Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCounterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
Explaining Text Classifiers with Counterfactual Representations
One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we first conduct experiments on a synthetic dataset of counterfactuals, allowing for a direct comparison between classifier predictions based on ground truth counterfactuals (obtained through explicit text interventions) and our counterfactuals, derived through interventions in the representation space. Second, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.
Counterfactual Plans under Distributional Ambiguity
Counterfactual explanations are attracting significant attention due to the flourishing applications of machine learning models in consequential domains. A counterfactual plan consists of multiple possibilities to modify a given instance so that the model's prediction will be altered. As the predictive model can be updated subject to the future arrival of new data, a counterfactual plan may become ineffective or infeasible with respect to the future values of the model parameters. In this work, we study the counterfactual plans under model uncertainty, in which the distribution of the model parameters is partially prescribed using only the first- and second-moment information. First, we propose an uncertainty quantification tool to compute the lower and upper bounds of the probability of validity for any given counterfactual plan. We then provide corrective methods to adjust the counterfactual plan to improve the validity measure. The numerical experiments validate our bounds and demonstrate that our correction increases the robustness of the counterfactual plans in different real-world datasets.
Topic-aware Causal Intervention for Counterfactual Detection
Counterfactual statements, which describe events that did not or cannot take place, are beneficial to numerous NLP applications. Hence, we consider the problem of counterfactual detection (CFD) and seek to enhance the CFD models. Previous models are reliant on clue phrases to predict counterfactuality, so they suffer from significant performance drop when clue phrase hints do not exist during testing. Moreover, these models tend to predict non-counterfactuals over counterfactuals. To address these issues, we propose to integrate neural topic model into the CFD model to capture the global semantics of the input statement. We continue to causally intervene the hidden representations of the CFD model to balance the effect of the class labels. Extensive experiments show that our approach outperforms previous state-of-the-art CFD and bias-resolving methods in both the CFD and other bias-sensitive tasks.
I Wish I Would Have Loved This One, But I Didn't -- A Multilingual Dataset for Counterfactual Detection in Product Reviews
Counterfactual statements describe events that did not or cannot take place. We consider the problem of counterfactual detection (CFD) in product reviews. For this purpose, we annotate a multilingual CFD dataset from Amazon product reviews covering counterfactual statements written in English, German, and Japanese languages. The dataset is unique as it contains counterfactuals in multiple languages, covers a new application area of e-commerce reviews, and provides high quality professional annotations. We train CFD models using different text representation methods and classifiers. We find that these models are robust against the selectional biases introduced due to cue phrase-based sentence selection. Moreover, our CFD dataset is compatible with prior datasets and can be merged to learn accurate CFD models. Applying machine translation on English counterfactual examples to create multilingual data performs poorly, demonstrating the language-specificity of this problem, which has been ignored so far.
CounterBench: A Benchmark for Counterfactuals Reasoning in Large Language Models
Counterfactual reasoning is widely recognized as one of the most challenging and intricate aspects of causality in artificial intelligence. In this paper, we evaluate the performance of large language models (LLMs) in counterfactual reasoning. In contrast to previous studies that primarily focus on commonsense causal reasoning, where LLMs often rely on prior knowledge for inference, we specifically assess their ability to perform counterfactual inference using a set of formal rules. To support this evaluation, we introduce a new benchmark dataset, CounterBench, comprising 1K counterfactual reasoning questions. The dataset is designed with varying levels of difficulty, diverse causal graph structures, distinct types of counterfactual questions, and multiple nonsensical name variants. Our experiments demonstrate that counterfactual reasoning poses a significant challenge for LLMs, with most models performing at levels comparable to random guessing. To enhance LLM's counterfactual reasoning ability, we propose a novel reasoning paradigm, CoIn, which guides LLMs through iterative reasoning and backtracking to systematically explore counterfactual solutions. Experimental results show that our method significantly improves LLM performance on counterfactual reasoning tasks and consistently enhances performance across different LLMs.Our dataset is available at https://huggingface.co/datasets/CounterBench/CounterBench.
Causal Proxy Models for Concept-Based Model Explanations
Explainability methods for NLP systems encounter a version of the fundamental problem of causal inference: for a given ground-truth input text, we never truly observe the counterfactual texts necessary for isolating the causal effects of model representations on outputs. In response, many explainability methods make no use of counterfactual texts, assuming they will be unavailable. In this paper, we show that robust causal explainability methods can be created using approximate counterfactuals, which can be written by humans to approximate a specific counterfactual or simply sampled using metadata-guided heuristics. The core of our proposal is the Causal Proxy Model (CPM). A CPM explains a black-box model N because it is trained to have the same actual input/output behavior as N while creating neural representations that can be intervened upon to simulate the counterfactual input/output behavior of N. Furthermore, we show that the best CPM for N performs comparably to N in making factual predictions, which means that the CPM can simply replace N, leading to more explainable deployed models. Our code is available at https://github.com/frankaging/Causal-Proxy-Model.
Faithful Explanations of Black-box NLP Models Using LLM-generated Counterfactuals
Causal explanations of the predictions of NLP systems are essential to ensure safety and establish trust. Yet, existing methods often fall short of explaining model predictions effectively or efficiently and are often model-specific. In this paper, we address model-agnostic explanations, proposing two approaches for counterfactual (CF) approximation. The first approach is CF generation, where a large language model (LLM) is prompted to change a specific text concept while keeping confounding concepts unchanged. While this approach is demonstrated to be very effective, applying LLM at inference-time is costly. We hence present a second approach based on matching, and propose a method that is guided by an LLM at training-time and learns a dedicated embedding space. This space is faithful to a given causal graph and effectively serves to identify matches that approximate CFs. After showing theoretically that approximating CFs is required in order to construct faithful explanations, we benchmark our approaches and explain several models, including LLMs with billions of parameters. Our empirical results demonstrate the excellent performance of CF generation models as model-agnostic explainers. Moreover, our matching approach, which requires far less test-time resources, also provides effective explanations, surpassing many baselines. We also find that Top-K techniques universally improve every tested method. Finally, we showcase the potential of LLMs in constructing new benchmarks for model explanation and subsequently validate our conclusions. Our work illuminates new pathways for efficient and accurate approaches to interpreting NLP systems.
Reasoning Elicitation in Language Models via Counterfactual Feedback
Despite the increasing effectiveness of language models, their reasoning capabilities remain underdeveloped. In particular, causal reasoning through counterfactual question answering is lacking. This work aims to bridge this gap. We first derive novel metrics that balance accuracy in factual and counterfactual questions, capturing a more complete view of the reasoning abilities of language models than traditional factual-only based metrics. Second, we propose several fine-tuning approaches that aim to elicit better reasoning mechanisms, in the sense of the proposed metrics. Finally, we evaluate the performance of the fine-tuned language models in a variety of realistic scenarios. In particular, we investigate to what extent our fine-tuning approaches systemically achieve better generalization with respect to the base models in several problems that require, among others, inductive and deductive reasoning capabilities.
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models
While counterfactual examples are useful for analysis and training of NLP models, current generation methods either rely on manual labor to create very few counterfactuals, or only instantiate limited types of perturbations such as paraphrases or word substitutions. We present Polyjuice, a general-purpose counterfactual generator that allows for control over perturbation types and locations, trained by finetuning GPT-2 on multiple datasets of paired sentences. We show that Polyjuice produces diverse sets of realistic counterfactuals, which in turn are useful in various distinct applications: improving training and evaluation on three different tasks (with around 70% less annotation effort than manual generation), augmenting state-of-the-art explanation techniques, and supporting systematic counterfactual error analysis by revealing behaviors easily missed by human experts.
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Answering counterfactual queries has many important applications such as knowledge discovery and explainability, but is challenging when causal variables are unobserved and we only see a projection onto an observation space, for instance, image pixels. One approach is to recover the latent Structural Causal Model (SCM), but this typically needs unrealistic assumptions, such as linearity of the causal mechanisms. Another approach is to use na\"ive ML approximations, such as generative models, to generate counterfactual samples; however, these lack guarantees of accuracy. In this work, we strive to strike a balance between practicality and theoretical guarantees by focusing on a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, by only assuming invertibility, sparse domain interventions and access to observational data from different domains, we aim to improve domain counterfactual estimation both theoretically and practically with less restrictive assumptions. We define domain counterfactually equivalent models and prove necessary and sufficient properties for equivalent models that provide a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG. This surprising result suggests that a model design that only allows intervention in the last k latent variables may improve model estimation for counterfactuals. We then test this model design on extensive simulated and image-based experiments which show the sparse canonical model indeed improves counterfactual estimation over baseline non-sparse models.
