new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

LLM Augmented LLMs: Expanding Capabilities through Composition

Foundational models with billions of parameters which have been trained on large corpora of data have demonstrated non-trivial skills in a variety of domains. However, due to their monolithic structure, it is challenging and expensive to augment them or impart new skills. On the other hand, due to their adaptation abilities, several new instances of these models are being trained towards new domains and tasks. In this work, we study the problem of efficient and practical composition of existing foundation models with more specific models to enable newer capabilities. To this end, we propose CALM -- Composition to Augment Language Models -- which introduces cross-attention between models to compose their representations and enable new capabilities. Salient features of CALM are: (i) Scales up LLMs on new tasks by 're-using' existing LLMs along with a few additional parameters and data, (ii) Existing model weights are kept intact, and hence preserves existing capabilities, and (iii) Applies to diverse domains and settings. We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13\% on tasks like translation into English and arithmetic reasoning for low-resource languages. Similarly, when PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40\% over the base model for code generation and explanation tasks -- on-par with fully fine-tuned counterparts.

  • 9 authors
·
Jan 4, 2024 1

FACTIFY3M: A Benchmark for Multimodal Fact Verification with Explainability through 5W Question-Answering

Combating disinformation is one of the burning societal crises -- about 67% of the American population believes that disinformation produces a lot of uncertainty, and 10% of them knowingly propagate disinformation. Evidence shows that disinformation can manipulate democratic processes and public opinion, causing disruption in the share market, panic and anxiety in society, and even death during crises. Therefore, disinformation should be identified promptly and, if possible, mitigated. With approximately 3.2 billion images and 720,000 hours of video shared online daily on social media platforms, scalable detection of multimodal disinformation requires efficient fact verification. Despite progress in automatic text-based fact verification (e.g., FEVER, LIAR), the research community lacks substantial effort in multimodal fact verification. To address this gap, we introduce FACTIFY 3M, a dataset of 3 million samples that pushes the boundaries of the domain of fact verification via a multimodal fake news dataset, in addition to offering explainability through the concept of 5W question-answering. Salient features of the dataset include: (i) textual claims, (ii) ChatGPT-generated paraphrased claims, (iii) associated images, (iv) stable diffusion-generated additional images (i.e., visual paraphrases), (v) pixel-level image heatmap to foster image-text explainability of the claim, (vi) 5W QA pairs, and (vii) adversarial fake news stories.

  • 18 authors
·
May 22, 2023

COMEX: A Tool for Generating Customized Source Code Representations

Learning effective representations of source code is critical for any Machine Learning for Software Engineering (ML4SE) system. Inspired by natural language processing, large language models (LLMs) like Codex and CodeGen treat code as generic sequences of text and are trained on huge corpora of code data, achieving state of the art performance on several software engineering (SE) tasks. However, valid source code, unlike natural language, follows a strict structure and pattern governed by the underlying grammar of the programming language. Current LLMs do not exploit this property of the source code as they treat code like a sequence of tokens and overlook key structural and semantic properties of code that can be extracted from code-views like the Control Flow Graph (CFG), Data Flow Graph (DFG), Abstract Syntax Tree (AST), etc. Unfortunately, the process of generating and integrating code-views for every programming language is cumbersome and time consuming. To overcome this barrier, we propose our tool COMEX - a framework that allows researchers and developers to create and combine multiple code-views which can be used by machine learning (ML) models for various SE tasks. Some salient features of our tool are: (i) it works directly on source code (which need not be compilable), (ii) it currently supports Java and C#, (iii) it can analyze both method-level snippets and program-level snippets by using both intra-procedural and inter-procedural analysis, and (iv) it is easily extendable to other languages as it is built on tree-sitter - a widely used incremental parser that supports over 40 languages. We believe this easy-to-use code-view generation and customization tool will give impetus to research in source code representation learning methods and ML4SE. Tool: https://pypi.org/project/comex - GitHub: https://github.com/IBM/tree-sitter-codeviews - Demo: https://youtu.be/GER6U87FVbU

