new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

SHARP: Sparsity and Hidden Activation RePlay for Neuro-Inspired Continual Learning

Deep neural networks (DNNs) struggle to learn in dynamic environments since they rely on fixed datasets or stationary environments. Continual learning (CL) aims to address this limitation and enable DNNs to accumulate knowledge incrementally, similar to human learning. Inspired by how our brain consolidates memories, a powerful strategy in CL is replay, which involves training the DNN on a mixture of new and all seen classes. However, existing replay methods overlook two crucial aspects of biological replay: 1) the brain replays processed neural patterns instead of raw input, and 2) it prioritizes the replay of recently learned information rather than revisiting all past experiences. To address these differences, we propose SHARP, an efficient neuro-inspired CL method that leverages sparse dynamic connectivity and activation replay. Unlike other activation replay methods, which assume layers not subjected to replay have been pretrained and fixed, SHARP can continually update all layers. Also, SHARP is unique in that it only needs to replay few recently seen classes instead of all past classes. Our experiments on five datasets demonstrate that SHARP outperforms state-of-the-art replay methods in class incremental learning. Furthermore, we showcase SHARP's flexibility in a novel CL scenario where the boundaries between learning episodes are blurry. The SHARP code is available at https://github.com/BurakGurbuz97/SHARP-Continual-Learning.

  • 3 authors
·
May 29, 2023

Neuro-inspired Ensemble-to-Ensemble Communication Primitives for Sparse and Efficient ANNs

The structure of biological neural circuits-modular, hierarchical, and sparsely interconnected-reflects an efficient trade-off between wiring cost, functional specialization, and robustness. These principles offer valuable insights for artificial neural network (ANN) design, especially as networks grow in depth and scale. Sparsity, in particular, has been widely explored for reducing memory and computation, improving speed, and enhancing generalization. Motivated by systems neuroscience findings, we explore how patterns of functional connectivity in the mouse visual cortex-specifically, ensemble-to-ensemble communication, can inform ANN design. We introduce G2GNet, a novel architecture that imposes sparse, modular connectivity across feedforward layers. Despite having significantly fewer parameters than fully connected models, G2GNet achieves superior accuracy on standard vision benchmarks. To our knowledge, this is the first architecture to incorporate biologically observed functional connectivity patterns as a structural bias in ANN design. We complement this static bias with a dynamic sparse training (DST) mechanism that prunes and regrows edges during training. We also propose a Hebbian-inspired rewiring rule based on activation correlations, drawing on principles of biological plasticity. G2GNet achieves up to 75% sparsity while improving accuracy by up to 4.3% on benchmarks, including Fashion-MNIST, CIFAR-10, and CIFAR-100, outperforming dense baselines with far fewer computations.

  • 3 authors
·
Aug 19

An Efficient Graph-Transformer Operator for Learning Physical Dynamics with Manifolds Embedding

Accurate and efficient physical simulations are essential in science and engineering, yet traditional numerical solvers face significant challenges in computational cost when handling simulations across dynamic scenarios involving complex geometries, varying boundary/initial conditions, and diverse physical parameters. While deep learning offers promising alternatives, existing methods often struggle with flexibility and generalization, particularly on unstructured meshes, which significantly limits their practical applicability. To address these challenges, we propose PhysGTO, an efficient Graph-Transformer Operator for learning physical dynamics through explicit manifold embeddings in both physical and latent spaces. In the physical space, the proposed Unified Graph Embedding module aligns node-level conditions and constructs sparse yet structure-preserving graph connectivity to process heterogeneous inputs. In the latent space, PhysGTO integrates a lightweight flux-oriented message-passing scheme with projection-inspired attention to capture local and global dependencies, facilitating multilevel interactions among complex physical correlations. This design ensures linear complexity relative to the number of mesh points, reducing both the number of trainable parameters and computational costs in terms of floating-point operations (FLOPs), and thereby allowing efficient inference in real-time applications. We introduce a comprehensive benchmark spanning eleven datasets, covering problems with unstructured meshes, transient flow dynamics, and large-scale 3D geometries. PhysGTO consistently achieves state-of-the-art accuracy while significantly reducing computational costs, demonstrating superior flexibility, scalability, and generalization in a wide range of simulation tasks.

  • 9 authors
·
Dec 10 1