Cause and Effect: Can Large Language Models Truly Understand Causality?
With the rise of Large Language Models(LLMs), it has become crucial to understand their capabilities and limitations in deciphering and explaining the complex web of causal relationships that language entails. Current methods use either explicit or implicit causal reasoning, yet there is a strong need for a unified approach combining both to tackle a wide array of causal relationships more effectively. This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to enhance causal reasoning and explainability. The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through LLMs. Our framework goes one step further with a layer of counterfactual explanations to accentuate LLMs understanding of causality. The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning. The counterfactual sentences add explicit knowledge of the not caused by scenarios. By combining these powerful modules, our model aims to provide a deeper understanding of causal relationships, enabling enhanced interpretability. Evaluation of benchmark datasets shows improved performance across all metrics, such as accuracy, precision, recall, and F1 scores. We also introduce CausalNet, a new dataset accompanied by our code, to facilitate further research in this domain.
Do Large Code Models Understand Programming Concepts? Counterfactual Analysis for Code Predicates
Large Language Models' success on text generation has also made them better at code generation and coding tasks. While a lot of work has demonstrated their remarkable performance on tasks such as code completion and editing, it is still unclear as to why. We help bridge this gap by exploring to what degree auto-regressive models understand the logical constructs of the underlying programs. We propose Counterfactual Analysis for Programming Concept Predicates (CACP) as a counterfactual testing framework to evaluate whether Large Code Models understand programming concepts. With only black-box access to the model, we use CACP to evaluate ten popular Large Code Models for four different programming concepts. Our findings suggest that current models lack understanding of concepts such as data flow and control flow.
VISION: Robust and Interpretable Code Vulnerability Detection Leveraging Counterfactual Augmentation
Automated detection of vulnerabilities in source code is an essential cybersecurity challenge, underpinning trust in digital systems and services. Graph Neural Networks (GNNs) have emerged as a promising approach as they can learn structural and logical code relationships in a data-driven manner. However, their performance is severely constrained by training data imbalances and label noise. GNNs often learn 'spurious' correlations from superficial code similarities, producing detectors that fail to generalize well to unseen real-world data. In this work, we propose a unified framework for robust and interpretable vulnerability detection, called VISION, to mitigate spurious correlations by systematically augmenting a counterfactual training dataset. Counterfactuals are samples with minimal semantic modifications but opposite labels. Our framework includes: (i) generating counterfactuals by prompting a Large Language Model (LLM); (ii) targeted GNN training on paired code examples with opposite labels; and (iii) graph-based interpretability to identify the crucial code statements relevant for vulnerability predictions while ignoring spurious ones. We find that VISION reduces spurious learning and enables more robust, generalizable detection, improving overall accuracy (from 51.8% to 97.8%), pairwise contrast accuracy (from 4.5% to 95.8%), and worst-group accuracy (from 0.7% to 85.5%) on the Common Weakness Enumeration (CWE)-20 vulnerability. We further demonstrate gains using proposed metrics: intra-class attribution variance, inter-class attribution distance, and node score dependency. We also release CWE-20-CFA, a benchmark of 27,556 functions (real and counterfactual) from the high-impact CWE-20 category. Finally, VISION advances transparent and trustworthy AI-based cybersecurity systems through interactive visualization for human-in-the-loop analysis.
Investigating the Robustness of Natural Language Generation from Logical Forms via Counterfactual Samples
The aim of Logic2Text is to generate controllable and faithful texts conditioned on tables and logical forms, which not only requires a deep understanding of the tables and logical forms, but also warrants symbolic reasoning over the tables. State-of-the-art methods based on pre-trained models have achieved remarkable performance on the standard test dataset. However, we question whether these methods really learn how to perform logical reasoning, rather than just relying on the spurious correlations between the headers of the tables and operators of the logical form. To verify this hypothesis, we manually construct a set of counterfactual samples, which modify the original logical forms to generate counterfactual logical forms with rarely co-occurred table headers and logical operators. SOTA methods give much worse results on these counterfactual samples compared with the results on the original test dataset, which verifies our hypothesis. To deal with this problem, we firstly analyze this bias from a causal perspective, based on which we propose two approaches to reduce the model's reliance on the shortcut. The first one incorporates the hierarchical structure of the logical forms into the model. The second one exploits automatically generated counterfactual data for training. Automatic and manual experimental results on the original test dataset and the counterfactual dataset show that our method is effective to alleviate the spurious correlation. Our work points out the weakness of previous methods and takes a further step toward developing Logic2Text models with real logical reasoning ability.
Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees
There is an emerging interest in generating robust counterfactual explanations that would remain valid if the model is updated or changed even slightly. Towards finding robust counterfactuals, existing literature often assumes that the original model m and the new model M are bounded in the parameter space, i.e., |Params(M){-}Params(m)|{<}Delta. However, models can often change significantly in the parameter space with little to no change in their predictions or accuracy on the given dataset. In this work, we introduce a mathematical abstraction termed naturally-occurring model change, which allows for arbitrary changes in the parameter space such that the change in predictions on points that lie on the data manifold is limited. Next, we propose a measure -- that we call Stability -- to quantify the robustness of counterfactuals to potential model changes for differentiable models, e.g., neural networks. Our main contribution is to show that counterfactuals with sufficiently high value of Stability as defined by our measure will remain valid after potential ``naturally-occurring'' model changes with high probability (leveraging concentration bounds for Lipschitz function of independent Gaussians). Since our quantification depends on the local Lipschitz constant around a data point which is not always available, we also examine practical relaxations of our proposed measure and demonstrate experimentally how they can be incorporated to find robust counterfactuals for neural networks that are close, realistic, and remain valid after potential model changes.
Do Models Explain Themselves? Counterfactual Simulatability of Natural Language Explanations
Large language models (LLMs) are trained to imitate humans to explain human decisions. However, do LLMs explain themselves? Can they help humans build mental models of how LLMs process different inputs? To answer these questions, we propose to evaluate counterfactual simulatability of natural language explanations: whether an explanation can enable humans to precisely infer the model's outputs on diverse counterfactuals of the explained input. For example, if a model answers "yes" to the input question "Can eagles fly?" with the explanation "all birds can fly", then humans would infer from the explanation that it would also answer "yes" to the counterfactual input "Can penguins fly?". If the explanation is precise, then the model's answer should match humans' expectations. We implemented two metrics based on counterfactual simulatability: precision and generality. We generated diverse counterfactuals automatically using LLMs. We then used these metrics to evaluate state-of-the-art LLMs (e.g., GPT-4) on two tasks: multi-hop factual reasoning and reward modeling. We found that LLM's explanations have low precision and that precision does not correlate with plausibility. Therefore, naively optimizing human approvals (e.g., RLHF) may not be a sufficient solution.
Yseop at SemEval-2020 Task 5: Cascaded BERT Language Model for Counterfactual Statement Analysis
In this paper, we explore strategies to detect and evaluate counterfactual sentences. We describe our system for SemEval-2020 Task 5: Modeling Causal Reasoning in Language: Detecting Counterfactuals. We use a BERT base model for the classification task and build a hybrid BERT Multi-Layer Perceptron system to handle the sequence identification task. Our experiments show that while introducing syntactic and semantic features does little in improving the system in the classification task, using these types of features as cascaded linear inputs to fine-tune the sequence-delimiting ability of the model ensures it outperforms other similar-purpose complex systems like BiLSTM-CRF in the second task. Our system achieves an F1 score of 85.00% in Task 1 and 83.90% in Task 2.
Response: Emergent analogical reasoning in large language models
In their recent Nature Human Behaviour paper, "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023) the authors argue that "large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems." In this response, we provide counterexamples of the letter string analogies. In our tests, GPT-3 fails to solve even the easiest variants of the problems presented in the original paper. Zero-shot reasoning is an extraordinary claim that requires extraordinary evidence. We do not see that evidence in our experiments. To strengthen claims of humanlike reasoning such as zero-shot reasoning, it is important that the field develop approaches that rule out data memorization.