  • 7 authors
·
Jul 10, 2023

Mixture of Experts Made Intrinsically Interpretable

Neurons in large language models often exhibit polysemanticity, simultaneously encoding multiple unrelated concepts and obscuring interpretability. Instead of relying on post-hoc methods, we present MoE-X, a Mixture-of-Experts (MoE) language model designed to be intrinsically interpretable. Our approach is motivated by the observation that, in language models, wider networks with sparse activations are more likely to capture interpretable factors. However, directly training such large sparse networks is computationally prohibitive. MoE architectures offer a scalable alternative by activating only a subset of experts for any given input, inherently aligning with interpretability objectives. In MoE-X, we establish this connection by rewriting the MoE layer as an equivalent sparse, large MLP. This approach enables efficient scaling of the hidden size while maintaining sparsity. To further enhance interpretability, we enforce sparse activation within each expert and redesign the routing mechanism to prioritize experts with the highest activation sparsity. These designs ensure that only the most salient features are routed and processed by the experts. We evaluate MoE-X on chess and natural language tasks, showing that it achieves performance comparable to dense models while significantly improving interpretability. MoE-X achieves a perplexity better than GPT-2, with interpretability surpassing even sparse autoencoder (SAE)-based approaches.

  • 7 authors
·
Mar 5, 2025 2

MK-UNet: Multi-kernel Lightweight CNN for Medical Image Segmentation

In this paper, we introduce MK-UNet, a paradigm shift towards ultra-lightweight, multi-kernel U-shaped CNNs tailored for medical image segmentation. Central to MK-UNet is the multi-kernel depth-wise convolution block (MKDC) we design to adeptly process images through multiple kernels, while capturing complex multi-resolution spatial relationships. MK-UNet also emphasizes the images salient features through sophisticated attention mechanisms, including channel, spatial, and grouped gated attention. Our MK-UNet network, with a modest computational footprint of only 0.316M parameters and 0.314G FLOPs, represents not only a remarkably lightweight, but also significantly improved segmentation solution that provides higher accuracy over state-of-the-art (SOTA) methods across six binary medical imaging benchmarks. Specifically, MK-UNet outperforms TransUNet in DICE score with nearly 333times and 123times fewer parameters and FLOPs, respectively. Similarly, when compared against UNeXt, MK-UNet exhibits superior segmentation performance, improving the DICE score up to 6.7% margins while operating with 4.7times fewer #Params. Our MK-UNet also outperforms other recent lightweight networks, such as MedT, CMUNeXt, EGE-UNet, and Rolling-UNet, with much lower computational resources. This leap in performance, coupled with drastic computational gains, positions MK-UNet as an unparalleled solution for real-time, high-fidelity medical diagnostics in resource-limited settings, such as point-of-care devices. Our implementation is available at https://github.com/SLDGroup/MK-UNet.

  • 2 authors
·
Sep 22, 2025

RSVG: Exploring Data and Models for Visual Grounding on Remote Sensing Data

In this paper, we introduce the task of visual grounding for remote sensing data (RSVG). RSVG aims to localize the referred objects in remote sensing (RS) images with the guidance of natural language. To retrieve rich information from RS imagery using natural language, many research tasks, like RS image visual question answering, RS image captioning, and RS image-text retrieval have been investigated a lot. However, the object-level visual grounding on RS images is still under-explored. Thus, in this work, we propose to construct the dataset and explore deep learning models for the RSVG task. Specifically, our contributions can be summarized as follows. 1) We build the new large-scale benchmark dataset of RSVG, termed RSVGD, to fully advance the research of RSVG. This new dataset includes image/expression/box triplets for training and evaluating visual grounding models. 2) We benchmark extensive state-of-the-art (SOTA) natural image visual grounding methods on the constructed RSVGD dataset, and some insightful analyses are provided based on the results. 3) A novel transformer-based Multi-Level Cross-Modal feature learning (MLCM) module is proposed. Remotely-sensed images are usually with large scale variations and cluttered backgrounds. To deal with the scale-variation problem, the MLCM module takes advantage of multi-scale visual features and multi-granularity textual embeddings to learn more discriminative representations. To cope with the cluttered background problem, MLCM adaptively filters irrelevant noise and enhances salient features. In this way, our proposed model can incorporate more effective multi-level and multi-modal features to boost performance. Furthermore, this work also provides useful insights for developing better RSVG models. The dataset and code will be publicly available at https://github.com/ZhanYang-nwpu/RSVG-pytorch.

