffusion models are trained directly on this semantically structured latent space to facilitate more efficient learning. As a result, SVG enables accelerated diffusion training, supports few-step sampling, and improves generative quality. Experimental results further show that SVG preserves the semantic and discriminative capabilities of the underlying self-supervised representations, providing a principled pathway toward task-general, high-quality visual representations.

KlingTeam Kling Team
·
Oct 17 2

SplitFlux: Learning to Decouple Content and Style from a Single Image

Disentangling image content and style is essential for customized image generation. Existing SDXL-based methods struggle to achieve high-quality results, while the recently proposed Flux model fails to achieve effective content-style separation due to its underexplored characteristics. To address these challenges, we conduct a systematic analysis of Flux and make two key observations: (1) Single Dream Blocks are essential for image generation; and (2) Early single stream blocks mainly control content, whereas later blocks govern style. Based on these insights, we propose SplitFlux, which disentangles content and style by fine-tuning the single dream blocks via LoRA, enabling the disentangled content to be re-embedded into new contexts. It includes two key components: (1) Rank-Constrained Adaptation. To preserve content identity and structure, we compress the rank and amplify the magnitude of updates within specific blocks, preventing content leakage into style blocks. (2) Visual-Gated LoRA. We split the content LoRA into two branches with different ranks, guided by image saliency. The high-rank branch preserves primary subject information, while the low-rank branch encodes residual details, mitigating content overfitting and enabling seamless re-embedding. Extensive experiments demonstrate that SplitFlux consistently outperforms state-of-the-art methods, achieving superior content preservation and stylization quality across diverse scenarios.

  • 6 authors
·
Nov 19

Low-Light Hyperspectral Image Enhancement

Due to inadequate energy captured by the hyperspectral camera sensor in poor illumination conditions, low-light hyperspectral images (HSIs) usually suffer from low visibility, spectral distortion, and various noises. A range of HSI restoration methods have been developed, yet their effectiveness in enhancing low-light HSIs is constrained. This work focuses on the low-light HSI enhancement task, which aims to reveal the spatial-spectral information hidden in darkened areas. To facilitate the development of low-light HSI processing, we collect a low-light HSI (LHSI) dataset of both indoor and outdoor scenes. Based on Laplacian pyramid decomposition and reconstruction, we developed an end-to-end data-driven low-light HSI enhancement (HSIE) approach trained on the LHSI dataset. With the observation that illumination is related to the low-frequency component of HSI, while textural details are closely correlated to the high-frequency component, the proposed HSIE is designed to have two branches. The illumination enhancement branch is adopted to enlighten the low-frequency component with reduced resolution. The high-frequency refinement branch is utilized for refining the high-frequency component via a predicted mask. In addition, to improve information flow and boost performance, we introduce an effective channel attention block (CAB) with residual dense connection, which served as the basic block of the illumination enhancement branch. The effectiveness and efficiency of HSIE both in quantitative assessment measures and visual effects are demonstrated by experimental results on the LHSI dataset. According to the classification performance on the remote sensing Indian Pines dataset, downstream tasks benefit from the enhanced HSI. Datasets and codes are available: https://github.com/guanguanboy/HSIE{https://github.com/guanguanboy/HSIE}.

  • 3 authors
·
Aug 5, 2022

On residual network depth

Deep residual architectures, such as ResNet and the Transformer, have enabled models of unprecedented depth, yet a formal understanding of why depth is so effective remains an open question. A popular intuition, following Veit et al. (2016), is that these residual networks behave like ensembles of many shallower models. Our key finding is an explicit analytical formula that verifies this ensemble perspective, proving that increasing network depth is mathematically equivalent to expanding the size of this implicit ensemble. Furthermore, our expansion reveals a hierarchical ensemble structure in which the combinatorial growth of computation paths leads to an explosion in the output signal, explaining the historical necessity of normalization layers in training deep models. This insight offers a first principles explanation for the historical dependence on normalization layers and sheds new light on a family of successful normalization-free techniques like SkipInit and Fixup. However, while these previous approaches infer scaling factors through optimizer analysis or a heuristic analogy to Batch Normalization, our work offers the first explanation derived directly from the network's inherent functional structure. Specifically, our Residual Expansion Theorem reveals that scaling each residual module provides a principled solution to taming the combinatorial explosion inherent to these architectures. We further show that this scaling acts as a capacity controls that also implicitly regularizes the model's complexity.

  • 2 authors
·
Oct 3

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation

Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).

  • 5 authors
·
Feb 19, 2018