Executable Counterfactuals: Improving LLMs' Causal Reasoning Through Code
Counterfactual reasoning, a hallmark of intelligence, consists of three steps: inferring latent variables from observations (abduction), constructing alternatives (interventions), and predicting their outcomes (prediction). This skill is essential for advancing LLMs' causal understanding and expanding their applications in high-stakes domains such as scientific research. However, existing efforts in assessing LLM's counterfactual reasoning capabilities tend to skip the abduction step, effectively reducing to interventional reasoning and leading to overestimation of LLM performance. To address this, we introduce executable counterfactuals, a novel framework that operationalizes causal reasoning through code and math problems. Our framework explicitly requires all three steps of counterfactual reasoning and enables scalable synthetic data creation with varying difficulty, creating a frontier for evaluating and improving LLM's reasoning. Our results reveal substantial drop in accuracy (25-40%) from interventional to counterfactual reasoning for SOTA models like o4-mini and Claude-4-Sonnet. To address this gap, we construct a training set comprising counterfactual code problems having if-else condition and test on out-of-domain code structures (e.g. having while-loop); we also test whether a model trained on code would generalize to counterfactual math word problems. While supervised finetuning on stronger models' reasoning traces improves in-domain performance of Qwen models, it leads to a decrease in accuracy on OOD tasks such as counterfactual math problems. In contrast, reinforcement learning induces the core cognitive behaviors and generalizes to new domains, yielding gains over the base model on both code (improvement of 1.5x-2x) and math problems. Analysis of the reasoning traces reinforces these findings and highlights the promise of RL for improving LLMs' counterfactual reasoning.
Identifying Spurious Correlations using Counterfactual Alignment
Models driven by spurious correlations often yield poor generalization performance. We propose the counterfactual (CF) alignment method to detect and quantify spurious correlations of black box classifiers. Our methodology is based on counterfactual images generated with respect to one classifier being input into other classifiers to see if they also induce changes in the outputs of these classifiers. The relationship between these responses can be quantified and used to identify specific instances where a spurious correlation exists. This is validated by observing intuitive trends in face-attribute and waterbird classifiers, as well as by fabricating spurious correlations and detecting their presence, both visually and quantitatively. Furthermore, utilizing the CF alignment method, we demonstrate that we can evaluate robust optimization methods (GroupDRO, JTT, and FLAC) by detecting a reduction in spurious correlations.
The Linear Representation Hypothesis and the Geometry of Large Language Models
Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product.
Optimal Counterfactual Explanations for Scorecard modelling
Counterfactual explanations is one of the post-hoc methods used to provide explainability to machine learning models that have been attracting attention in recent years. Most examples in the literature, address the problem of generating post-hoc explanations for black-box machine learning models after the rejection of a loan application. In contrast, in this work, we investigate mathematical programming formulations for scorecard models, a type of interpretable model predominant within the banking industry for lending. The proposed mixed-integer programming formulations combine objective functions to ensure close, realistic and sparse counterfactuals using multi-objective optimization techniques for a binary, probability or continuous outcome. Moreover, we extend these formulations to generate multiple optimal counterfactuals simultaneously while guaranteeing diversity. Experiments on two real-world datasets confirm that the presented approach can generate optimal diverse counterfactuals addressing desired properties with assumable CPU times for practice use.
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all machine learning based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.
Causal Inference by String Diagram Surgery
Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.
Generating Pragmatic Examples to Train Neural Program Synthesizers
Programming-by-example is the task of synthesizing a program that is consistent with a set of user-provided input-output examples. As examples are often an under-specification of one's intent, a good synthesizer must choose the intended program from the many that are consistent with the given set of examples. Prior work frames program synthesis as a cooperative game between a listener (that synthesizes programs) and a speaker (a user choosing examples), and shows that models of computational pragmatic inference are effective in choosing the user intended programs. However, these models require counterfactual reasoning over a large set of programs and examples, which is infeasible in realistic program spaces. In this paper, we propose a novel way to amortize this search with neural networks. We sample pairs of programs and examples via self-play between listener and speaker models, and use pragmatic inference to choose informative training examples from this sample.We then use the informative dataset to train models to improve the synthesizer's ability to disambiguate user-provided examples without human supervision. We validate our method on the challenging task of synthesizing regular expressions from example strings, and find that our method (1) outperforms models trained without choosing pragmatic examples by 23% (a 51% relative increase) (2) matches the performance of supervised learning on a dataset of pragmatic examples provided by humans, despite using no human data in training.
Counterfactuals for Design: A Model-Agnostic Method For Design Recommendations
We introduce Multi-Objective Counterfactuals for Design (MCD), a novel method for counterfactual optimization in design problems. Counterfactuals are hypothetical situations that can lead to a different decision or choice. In this paper, the authors frame the counterfactual search problem as a design recommendation tool that can help identify modifications to a design, leading to better functional performance. MCD improves upon existing counterfactual search methods by supporting multi-objective queries, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective tradeoff visualization. The paper demonstrates MCD's core functionality using a two-dimensional test case, followed by three case studies of bicycle design that showcase MCD's effectiveness in real-world design problems. In the first case study, MCD excels at recommending modifications to query designs that can significantly enhance functional performance, such as weight savings and improvements to the structural safety factor. The second case study demonstrates that MCD can work with a pre-trained language model to suggest design changes based on a subjective text prompt effectively. Lastly, the authors task MCD with increasing a query design's similarity to a target image and text prompt while simultaneously reducing weight and improving structural performance, demonstrating MCD's performance on a complex multimodal query. Overall, MCD has the potential to provide valuable recommendations for practitioners and design automation researchers looking for answers to their ``What if'' questions by exploring hypothetical design modifications and their impact on multiple design objectives. The code, test problems, and datasets used in the paper are available to the public at decode.mit.edu/projects/counterfactuals/.
Towards Unifying Evaluation of Counterfactual Explanations: Leveraging Large Language Models for Human-Centric Assessments
As machine learning models evolve, maintaining transparency demands more human-centric explainable AI techniques. Counterfactual explanations, with roots in human reasoning, identify the minimal input changes needed to obtain a given output and, hence, are crucial for supporting decision-making. Despite their importance, the evaluation of these explanations often lacks grounding in user studies and remains fragmented, with existing metrics not fully capturing human perspectives. To address this challenge, we developed a diverse set of 30 counterfactual scenarios and collected ratings across 8 evaluation metrics from 206 respondents. Subsequently, we fine-tuned different Large Language Models (LLMs) to predict average or individual human judgment across these metrics. Our methodology allowed LLMs to achieve an accuracy of up to 63% in zero-shot evaluations and 85% (over a 3-classes prediction) with fine-tuning across all metrics. The fine-tuned models predicting human ratings offer better comparability and scalability in evaluating different counterfactual explanation frameworks.
Rethinking Counterfactual Data Augmentation Under Confounding
Counterfactual data augmentation has recently emerged as a method to mitigate confounding biases in the training data for a machine learning model. These biases, such as spurious correlations, arise due to various observed and unobserved confounding variables in the data generation process. In this paper, we formally analyze how confounding biases impact downstream classifiers and present a causal viewpoint to the solutions based on counterfactual data augmentation. We explore how removing confounding biases serves as a means to learn invariant features, ultimately aiding in generalization beyond the observed data distribution. Additionally, we present a straightforward yet powerful algorithm for generating counterfactual images, which effectively mitigates the influence of confounding effects on downstream classifiers. Through experiments on MNIST variants and the CelebA datasets, we demonstrate the effectiveness and practicality of our approach.
T-COL: Generating Counterfactual Explanations for General User Preferences on Variable Machine Learning Systems
To address the interpretability challenge in machine learning (ML) systems, counterfactual explanations (CEs) have emerged as a promising solution. CEs are unique as they provide workable suggestions to users, in addition to explaining why a certain outcome was predicted. The application of CEs encounters two main challenges: general user preferences and variable ML systems. User preferences tend to be general rather than specific, and CEs need to be adaptable to variable ML models while maintaining robustness even as these models change. Facing these challenges, we present a solution rooted in validated general user preferences, which are derived from thorough user research. We map these preferences to the properties of CEs. Additionally, we introduce a novel method, Tree-based Conditions Optional Links (T-COL), which incorporates two optional structures and multiple condition groups for generating CEs adaptable to general user preferences. Meanwhile, we employ T-COL to enhance the robustness of CEs with specific conditions, making them more valid even when the ML model is replaced. Our experimental comparisons under different user preferences show that T-COL outperforms all baselines, including Large Language Models which are shown to be able to generate counterfactuals.