  • 3 authors
·
Oct 23, 2022

Toward Better EHR Reasoning in LLMs: Reinforcement Learning with Expert Attention Guidance

Improving large language models (LLMs) for electronic health record (EHR) reasoning is essential for enabling accurate and generalizable clinical predictions. While LLMs excel at medical text understanding, they underperform on EHR-based prediction tasks due to challenges in modeling temporally structured, high-dimensional data. Existing approaches often rely on hybrid paradigms, where LLMs serve merely as frozen prior retrievers while downstream deep learning (DL) models handle prediction, failing to improve the LLM's intrinsic reasoning capacity and inheriting the generalization limitations of DL models. To this end, we propose EAG-RL, a novel two-stage training framework designed to intrinsically enhance LLMs' EHR reasoning ability through expert attention guidance, where expert EHR models refer to task-specific DL models trained on EHR data. Concretely, EAG-RL first constructs high-quality, stepwise reasoning trajectories using expert-guided Monte Carlo Tree Search to effectively initialize the LLM's policy. Then, EAG-RL further optimizes the policy via reinforcement learning by aligning the LLM's attention with clinically salient features identified by expert EHR models. Extensive experiments on two real-world EHR datasets show that EAG-RL improves the intrinsic EHR reasoning ability of LLMs by an average of 14.62%, while also enhancing robustness to feature perturbations and generalization to unseen clinical domains. These results demonstrate the practical potential of EAG-RL for real-world deployment in clinical prediction tasks. Our code have been available at https://github.com/devilran6/EAG-RL.

  • 12 authors
·
Aug 19, 2025

LOST: Low-rank and Sparse Pre-training for Large Language Models

While large language models (LLMs) have achieved remarkable performance across a wide range of tasks, their massive scale incurs prohibitive computational and memory costs for pre-training from scratch. Recent studies have investigated the use of low-rank parameterization as a means of reducing model size and training cost. In this context, sparsity is often employed as a complementary technique to recover important information lost in low-rank compression by capturing salient features in the residual space. However, existing approaches typically combine low-rank and sparse components in a simplistic or ad hoc manner, often resulting in undesirable performance degradation compared to full-rank training. In this paper, we propose LOw-rank and Sparse pre-Training (LOST) for LLMs, a novel method that ingeniously integrates low-rank and sparse structures to enable effective training of LLMs from scratch under strict efficiency constraints. LOST applies singular value decomposition to weight matrices, preserving the dominant low-rank components, while allocating the remaining singular values to construct channel-wise sparse components to complement the expressiveness of low-rank training. We evaluate LOST on LLM pretraining ranging from 60M to 7B parameters. Our experiments show that LOST achieves competitive or superior performance compared to full-rank models, while significantly reducing both memory and compute overhead. Moreover, Code is available at https://github.com/JiaxiLi1/LOST-Low-rank-and-Sparse-Training-for-Large-Language-Models{LOST Repo}

  • 9 authors
·
Aug 4, 2025

Don't Just Chase "Highlighted Tokens" in MLLMs: Revisiting Visual Holistic Context Retention

Despite their powerful capabilities, Multimodal Large Language Models (MLLMs) suffer from considerable computational overhead due to their reliance on massive visual tokens. Recent studies have explored token pruning to alleviate this problem, which typically uses text-vision cross-attention or [CLS] attention to assess and discard redundant visual tokens. In this work, we identify a critical limitation of such attention-first pruning approaches, i.e., they tend to preserve semantically similar tokens, resulting in pronounced performance drops under high pruning ratios. To this end, we propose {HoloV}, a simple yet effective, plug-and-play visual token pruning framework for efficient inference. Distinct from previous attention-first schemes, HoloV rethinks token retention from a holistic perspective. By adaptively distributing the pruning budget across different spatial crops, HoloV ensures that the retained tokens capture the global visual context rather than isolated salient features. This strategy minimizes representational collapse and maintains task-relevant information even under aggressive pruning. Experimental results demonstrate that our HoloV achieves superior performance across various tasks, MLLM architectures, and pruning ratios compared to SOTA methods. For instance, LLaVA1.5 equipped with HoloV preserves 95.8\% of the original performance after pruning 88.9\% of visual tokens, achieving superior efficiency-accuracy trade-offs.