Reasoning Beyond Bias: A Study on Counterfactual Prompting and Chain of Thought Reasoning
Language models are known to absorb biases from their training data, leading to predictions driven by statistical regularities rather than semantic relevance. We investigate the impact of these biases on answer choice preferences in the Massive Multi-Task Language Understanding (MMLU) task. Our findings reveal that differences in learned regularities across answer options are predictive of model preferences and mirror human test-taking strategies. To address this issue, we introduce two novel methods: Counterfactual Prompting with Chain of Thought (CoT) and Counterfactual Prompting with Agnostically Primed CoT (APriCoT). We demonstrate that while Counterfactual Prompting with CoT alone is insufficient to mitigate bias, our novel Primed Counterfactual Prompting with CoT approach effectively reduces the influence of base-rate probabilities while improving overall accuracy. Our results suggest that mitigating bias requires a "System-2" like process and that CoT reasoning is susceptible to confirmation bias under some prompting methodologies. Our contributions offer practical solutions for developing more robust and fair language models.
CEval: A Benchmark for Evaluating Counterfactual Text Generation
Counterfactual text generation aims to minimally change a text, such that it is classified differently. Judging advancements in method development for counterfactual text generation is hindered by a non-uniform usage of data sets and metrics in related work. We propose CEval, a benchmark for comparing counterfactual text generation methods. CEval unifies counterfactual and text quality metrics, includes common counterfactual datasets with human annotations, standard baselines (MICE, GDBA, CREST) and the open-source language model LLAMA-2. Our experiments found no perfect method for generating counterfactual text. Methods that excel at counterfactual metrics often produce lower-quality text while LLMs with simple prompts generate high-quality text but struggle with counterfactual criteria. By making CEval available as an open-source Python library, we encourage the community to contribute more methods and maintain consistent evaluation in future work.
Exploring the Efficacy of Automatically Generated Counterfactuals for Sentiment Analysis
While state-of-the-art NLP models have been achieving the excellent performance of a wide range of tasks in recent years, important questions are being raised about their robustness and their underlying sensitivity to systematic biases that may exist in their training and test data. Such issues come to be manifest in performance problems when faced with out-of-distribution data in the field. One recent solution has been to use counterfactually augmented datasets in order to reduce any reliance on spurious patterns that may exist in the original data. Producing high-quality augmented data can be costly and time-consuming as it usually needs to involve human feedback and crowdsourcing efforts. In this work, we propose an alternative by describing and evaluating an approach to automatically generating counterfactual data for data augmentation and explanation. A comprehensive evaluation on several different datasets and using a variety of state-of-the-art benchmarks demonstrate how our approach can achieve significant improvements in model performance when compared to models training on the original data and even when compared to models trained with the benefit of human-generated augmented data.
Counterfactual Analysis in Dynamic Latent State Models
We provide an optimization-based framework to perform counterfactual analysis in a dynamic model with hidden states. Our framework is grounded in the ``abduction, action, and prediction'' approach to answer counterfactual queries and handles two key challenges where (1) the states are hidden and (2) the model is dynamic. Recognizing the lack of knowledge on the underlying causal mechanism and the possibility of infinitely many such mechanisms, we optimize over this space and compute upper and lower bounds on the counterfactual quantity of interest. Our work brings together ideas from causality, state-space models, simulation, and optimization, and we apply it on a breast cancer case study. To the best of our knowledge, we are the first to compute lower and upper bounds on a counterfactual query in a dynamic latent-state model.
Can Language Models Falsify? Evaluating Algorithmic Reasoning with Counterexample Creation
There is growing excitement about the potential of Language Models (LMs) to accelerate scientific discovery. Falsifying hypotheses is key to scientific progress, as it allows claims to be iteratively refined over time. This process requires significant researcher effort, reasoning, and ingenuity. Yet current benchmarks for LMs predominantly assess their ability to generate solutions rather than challenge them. We advocate for developing benchmarks that evaluate this inverse capability - creating counterexamples for subtly incorrect solutions. To demonstrate this approach, we start with the domain of algorithmic problem solving, where counterexamples can be evaluated automatically using code execution. Specifically, we introduce REFUTE, a dynamically updating benchmark that includes recent problems and incorrect submissions from programming competitions, where human experts successfully identified counterexamples. Our analysis finds that the best reasoning agents, even OpenAI o3-mini (high) with code execution feedback, can create counterexamples for only <9% of incorrect solutions in REFUTE, even though ratings indicate its ability to solve up to 48% of these problems from scratch. We hope our work spurs progress in evaluating and enhancing LMs' ability to falsify incorrect solutions - a capability that is crucial for both accelerating research and making models self-improve through reliable reflective reasoning.
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine learning based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment
Recent advances in large language models (LLMs) have demonstrated significant progress in performing complex tasks. While Reinforcement Learning from Human Feedback (RLHF) has been effective in aligning LLMs with human preferences, it is susceptible to spurious correlations in reward modeling. Consequently, it often introduces biases-such as length bias, sycophancy, conceptual bias, and discrimination that hinder the model's ability to capture true causal relationships. To address this, we propose a novel causal reward modeling approach that integrates causal inference to mitigate these spurious correlations. Our method enforces counterfactual invariance, ensuring reward predictions remain consistent when irrelevant variables are altered. Through experiments on both synthetic and real-world datasets, we show that our approach mitigates various types of spurious correlations effectively, resulting in more reliable and fair alignment of LLMs with human preferences. As a drop-in enhancement to the existing RLHF workflow, our causal reward modeling provides a practical way to improve the trustworthiness and fairness of LLM finetuning.
IfQA: A Dataset for Open-domain Question Answering under Counterfactual Presuppositions
Although counterfactual reasoning is a fundamental aspect of intelligence, the lack of large-scale counterfactual open-domain question-answering (QA) benchmarks makes it difficult to evaluate and improve models on this ability. To address this void, we introduce the first such dataset, named IfQA, where each question is based on a counterfactual presupposition via an "if" clause. For example, if Los Angeles was on the east coast of the U.S., what would be the time difference between Los Angeles and Paris? Such questions require models to go beyond retrieving direct factual knowledge from the Web: they must identify the right information to retrieve and reason about an imagined situation that may even go against the facts built into their parameters. The IfQA dataset contains over 3,800 questions that were annotated annotated by crowdworkers on relevant Wikipedia passages. Empirical analysis reveals that the IfQA dataset is highly challenging for existing open-domain QA methods, including supervised retrieve-then-read pipeline methods (EM score 36.2), as well as recent few-shot approaches such as chain-of-thought prompting with GPT-3 (EM score 27.4). The unique challenges posed by the IfQA benchmark will push open-domain QA research on both retrieval and counterfactual reasoning fronts.
CRAwDAD: Causal Reasoning Augmentation with Dual-Agent Debate
When people reason about cause and effect, they often consider many competing "what if" scenarios before deciding which explanation fits best. Analogously, advanced language models capable of causal inference can consider multiple interventions and counterfactuals to judge the validity of causal claims. Crucially, this type of reasoning is less like a single calculation and more like an internal dialogue between alternative hypotheses. In this paper, we make this dialogue explicit through a dual-agent debate framework where one model provides a structured causal inference, and the other critically examines this reasoning for logical flaws. When disagreements arise, agents attempt to persuade each other, challenging each other's logic and revising their conclusions until they converge on a mutually agreed answer. To take advantage of this deliberative process, we specifically use reasoning language models, whose strengths in both causal inference and adversarial debate remain under-explored relative to standard large language models. We evaluate our approach on the CLadder dataset, a benchmark linking natural language questions to formally defined causal graphs across all three rungs of Pearl's ladder of causation. With Qwen3 and DeepSeek-R1 as debater agents, we demonstrate that multi-agent debate improves DeepSeek-R1's overall accuracy in causal inference from 78.03% to 87.45%, with the counterfactual category specifically improving from 67.94% to 80.04% accuracy. Similarly, Qwen3's overall accuracy improves from 84.16% to 89.41%, and counterfactual questions from 71.53% to 80.35%, showing that strong models can still benefit greatly from debate with weaker agents. Our results highlight the potential of reasoning models as building blocks for multi-agent systems in causal inference, and demonstrate the importance of diverse perspectives in causal problem-solving.
Counterfactual Probing for Hallucination Detection and Mitigation in Large Language Models
Large Language Models have demonstrated remarkable capabilities across diverse tasks, yet they frequently generate hallucinations outputs that are fluent but factually incorrect or unsupported. We propose Counterfactual Probing, a novel approach for detecting and mitigating hallucinations in LLM outputs. Our method dynamically generates counterfactual statements that appear plausible but contain subtle factual errors, then evaluates the model's sensitivity to these perturbations. We hypothesize that genuine knowledge exhibits robustness to counterfactual variations, while hallucinated content shows inconsistent confidence patterns when confronted with plausible alternatives. Our comprehensive evaluation on TruthfulQA, factual statement datasets, and curated hallucination examples demonstrates that counterfactual probing achieves superior detection performance compared to baseline methods, while our adaptive mitigation strategies reduce hallucination scores by an average of 24.5%. The approach requires no model retraining and can be integrated into existing LLM pipelines as a realtime verification mechanism.
Counterfactual Identifiability of Bijective Causal Models
We study counterfactual identifiability in causal models with bijective generation mechanisms (BGM), a class that generalizes several widely-used causal models in the literature. We establish their counterfactual identifiability for three common causal structures with unobserved confounding, and propose a practical learning method that casts learning a BGM as structured generative modeling. Learned BGMs enable efficient counterfactual estimation and can be obtained using a variety of deep conditional generative models. We evaluate our techniques in a visual task and demonstrate its application in a real-world video streaming simulation task.
Causality-Enhanced Behavior Sequence Modeling in LLMs for Personalized Recommendation
Recent advancements in recommender systems have focused on leveraging Large Language Models (LLMs) to improve user preference modeling, yielding promising outcomes. However, current LLM-based approaches struggle to fully leverage user behavior sequences, resulting in suboptimal preference modeling for personalized recommendations. In this study, we propose a novel Counterfactual Fine-Tuning (CFT) method to address this issue by explicitly emphasizing the role of behavior sequences when generating recommendations. Specifically, we employ counterfactual reasoning to identify the causal effects of behavior sequences on model output and introduce a task that directly fits the ground-truth labels based on these effects, achieving the goal of explicit emphasis. Additionally, we develop a token-level weighting mechanism to adjust the emphasis strength for different item tokens, reflecting the diminishing influence of behavior sequences from earlier to later tokens during predicting an item. Extensive experiments on real-world datasets demonstrate that CFT effectively improves behavior sequence modeling. Our codes are available at https://github.com/itsmeyjt/CFT.
DISCO: Distilling Counterfactuals with Large Language Models
Models trained with counterfactually augmented data learn representations of the causal structure of tasks, enabling robust generalization. However, high-quality counterfactual data is scarce for most tasks and not easily generated at scale. When crowdsourced, such data is typically limited in scale and diversity; when generated using supervised methods, it is computationally expensive to extend to new counterfactual dimensions. In this work, we introduce DISCO (DIStilled COunterfactual Data), a new method for automatically generating high quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters these generations to distill high-quality counterfactual data. While task-agnostic, we apply our pipeline to the task of natural language inference (NLI) and find that on challenging evaluations such as the NLI stress test, comparatively smaller student models trained with DISCO generated counterfactuals are more robust (6% absolute) and generalize better across distributions (2%) compared to models trained without data augmentation. Furthermore, DISCO augmented models are 10% more consistent between counterfactual pairs on three evaluation sets, demonstrating that DISCO augmentation enables models to more reliably learn causal representations. Our repository is available at: https://github.com/eric11eca/disco
Counterfactual Visual Explanations
In this work, we develop a technique to produce counterfactual visual explanations. Given a 'query' image I for which a vision system predicts class c, a counterfactual visual explanation identifies how I could change such that the system would output a different specified class c'. To do this, we select a 'distractor' image I' that the system predicts as class c' and identify spatial regions in I and I' such that replacing the identified region in I with the identified region in I' would push the system towards classifying I as c'. We apply our approach to multiple image classification datasets generating qualitative results showcasing the interpretability and discriminativeness of our counterfactual explanations. To explore the effectiveness of our explanations in teaching humans, we present machine teaching experiments for the task of fine-grained bird classification. We find that users trained to distinguish bird species fare better when given access to counterfactual explanations in addition to training examples.
Towards Interpretable Counterfactual Generation via Multimodal Autoregression
Counterfactual medical image generation enables clinicians to explore clinical hypotheses, such as predicting disease progression, facilitating their decision-making. While existing methods can generate visually plausible images from disease progression prompts, they produce silent predictions that lack interpretation to verify how the generation reflects the hypothesized progression -- a critical gap for medical applications that require traceable reasoning. In this paper, we propose Interpretable Counterfactual Generation (ICG), a novel task requiring the joint generation of counterfactual images that reflect the clinical hypothesis and interpretation texts that outline the visual changes induced by the hypothesis. To enable ICG, we present ICG-CXR, the first dataset pairing longitudinal medical images with hypothetical progression prompts and textual interpretations. We further introduce ProgEmu, an autoregressive model that unifies the generation of counterfactual images and textual interpretations. We demonstrate the superiority of ProgEmu in generating progression-aligned counterfactuals and interpretations, showing significant potential in enhancing clinical decision support and medical education. Project page: https://progemu.github.io.
Large language models can learn and generalize steganographic chain-of-thought under process supervision
Chain-of-thought (CoT) reasoning not only enhances large language model performance but also provides critical insights into decision-making processes, marking it as a useful tool for monitoring model intent and planning. However, recent works have shown that banning the mention of a specific example of reward hacking causes obfuscation of the undesired reasoning traces but the persistence of the undesired behavior, threatening the reliability of CoT monitoring. We provide an extension to these results with regard to the ability of models to learn a specific type of obfuscated reasoning: steganography. First, we show that penalizing the use of specific strings within load-bearing reasoning traces causes models to substitute alternative strings. Crucially, this does not alter the underlying method by which the model performs the task, demonstrating that the model can learn to steganographically encode its reasoning.We further demonstrate that models can generalize an encoding scheme. When the penalized strings belong to an overarching class, the model learns not only to substitute strings seen in training, but also develops a general encoding scheme for all members of the class which it can apply to held-out testing strings.
The Effect of Counterfactuals on Reading Chest X-rays
This study evaluates the effect of counterfactual explanations on the interpretation of chest X-rays. We conduct a reader study with two radiologists assessing 240 chest X-ray predictions to rate their confidence that the model's prediction is correct using a 5 point scale. Half of the predictions are false positives. Each prediction is explained twice, once using traditional attribution methods and once with a counterfactual explanation. The overall results indicate that counterfactual explanations allow a radiologist to have more confidence in true positive predictions compared to traditional approaches (0.15pm0.95 with p=0.01) with only a small increase in false positive predictions (0.04pm1.06 with p=0.57). We observe the specific prediction tasks of Mass and Atelectasis appear to benefit the most compared to other tasks.
LIBERTy: A Causal Framework for Benchmarking Concept-Based Explanations of LLMs with Structural Counterfactuals
Concept-based explanations quantify how high-level concepts (e.g., gender or experience) influence model behavior, which is crucial for decision-makers in high-stakes domains. Recent work evaluates the faithfulness of such explanations by comparing them to reference causal effects estimated from counterfactuals. In practice, existing benchmarks rely on costly human-written counterfactuals that serve as an imperfect proxy. To address this, we introduce a framework for constructing datasets containing structural counterfactual pairs: LIBERTy (LLM-based Interventional Benchmark for Explainability with Reference Targets). LIBERTy is grounded in explicitly defined Structured Causal Models (SCMs) of the text generation, interventions on a concept propagate through the SCM until an LLM generates the counterfactual. We introduce three datasets (disease detection, CV screening, and workplace violence prediction) together with a new evaluation metric, order-faithfulness. Using them, we evaluate a wide range of methods across five models and identify substantial headroom for improving concept-based explanations. LIBERTy also enables systematic analysis of model sensitivity to interventions: we find that proprietary LLMs show markedly reduced sensitivity to demographic concepts, likely due to post-training mitigation. Overall, LIBERTy provides a much-needed benchmark for developing faithful explainability methods.