  • 8 authors
·
Oct 3, 2025

Machine Perceptual Quality: Evaluating the Impact of Severe Lossy Compression on Audio and Image Models

In the field of neural data compression, the prevailing focus has been on optimizing algorithms for either classical distortion metrics, such as PSNR or SSIM, or human perceptual quality. With increasing amounts of data consumed by machines rather than humans, a new paradigm of machine-oriented compressionx2013which prioritizes the retention of features salient for machine perception over traditional human-centric criteriax2013has emerged, creating several new challenges to the development, evaluation, and deployment of systems utilizing lossy compression. In particular, it is unclear how different approaches to lossy compression will affect the performance of downstream machine perception tasks. To address this under-explored area, we evaluate various perception modelsx2013including image classification, image segmentation, speech recognition, and music source separationx2013under severe lossy compression. We utilize several popular codecs spanning conventional, neural, and generative compression architectures. Our results indicate three key findings: (1) using generative compression, it is feasible to leverage highly compressed data while incurring a negligible impact on machine perceptual quality; (2) machine perceptual quality correlates strongly with deep similarity metrics, indicating a crucial role of these metrics in the development of machine-oriented codecs; and (3) using lossy compressed datasets, (e.g. ImageNet) for pre-training can lead to counter-intuitive scenarios where lossy compression increases machine perceptual quality rather than degrading it. To encourage engagement on this growing area of research, our code and experiments are available at: https://github.com/danjacobellis/MPQ.

  • 3 authors
·
Jan 15, 2024

Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation

Diffusion transformers currently lead the field in high-quality video generation, but their slow iterative denoising process and prohibitive quadratic attention costs for long sequences create significant inference bottlenecks. While both step distillation and sparse attention mechanisms have shown promise as independent acceleration strategies, effectively combining these approaches presents critical challenges -- training-free integration yields suboptimal results, while separately training sparse attention after step distillation requires prohibitively expensive high-quality video data. To overcome these limitations, we propose BLADE, an innovative data-free joint training framework that introduces: (1) an Adaptive Block-Sparse Attention (ASA) mechanism for dynamically generating content-aware sparsity masks to focus computation on salient spatiotemporal features, and (2) a sparsity-aware step distillation paradigm built upon Trajectory Distribution Matching (TDM) that directly incorporates sparsity into the distillation process rather than treating it as a separate compression step, with fast convergence. We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-1.3B. Our framework demonstrates remarkable efficiency gains across different scales. On Wan2.1-1.3B, BLADE achieves a 14.10x end-to-end inference acceleration over a 50-step baseline. Moreover, on models such as CogVideoX-5B with short video sequence lengths, our framework delivers a robust 8.89x speedup. Crucially, the acceleration is accompanied by a consistent quality improvement. On the VBench-2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534) and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by superior ratings in human evaluations. Our code and model weights are publicly available at: http://ziplab.co/BLADE-Homepage/.

  • 4 authors
·
Aug 14, 2025

SpineBench: A Clinically Salient, Level-Aware Benchmark Powered by the SpineMed-450k Corpus

Spine disorders affect 619 million people globally and are a leading cause of disability, yet AI-assisted diagnosis remains limited by the lack of level-aware, multimodal datasets. Clinical decision-making for spine disorders requires sophisticated reasoning across X-ray, CT, and MRI at specific vertebral levels. However, progress has been constrained by the absence of traceable, clinically-grounded instruction data and standardized, spine-specific benchmarks. To address this, we introduce SpineMed, an ecosystem co-designed with practicing spine surgeons. It features SpineMed-450k, the first large-scale dataset explicitly designed for vertebral-level reasoning across imaging modalities with over 450,000 instruction instances, and SpineBench, a clinically-grounded evaluation framework. SpineMed-450k is curated from diverse sources, including textbooks, guidelines, open datasets, and ~1,000 de-identified hospital cases, using a clinician-in-the-loop pipeline with a two-stage LLM generation method (draft and revision) to ensure high-quality, traceable data for question-answering, multi-turn consultations, and report generation. SpineBench evaluates models on clinically salient axes, including level identification, pathology assessment, and surgical planning. Our comprehensive evaluation of several recently advanced large vision-language models (LVLMs) on SpineBench reveals systematic weaknesses in fine-grained, level-specific reasoning. In contrast, our model fine-tuned on SpineMed-450k demonstrates consistent and significant improvements across all tasks. Clinician assessments confirm the diagnostic clarity and practical utility of our model's outputs.