Towards LLM-guided Causal Explainability for Black-box Text Classifiers
With the advent of larger and more complex deep learning models, such as in Natural Language Processing (NLP), model qualities like explainability and interpretability, albeit highly desirable, are becoming harder challenges to tackle and solve. For example, state-of-the-art models in text classification are black-box by design. Although standard explanation methods provide some degree of explainability, these are mostly correlation-based methods and do not provide much insight into the model. The alternative of causal explainability is more desirable to achieve but extremely challenging in NLP due to a variety of reasons. Inspired by recent endeavors to utilize Large Language Models (LLMs) as experts, in this work, we aim to leverage the instruction-following and textual understanding capabilities of recent state-of-the-art LLMs to facilitate causal explainability via counterfactual explanation generation for black-box text classifiers. To do this, we propose a three-step pipeline via which, we use an off-the-shelf LLM to: (1) identify the latent or unobserved features in the input text, (2) identify the input features associated with the latent features, and finally (3) use the identified input features to generate a counterfactual explanation. We experiment with our pipeline on multiple NLP text classification datasets, with several recent LLMs, and present interesting and promising findings.
Adversarial Counterfactual Visual Explanations
Counterfactual explanations and adversarial attacks have a related goal: flipping output labels with minimal perturbations regardless of their characteristics. Yet, adversarial attacks cannot be used directly in a counterfactual explanation perspective, as such perturbations are perceived as noise and not as actionable and understandable image modifications. Building on the robust learning literature, this paper proposes an elegant method to turn adversarial attacks into semantically meaningful perturbations, without modifying the classifiers to explain. The proposed approach hypothesizes that Denoising Diffusion Probabilistic Models are excellent regularizers for avoiding high-frequency and out-of-distribution perturbations when generating adversarial attacks. The paper's key idea is to build attacks through a diffusion model to polish them. This allows studying the target model regardless of its robustification level. Extensive experimentation shows the advantages of our counterfactual explanation approach over current State-of-the-Art in multiple testbeds.
Self-Blinding and Counterfactual Self-Simulation Mitigate Biases and Sycophancy in Large Language Models
Fair decisions require ignoring irrelevant, potentially biasing, information. To achieve this, decision-makers need to approximate what decision they would have made had they not known certain facts, such as the gender or race of a job candidate. This counterfactual self-simulation is notoriously hard for humans, leading to biased judgments even by well-meaning actors. Here we show that large language models (LLMs) suffer from similar limitations in their ability to approximate what decisions they would make under counterfactual knowledge in offsetting gender and race biases and overcoming sycophancy. We show that prompting models to ignore or pretend not to know biasing information fails to offset these biases and occasionally backfires. However, unlike humans, LLMs can be given access to a ground-truth model of their own counterfactual cognition -- their own API. We show that this access to the responses of a blinded replica enables fairer decisions, while providing greater transparency to distinguish implicit from intentionally biased behavior.
Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension
Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.
EXPLAIN, EDIT, GENERATE: Rationale-Sensitive Counterfactual Data Augmentation for Multi-hop Fact Verification
Automatic multi-hop fact verification task has gained significant attention in recent years. Despite impressive results, these well-designed models perform poorly on out-of-domain data. One possible solution is to augment the training data with counterfactuals, which are generated by minimally altering the causal features of the original data. However, current counterfactual data augmentation techniques fail to handle multi-hop fact verification due to their incapability to preserve the complex logical relationships within multiple correlated texts. In this paper, we overcome this limitation by developing a rationale-sensitive method to generate linguistically diverse and label-flipping counterfactuals while preserving logical relationships. In specific, the diverse and fluent counterfactuals are generated via an Explain-Edit-Generate architecture. Moreover, the checking and filtering modules are proposed to regularize the counterfactual data with logical relations and flipped labels. Experimental results show that the proposed approach outperforms the SOTA baselines and can generate linguistically diverse counterfactual data without disrupting their logical relationships.
Counterfactual Density Estimation using Kernel Stein Discrepancies
Causal effects are usually studied in terms of the means of counterfactual distributions, which may be insufficient in many scenarios. Given a class of densities known up to normalizing constants, we propose to model counterfactual distributions by minimizing kernel Stein discrepancies in a doubly robust manner. This enables the estimation of counterfactuals over large classes of distributions while exploiting the desired double robustness. We present a theoretical analysis of the proposed estimator, providing sufficient conditions for consistency and asymptotic normality, as well as an examination of its empirical performance.
Truth or Twist? Optimal Model Selection for Reliable Label Flipping Evaluation in LLM-based Counterfactuals
Counterfactual examples are widely employed to enhance the performance and robustness of large language models (LLMs) through counterfactual data augmentation (CDA). However, the selection of the judge model used to evaluate label flipping, the primary metric for assessing the validity of generated counterfactuals for CDA, yields inconsistent results. To decipher this, we define four types of relationships between the counterfactual generator and judge models. Through extensive experiments involving two state-of-the-art LLM-based methods, three datasets, five generator models, and 15 judge models, complemented by a user study (n = 90), we demonstrate that judge models with an independent, non-fine-tuned relationship to the generator model provide the most reliable label flipping evaluations. Relationships between the generator and judge models, which are closely aligned with the user study for CDA, result in better model performance and robustness. Nevertheless, we find that the gap between the most effective judge models and the results obtained from the user study remains considerably large. This suggests that a fully automated pipeline for CDA may be inadequate and requires human intervention.
Counterfactual Token Generation in Large Language Models
"Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of her trusty ship, the Maelstrom's Fury, gazing out at the endless sea. [...] Lyra's eyes welled up with tears as she realized the bitter truth - she had sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself." Although this story, generated by a large language model, is captivating, one may wonder -- how would the story have unfolded if the model had chosen "Captain Maeve" as the protagonist instead? We cannot know. State-of-the-art large language models are stateless -- they maintain no internal memory or state. Given a prompt, they generate a sequence of tokens as an output using an autoregressive process. As a consequence, they cannot reason about counterfactual alternatives to tokens they have generated in the past. In this work, our goal is to enhance them with this functionality. To this end, we develop a causal model of token generation that builds upon the Gumbel-Max structural causal model. Our model allows any large language model to perform counterfactual token generation at almost no cost in comparison with vanilla token generation, it is embarrassingly simple to implement, and it does not require any fine-tuning nor prompt engineering. We implement our model on Llama 3 8B-Instruct and Ministral-8B-Instruct and conduct a qualitative and a quantitative analysis of counterfactually generated text. We conclude with a demonstrative application of counterfactual token generation for bias detection, unveiling interesting insights about the model of the world constructed by large language models.
Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors
Interpretability research now offers a variety of techniques for identifying abstract internal mechanisms in neural networks. Can such techniques be used to predict how models will behave on out-of-distribution examples? In this work, we provide a positive answer to this question. Through a diverse set of language modeling tasks--including symbol manipulation, knowledge retrieval, and instruction following--we show that the most robust features for correctness prediction are those that play a distinctive causal role in the model's behavior. Specifically, we propose two methods that leverage causal mechanisms to predict the correctness of model outputs: counterfactual simulation (checking whether key causal variables are realized) and value probing (using the values of those variables to make predictions). Both achieve high AUC-ROC in distribution and outperform methods that rely on causal-agnostic features in out-of-distribution settings, where predicting model behaviors is more crucial. Our work thus highlights a novel and significant application for internal causal analysis of language models.
What if...?: Counterfactual Inception to Mitigate Hallucination Effects in Large Multimodal Models
This paper presents a way of enhancing the reliability of Large Multimodal Models (LMMs) in addressing hallucination effects, where models generate incorrect or unrelated responses. Without additional instruction tuning paradigm, we introduce Counterfactual Inception, a novel method that implants counterfactual thoughts into LMMs using carefully chosen, misaligned counterfactual keywords. This method is grounded in the concept of counterfactual thinking, a cognitive process where humans consider alternative realities and outcomes. By applying this human-like reasoning mechanism to LMMs, we aim to reduce hallucination effects and improve the models' trustworthiness. We also propose Dual-modality Verification Process (DVP), a rigorous framework for selecting optimal counterfactual keywords to trigger counterfactual thinking into LMMs, concurrently considering visual and linguistic context. Our extensive experiments across various LMMs, including both open-source and proprietary models, corroborate that our method significantly mitigates hallucination phenomena across different datasets.