  • 26 authors
·
Oct 3, 2025 2

WXSOD: A Benchmark for Robust Salient Object Detection in Adverse Weather Conditions

Salient object detection (SOD) in complex environments remains a challenging research topic. Most existing methods perform well in natural scenes with negligible noise, and tend to leverage multi-modal information (e.g., depth and infrared) to enhance accuracy. However, few studies are concerned with the damage of weather noise on SOD performance due to the lack of dataset with pixel-wise annotations. To bridge this gap, this paper introduces a novel Weather-eXtended Salient Object Detection (WXSOD) dataset. It consists of 14,945 RGB images with diverse weather noise, along with the corresponding ground truth annotations and weather labels. To verify algorithm generalization, WXSOD contains two test sets, i.e., a synthesized test set and a real test set. The former is generated by adding weather noise to clean images, while the latter contains real-world weather noise. Based on WXSOD, we propose an efficient baseline, termed Weather-aware Feature Aggregation Network (WFANet), which adopts a fully supervised two-branch architecture. Specifically, the weather prediction branch mines weather-related deep features, while the saliency detection branch fuses semantic features extracted from the backbone with weather features for SOD. Comprehensive comparisons against 17 SOD methods shows that our WFANet achieves superior performance on WXSOD. The code and benchmark results will be made publicly available at https://github.com/C-water/WXSOD

  • 7 authors
·
Aug 17, 2025

Dual Mutual Learning Network with Global-local Awareness for RGB-D Salient Object Detection

RGB-D salient object detection (SOD), aiming to highlight prominent regions of a given scene by jointly modeling RGB and depth information, is one of the challenging pixel-level prediction tasks. Recently, the dual-attention mechanism has been devoted to this area due to its ability to strengthen the detection process. However, most existing methods directly fuse attentional cross-modality features under a manual-mandatory fusion paradigm without considering the inherent discrepancy between the RGB and depth, which may lead to a reduction in performance. Moreover, the long-range dependencies derived from global and local information make it difficult to leverage a unified efficient fusion strategy. Hence, in this paper, we propose the GL-DMNet, a novel dual mutual learning network with global-local awareness. Specifically, we present a position mutual fusion module and a channel mutual fusion module to exploit the interdependencies among different modalities in spatial and channel dimensions. Besides, we adopt an efficient decoder based on cascade transformer-infused reconstruction to integrate multi-level fusion features jointly. Extensive experiments on six benchmark datasets demonstrate that our proposed GL-DMNet performs better than 24 RGB-D SOD methods, achieving an average improvement of ~3% across four evaluation metrics compared to the second-best model (S3Net). Codes and results are available at https://github.com/kingkung2016/GL-DMNet.

  • 5 authors
·
Jan 3, 2025

GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector

In this paper, we present a novel end-to-end group collaborative learning network, termed GCoNet+, which can effectively and efficiently (250 fps) identify co-salient objects in natural scenes. The proposed GCoNet+ achieves the new state-of-the-art performance for co-salient object detection (CoSOD) through mining consensus representations based on the following two essential criteria: 1) intra-group compactness to better formulate the consistency among co-salient objects by capturing their inherent shared attributes using our novel group affinity module (GAM); 2) inter-group separability to effectively suppress the influence of noisy objects on the output by introducing our new group collaborating module (GCM) conditioning on the inconsistent consensus. To further improve the accuracy, we design a series of simple yet effective components as follows: i) a recurrent auxiliary classification module (RACM) promoting model learning at the semantic level; ii) a confidence enhancement module (CEM) assisting the model in improving the quality of the final predictions; and iii) a group-based symmetric triplet (GST) loss guiding the model to learn more discriminative features. Extensive experiments on three challenging benchmarks, i.e., CoCA, CoSOD3k, and CoSal2015, demonstrate that our GCoNet+ outperforms the existing 12 cutting-edge models. Code has been released at https://github.com/ZhengPeng7/GCoNet_plus.