Adaptive Generation of Bias-Eliciting Questions for LLMs
Large language models (LLMs) are now widely deployed in user-facing applications, reaching hundreds of millions worldwide. As they become integrated into everyday tasks, growing reliance on their outputs raises significant concerns. In particular, users may unknowingly be exposed to model-inherent biases that systematically disadvantage or stereotype certain groups. However, existing bias benchmarks continue to rely on templated prompts or restrictive multiple-choice questions that are suggestive, simplistic, and fail to capture the complexity of real-world user interactions. In this work, we address this gap by introducing a counterfactual bias evaluation framework that automatically generates realistic, open-ended questions over sensitive attributes such as sex, race, or religion. By iteratively mutating and selecting bias-inducing questions, our approach systematically explores areas where models are most susceptible to biased behavior. Beyond detecting harmful biases, we also capture distinct response dimensions that are increasingly relevant in user interactions, such as asymmetric refusals and explicit acknowledgment of bias. Leveraging our framework, we construct CAB, a human-verified benchmark spanning diverse topics, designed to enable cross-model comparisons. Using CAB, we analyze a range of LLMs across multiple bias dimensions, revealing nuanced insights into how different models manifest bias. For instance, while GPT-5 outperforms other models, it nonetheless exhibits persistent biases in specific scenarios. These findings underscore the need for continual improvements to ensure fair model behavior.
Imbalanced Classification through the Lens of Spurious Correlations
Class imbalance poses a fundamental challenge in machine learning, frequently leading to unreliable classification performance. While prior methods focus on data- or loss-reweighting schemes, we view imbalance as a data condition that amplifies Clever Hans (CH) effects by underspecification of minority classes. In a counterfactual explanations-based approach, we propose to leverage Explainable AI to jointly identify and eliminate CH effects emerging under imbalance. Our method achieves competitive classification performance on three datasets and demonstrates how CH effects emerge under imbalance, a perspective largely overlooked by existing approaches.
The Gaussian Discriminant Variational Autoencoder (GdVAE): A Self-Explainable Model with Counterfactual Explanations
Visual counterfactual explanation (CF) methods modify image concepts, e.g, shape, to change a prediction to a predefined outcome while closely resembling the original query image. Unlike self-explainable models (SEMs) and heatmap techniques, they grant users the ability to examine hypothetical "what-if" scenarios. Previous CF methods either entail post-hoc training, limiting the balance between transparency and CF quality, or demand optimization during inference. To bridge the gap between transparent SEMs and CF methods, we introduce the GdVAE, a self-explainable model based on a conditional variational autoencoder (CVAE), featuring a Gaussian discriminant analysis (GDA) classifier and integrated CF explanations. Full transparency is achieved through a generative classifier that leverages class-specific prototypes for the downstream task and a closed-form solution for CFs in the latent space. The consistency of CFs is improved by regularizing the latent space with the explainer function. Extensive comparisons with existing approaches affirm the effectiveness of our method in producing high-quality CF explanations while preserving transparency. Code and models are public.
Explainable Data-Driven Optimization: From Context to Decision and Back Again
Data-driven optimization uses contextual information and machine learning algorithms to find solutions to decision problems with uncertain parameters. While a vast body of work is dedicated to interpreting machine learning models in the classification setting, explaining decision pipelines involving learning algorithms remains unaddressed. This lack of interpretability can block the adoption of data-driven solutions as practitioners may not understand or trust the recommended decisions. We bridge this gap by introducing a counterfactual explanation methodology tailored to explain solutions to data-driven problems. We introduce two classes of explanations and develop methods to find nearest explanations of random forest and nearest-neighbor predictors. We demonstrate our approach by explaining key problems in operations management such as inventory management and routing.
ACQUIRED: A Dataset for Answering Counterfactual Questions In Real-Life Videos
Multimodal counterfactual reasoning is a vital yet challenging ability for AI systems. It involves predicting the outcomes of hypothetical circumstances based on vision and language inputs, which enables AI models to learn from failures and explore hypothetical scenarios. Despite its importance, there are only a few datasets targeting the counterfactual reasoning abilities of multimodal models. Among them, they only cover reasoning over synthetic environments or specific types of events (e.g. traffic collisions), making them hard to reliably benchmark the model generalization ability in diverse real-world scenarios and reasoning dimensions. To overcome these limitations, we develop a video question answering dataset, ACQUIRED: it consists of 3.9K annotated videos, encompassing a wide range of event types and incorporating both first and third-person viewpoints, which ensures a focus on real-world diversity. In addition, each video is annotated with questions that span three distinct dimensions of reasoning, including physical, social, and temporal, which can comprehensively evaluate the model counterfactual abilities along multiple aspects. We benchmark our dataset against several state-of-the-art language-only and multimodal models and experimental results demonstrate a significant performance gap (>13%) between models and humans. The findings suggest that multimodal counterfactual reasoning remains an open challenge and ACQUIRED is a comprehensive and reliable benchmark for inspiring future research in this direction.
Large Language Models as Counterfactual Generator: Strengths and Weaknesses
Large language models (LLMs) have demonstrated remarkable performance in a range of natural language understanding and generation tasks. Yet, their ability to generate counterfactuals, which can be used for areas like data augmentation, remains under-explored. This study aims to investigate the counterfactual generation capabilities of LLMs and analysis factors that influence this ability. First, we evaluate how effective are LLMs in counterfactual generation through data augmentation experiments for small language models (SLMs) across four tasks: sentiment analysis, natural language inference, named entity recognition, and relation extraction. While LLMs show promising enhancements in various settings, they struggle in complex tasks due to their self-limitations and the lack of logical guidance to produce counterfactuals that align with commonsense. Second, our analysis reveals the pivotal role of providing accurate task definitions and detailed step-by-step instructions to LLMs in generating counterfactuals. Interestingly, we also find that LLMs can generate reasonable counterfactuals even with unreasonable demonstrations, which illustrates that demonstrations are primarily to regulate the output format.This study provides the first comprehensive insight into counterfactual generation abilities of LLMs, and offers a novel perspective on utilizing LLMs for data augmentation to enhance SLMs.
The Geometry of Truth: Emergent Linear Structure in Large Language Model Representations of True/False Datasets
Large Language Models (LLMs) have impressive capabilities, but are prone to outputting falsehoods. Recent work has developed techniques for inferring whether a LLM is telling the truth by training probes on the LLM's internal activations. However, this line of work is controversial, with some authors pointing out failures of these probes to generalize in basic ways, among other conceptual issues. In this work, we use high-quality datasets of simple true/false statements to study in detail the structure of LLM representations of truth, drawing on three lines of evidence: 1. Visualizations of LLM true/false statement representations, which reveal clear linear structure. 2. Transfer experiments in which probes trained on one dataset generalize to different datasets. 3. Causal evidence obtained by surgically intervening in a LLM's forward pass, causing it to treat false statements as true and vice versa. Overall, we present evidence that at sufficient scale, LLMs linearly represent the truth or falsehood of factual statements. We also show that simple difference-in-mean probes generalize as well as other probing techniques while identifying directions which are more causally implicated in model outputs.
RECALL: A Benchmark for LLMs Robustness against External Counterfactual Knowledge
LLMs and AI chatbots have improved people's efficiency in various fields. However, the necessary knowledge for answering the question may be beyond the models' knowledge boundaries. To mitigate this issue, many researchers try to introduce external knowledge, such as knowledge graphs and Internet contents, into LLMs for up-to-date information. However, the external information from the Internet may include counterfactual information that will confuse the model and lead to an incorrect response. Thus there is a pressing need for LLMs to possess the ability to distinguish reliable information from external knowledge. Therefore, to evaluate the ability of LLMs to discern the reliability of external knowledge, we create a benchmark from existing knowledge bases. Our benchmark consists of two tasks, Question Answering and Text Generation, and for each task, we provide models with a context containing counterfactual information. Evaluation results show that existing LLMs are susceptible to interference from unreliable external knowledge with counterfactual information, and simple intervention methods make limited contributions to the alleviation of this issue.
CounterVQA: Evaluating and Improving Counterfactual Reasoning in Vision-Language Models for Video Understanding
Vision Language Models (VLMs) have recently shown significant advancements in video understanding, especially in feature alignment, event reasoning, and instruction-following tasks. However, their capability for counterfactual reasoning, inferring alternative outcomes under hypothetical conditions, remains underexplored. This capability is essential for robust video understanding, as it requires identifying underlying causal structures and reasoning about unobserved possibilities, rather than merely recognizing observed patterns. To systematically evaluate this capability, we introduce CounterVQA, a video-based benchmark featuring three progressive difficulty levels that assess different aspects of counterfactual reasoning. Through comprehensive evaluation of both state-of-the-art open-source and closed-source models, we uncover a substantial performance gap: while these models achieve reasonable accuracy on simple counterfactual questions, performance degrades significantly on complex multi-hop causal chains. To address these limitations, we develop a post-training method, CFGPT, that enhances a model's visual counterfactual reasoning ability by distilling its counterfactual reasoning capability from the language modality, yielding consistent improvements across all CounterVQA difficulty levels. Dataset and code will be further released.