  • 8 authors
·
May 30, 2022

EPAM-Net: An Efficient Pose-driven Attention-guided Multimodal Network for Video Action Recognition

Existing multimodal-based human action recognition approaches are computationally intensive, limiting their deployment in real-time applications. In this work, we present a novel and efficient pose-driven attention-guided multimodal network (EPAM-Net) for action recognition in videos. Specifically, we propose eXpand temporal Shift (X-ShiftNet) convolutional architectures for RGB and pose streams to capture spatio-temporal features from RGB videos and their skeleton sequences. The X-ShiftNet tackles the high computational cost of the 3D CNNs by integrating the Temporal Shift Module (TSM) into an efficient 2D CNN, enabling efficient spatiotemporal learning. Then skeleton features are utilized to guide the visual network stream, focusing on keyframes and their salient spatial regions using the proposed spatial-temporal attention block. Finally, the predictions of the two streams are fused for final classification. The experimental results show that our method, with a significant reduction in floating-point operations (FLOPs), outperforms and competes with the state-of-the-art methods on NTU RGB-D 60, NTU RGB-D 120, PKU-MMD, and Toyota SmartHome datasets. The proposed EPAM-Net provides up to a 72.8x reduction in FLOPs and up to a 48.6x reduction in the number of network parameters. The code will be available at https://github.com/ahmed-nady/Multimodal-Action-Recognition.

  • 3 authors
·
Aug 9, 2024

Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Image quality assessment (IQA) algorithm aims to quantify the human perception of image quality. Unfortunately, there is a performance drop when assessing the distortion images generated by generative adversarial network (GAN) with seemingly realistic texture. In this work, we conjecture that this maladaptation lies in the backbone of IQA models, where patch-level prediction methods use independent image patches as input to calculate their scores separately, but lack spatial relationship modeling among image patches. Therefore, we propose an Attention-based Hybrid Image Quality Assessment Network (AHIQ) to deal with the challenge and get better performance on the GAN-based IQA task. Firstly, we adopt a two-branch architecture, including a vision transformer (ViT) branch and a convolutional neural network (CNN) branch for feature extraction. The hybrid architecture combines interaction information among image patches captured by ViT and local texture details from CNN. To make the features from shallow CNN more focused on the visually salient region, a deformable convolution is applied with the help of semantic information from the ViT branch. Finally, we use a patch-wise score prediction module to obtain the final score. The experiments show that our model outperforms the state-of-the-art methods on four standard IQA datasets and AHIQ ranked first on the Full Reference (FR) track of the NTIRE 2022 Perceptual Image Quality Assessment Challenge.

  • 8 authors
·
Apr 21, 2022

Hyper-pixel-wise Contrastive Learning Augmented Segmentation Network for Old Landslide Detection through Fusing High-Resolution Remote Sensing Images and Digital Elevation Model Data

As a natural disaster, landslide often brings tremendous losses to human lives, so it urgently demands reliable detection of landslide risks. When detecting old landslides that present important information for landslide risk warning, problems such as visual blur and small-sized dataset cause great challenges when using remote sensing data. To extract accurate semantic features, a hyper-pixel-wise contrastive learning augmented segmentation network (HPCL-Net) is proposed, which augments the local salient feature extraction from boundaries of landslides through HPCL-Net and fuses heterogeneous infromation in the semantic space from high-resolution remote sensing images and digital elevation model data. For full utilization of precious samples, a global hyper-pixel-wise sample pair queues-based contrastive learning method is developed, which includes the construction of global queues that store hyper-pixel-wise samples and the updating scheme of a momentum encoder, reliably enhancing the extraction ability of semantic features. The proposed HPCL-Net is evaluated on the Loess Plateau old landslide dataset and experimental results verify that the proposed HPCL-Net greatly outperforms existing models, where the mIoU is increased from 0.620 to 0.651, the Landslide IoU is improved from 0.334 to 0.394 and the F1score is enhanced from 0.501 to 0.565.

  • 6 authors
·
Aug 2, 2023

Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition

Recent studies show that vision models pre-trained in generic visual learning tasks with large-scale data can provide useful feature representations for a wide range of visual perception problems. However, few attempts have been made to exploit pre-trained foundation models in visual place recognition (VPR). Due to the inherent difference in training objectives and data between the tasks of model pre-training and VPR, how to bridge the gap and fully unleash the capability of pre-trained models for VPR is still a key issue to address. To this end, we propose a novel method to realize seamless adaptation of pre-trained models for VPR. Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method to achieve both global and local adaptation efficiently, in which only lightweight adapters are tuned without adjusting the pre-trained model. Besides, to guide effective adaptation, we propose a mutual nearest neighbor local feature loss, which ensures proper dense local features are produced for local matching and avoids time-consuming spatial verification in re-ranking. Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time, and uses about only 3% retrieval runtime of the two-stage VPR methods with RANSAC-based spatial verification. It ranks 1st on the MSLS challenge leaderboard (at the time of submission). The code is released at https://github.com/Lu-Feng/SelaVPR.

  • 6 authors
·
Feb 22, 2024

Embodied Referring Expression Comprehension in Human-Robot Interaction

As robots enter human workspaces, there is a crucial need for them to comprehend embodied human instructions, enabling intuitive and fluent human-robot interaction (HRI). However, accurate comprehension is challenging due to a lack of large-scale datasets that capture natural embodied interactions in diverse HRI settings. Existing datasets suffer from perspective bias, single-view collection, inadequate coverage of nonverbal gestures, and a predominant focus on indoor environments. To address these issues, we present the Refer360 dataset, a large-scale dataset of embodied verbal and nonverbal interactions collected across diverse viewpoints in both indoor and outdoor settings. Additionally, we introduce MuRes, a multimodal guided residual module designed to improve embodied referring expression comprehension. MuRes acts as an information bottleneck, extracting salient modality-specific signals and reinforcing them into pre-trained representations to form complementary features for downstream tasks. We conduct extensive experiments on four HRI datasets, including the Refer360 dataset, and demonstrate that current multimodal models fail to capture embodied interactions comprehensively; however, augmenting them with MuRes consistently improves performance. These findings establish Refer360 as a valuable benchmark and exhibit the potential of guided residual learning to advance embodied referring expression comprehension in robots operating within human environments.

  • 8 authors
·
Dec 6, 2025 2

SSS: Semi-Supervised SAM-2 with Efficient Prompting for Medical Imaging Segmentation

In the era of information explosion, efficiently leveraging large-scale unlabeled data while minimizing the reliance on high-quality pixel-level annotations remains a critical challenge in the field of medical imaging. Semi-supervised learning (SSL) enhances the utilization of unlabeled data by facilitating knowledge transfer, significantly improving the performance of fully supervised models and emerging as a highly promising research direction in medical image analysis. Inspired by the ability of Vision Foundation Models (e.g., SAM-2) to provide rich prior knowledge, we propose SSS (Semi-Supervised SAM-2), a novel approach that leverages SAM-2's robust feature extraction capabilities to uncover latent knowledge in unlabeled medical images, thus effectively enhancing feature support for fully supervised medical image segmentation. Specifically, building upon the single-stream "weak-to-strong" consistency regularization framework, this paper introduces a Discriminative Feature Enhancement (DFE) mechanism to further explore the feature discrepancies introduced by various data augmentation strategies across multiple views. By leveraging feature similarity and dissimilarity across multi-scale augmentation techniques, the method reconstructs and models the features, thereby effectively optimizing the salient regions. Furthermore, a prompt generator is developed that integrates Physical Constraints with a Sliding Window (PCSW) mechanism to generate input prompts for unlabeled data, fulfilling SAM-2's requirement for additional prompts. Extensive experiments demonstrate the superiority of the proposed method for semi-supervised medical image segmentation on two multi-label datasets, i.e., ACDC and BHSD. Notably, SSS achieves an average Dice score of 53.15 on BHSD, surpassing the previous state-of-the-art method by +3.65 Dice. Code will be available at https://github.com/AIGeeksGroup/SSS.

  • 8 authors
·
Jun 10, 2025

Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation

Despite the tremendous achievements of deep convolutional neural networks (CNNs) in many computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step understanding method, namely Salient Relevance (SR) map, which aims to shed light on how deep CNNs recognize images and learn features from areas, referred to as attention areas, therein. Our proposed method starts out with a layer-wise relevance propagation (LRP) step which estimates a pixel-wise relevance map over the input image. Following, we construct a context-aware saliency map, SR map, from the LRP-generated map which predicts areas close to the foci of attention instead of isolated pixels that LRP reveals. In human visual system, information of regions is more important than of pixels in recognition. Consequently, our proposed approach closely simulates human recognition. Experimental results using the ILSVRC2012 validation dataset in conjunction with two well-established deep CNN models, AlexNet and VGG-16, clearly demonstrate that our proposed approach concisely identifies not only key pixels but also attention areas that contribute to the underlying neural network's comprehension of the given images. As such, our proposed SR map constitutes a convenient visual interface which unveils the visual attention of the network and reveals which type of objects the model has learned to recognize after training. The source code is available at https://github.com/Hey1Li/Salient-Relevance-Propagation.

  • 4 authors
·
Dec 21, 2017

Accelerating Streaming Video Large Language Models via Hierarchical Token Compression

Streaming Video Large Language Models (VideoLLMs) have demonstrated impressive performance across various video understanding tasks, but they face significant challenges in real-time deployment due to the high computational cost of processing dense visual tokens from continuous video streams. In streaming video scenarios, the primary bottleneck lies in the Vision Transformer (ViT) encoding stage, where redundant processing of temporally similar frames leads to inefficiency. Additionally, inflated token sequences during LLM pre-filling further exacerbate latency and memory overhead. To address these challenges, we propose Streaming Token Compression (STC), a plug-and-play hierarchical framework that seamlessly integrates into existing streaming VideoLLMs, optimizing both ViT encoding and LLM pre-filling stages to accelerate processing. STC introduces two token-level accelerators: STC-Cacher, which reduces ViT encoding overhead by caching and reusing features from temporally similar frames, and STC-Pruner, which compresses the visual token sequence before it enters the LLM, preserving only the most salient tokens based on both spatial and temporal relevance. Extensive experiments on four baseline streaming VideoLLMs across five benchmarks demonstrate that STC outperforms other compression methods. Notably, STC retains up to 99\% of accuracy on the ReKV framework while reducing ViT encoding latency and LLM pre-filling latency by 24.5\% and 45.3\%.

Diving into Underwater: Segment Anything Model Guided Underwater Salient Instance Segmentation and A Large-scale Dataset

With the breakthrough of large models, Segment Anything Model (SAM) and its extensions have been attempted to apply in diverse tasks of computer vision. Underwater salient instance segmentation is a foundational and vital step for various underwater vision tasks, which often suffer from low segmentation accuracy due to the complex underwater circumstances and the adaptive ability of models. Moreover, the lack of large-scale datasets with pixel-level salient instance annotations has impeded the development of machine learning techniques in this field. To address these issues, we construct the first large-scale underwater salient instance segmentation dataset (USIS10K), which contains 10,632 underwater images with pixel-level annotations in 7 categories from various underwater scenes. Then, we propose an Underwater Salient Instance Segmentation architecture based on Segment Anything Model (USIS-SAM) specifically for the underwater domain. We devise an Underwater Adaptive Visual Transformer (UA-ViT) encoder to incorporate underwater domain visual prompts into the segmentation network. We further design an out-of-the-box underwater Salient Feature Prompter Generator (SFPG) to automatically generate salient prompters instead of explicitly providing foreground points or boxes as prompts in SAM. Comprehensive experimental results show that our USIS-SAM method can achieve superior performance on USIS10K datasets compared to the state-of-the-art methods. Datasets and codes are released on https://github.com/LiamLian0727/USIS10K.

  • 7 authors
·
Jun 10, 2024