A Robust Optimisation Perspective on Counterexample-Guided Repair of Neural Networks
Counterexample-guided repair aims at creating neural networks with mathematical safety guarantees, facilitating the application of neural networks in safety-critical domains. However, whether counterexample-guided repair is guaranteed to terminate remains an open question. We approach this question by showing that counterexample-guided repair can be viewed as a robust optimisation algorithm. While termination guarantees for neural network repair itself remain beyond our reach, we prove termination for more restrained machine learning models and disprove termination in a general setting. We empirically study the practical implications of our theoretical results, demonstrating the suitability of common verifiers and falsifiers for repair despite a disadvantageous theoretical result. Additionally, we use our theoretical insights to devise a novel algorithm for repairing linear regression models based on quadratic programming, surpassing existing approaches.
PlaSma: Making Small Language Models Better Procedural Knowledge Models for (Counterfactual) Planning
Procedural planning, which entails decomposing a high-level goal into a sequence of temporally ordered steps, is an important yet intricate task for machines. It involves integrating common-sense knowledge to reason about complex contextualized situations that are often counterfactual, e.g. "scheduling a doctor's appointment without a phone". While current approaches show encouraging results using large language models (LLMs), they are hindered by drawbacks such as costly API calls and reproducibility issues. In this paper, we advocate planning using smaller language models. We present PlaSma, a novel two-pronged approach to endow small language models with procedural knowledge and (counterfactual) planning capabilities. More concretely, we develop symbolic procedural knowledge distillation to enhance the implicit knowledge in small language models and an inference-time algorithm to facilitate more structured and accurate reasoning. In addition, we introduce a novel task, Counterfactual Planning, that requires a revision of a plan to cope with a counterfactual situation. In both the original and counterfactual setting, we show that orders-of-magnitude smaller models (770M-11B parameters) can compete and often surpass their larger teacher models' capabilities.
MalAlgoQA: Pedagogical Evaluation of Counterfactual Reasoning in Large Language Models and Implications for AI in Education
This paper introduces MalAlgoQA, a novel dataset designed to evaluate the counterfactual reasoning capabilities of Large Language Models (LLMs) through a pedagogical approach. The dataset comprises mathematics and reading comprehension questions, each accompanied by four answer choices and their corresponding rationales. At the heart of MalAlgoQA are ``malgorithms'' - rationales behind incorrect answer choices that represent flawed yet logically coherent reasoning paths. These malgorithms serve as counterfactual scenarios, allowing us to assess an LLM's ability to identify and analyze flawed reasoning patterns. We propose the Malgorithm Identification task, where LLMs are assessed based on their ability to identify corresponding malgorithm given an incorrect answer choice. To evaluate the model performance, we introduce two metrics: Algorithm Identification Accuracy (AIA) for correct answer rationale identification, and Malgorithm Identification Accuracy (MIA) for incorrect answer rationale identification. Our experiments reveal that state-of-the-art LLMs exhibit significant performance drops in MIA compared to AIA, highlighting the challenges in counterfactual reasoning. Surprisingly, we find that the chain-of-thought prompting technique not only fails to consistently enhance MIA but can sometimes lead to underperformance compared to simple prompting. These findings have important implications for developing LLMs with improved counterfactual reasoning, particularly relevant for AI-powered tutoring systems, where identifying and addressing student misconceptions is essential. MalAlgoQA dataset is available https://github.com/luffycodes/MalAlgoQA-Dataset{here}.
FAST: Improving Controllability for Text Generation with Feedback Aware Self-Training
Controllable text generation systems often leverage control codes to direct various properties of the output like style and length. Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms. Spurious correlations in the training data can lead models to incorrectly rely on parts of the input other than the control code for attribute selection, significantly undermining downstream generation quality and controllability. We demonstrate the severity of this issue with a series of case studies and then propose two simple techniques to reduce these correlations in training sets. The first technique is based on resampling the data according to an example's propensity towards each linguistic attribute (IPS). The second produces multiple counterfactual versions of each example and then uses an additional feedback mechanism to remove noisy examples (feedback aware self-training, FAST). We evaluate on 3 tasks -- news headline, meta review, and search ads generation -- and demonstrate that FAST can significantly improve the controllability and language quality of generated outputs when compared to state-of-the-art controllable text generation approaches.
DeFacto: Counterfactual Thinking with Images for Enforcing Evidence-Grounded and Faithful Reasoning
Recent advances in multimodal language models (MLLMs) have achieved remarkable progress in vision-language reasoning, especially with the emergence of "thinking with images," which integrates explicit visual steps into the reasoning process. While this paradigm strengthens image-based reasoning, a significant challenge remains: models may arrive at correct answers by relying on irrelevant or spurious regions, driven by prior knowledge or dataset biases. Even when the answer is correct, flawed reasoning indicates that the model has not truly understood the image, highlighting the critical importance of reasoning fidelity in multimodal tasks. To address this issue, we propose DeFacto, a counterfactual reasoning framework that jointly enforces accurate answering and faithful reasoning. A key component of our approach is the design of three complementary training paradigms: (i) positive, (ii) counterfactual, and (iii) random-masking. To enable these paradigms, we develop a pipeline that automatically localizes question-relevant evidence and constructs positive, counterfactual, and random variants, resulting in a dataset of about 100k images. Building on this framework, we train multimodal language models with GRPO-based reinforcement learning, where we design three complementary rewards to guide the model toward accurate answering and evidence-grounded reasoning. Experiments on diverse benchmarks demonstrate that DeFacto substantially improves both answer accuracy and reasoning faithfulness, establishing a stronger foundation for interpretable multimodal reasoning. The code is available on GitHub and the dataset is released on HuggingFace.
Explaining 3D Computed Tomography Classifiers with Counterfactuals
Counterfactual explanations enhance the interpretability of deep learning models in medical imaging, yet adapting them to 3D CT scans poses challenges due to volumetric complexity and resource demands. We extend the Latent Shift counterfactual generation method from 2D applications to explain 3D computed tomography (CT) scans classifiers. We address the challenges associated with 3D classifiers, such as limited training samples and high memory demands, by implementing a slice-based autoencoder and gradient blocking except for specific chunks of slices. This method leverages a 2D encoder trained on CT slices, which are subsequently combined to maintain 3D context. We demonstrate this technique on two models for clinical phenotype prediction and lung segmentation. Our approach is both memory-efficient and effective for generating interpretable counterfactuals in high-resolution 3D medical imaging.
Investigating Counterclaims in Causality Extraction from Text
Research on causality extraction from text has so far almost entirely neglected counterclaims. Existing causality extraction datasets focus solely on "procausal" claims, i.e., statements that support a relationship. "Concausal" claims, i.e., statements that refute a relationship, are entirely ignored or even accidentally annotated as procausal. We address this shortcoming by developing a new dataset that integrates concausality. Based on an extensive literature review, we first show that concausality is an integral part of causal reasoning on incomplete knowledge. We operationalize this theory in the form of a rigorous guideline for annotation and then augment the Causal News Corpus with concausal statements, obtaining a substantial inter-annotator agreement of Cohen's κ=0.74. To demonstrate the importance of integrating concausal statements, we show that models trained without concausal relationships tend to misclassify these as procausal instead. Based on our new dataset, this mistake can be mitigated, enabling transformers to effectively distinguish pro- and concausality.
Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models
Diffusion probabilistic models (DPMs) have become the state-of-the-art in high-quality image generation. However, DPMs have an arbitrary noisy latent space with no interpretable or controllable semantics. Although there has been significant research effort to improve image sample quality, there is little work on representation-controlled generation using diffusion models. Specifically, causal modeling and controllable counterfactual generation using DPMs is an underexplored area. In this work, we propose CausalDiffAE, a diffusion-based causal representation learning framework to enable counterfactual generation according to a specified causal model. Our key idea is to use an encoder to extract high-level semantically meaningful causal variables from high-dimensional data and model stochastic variation using reverse diffusion. We propose a causal encoding mechanism that maps high-dimensional data to causally related latent factors and parameterize the causal mechanisms among latent factors using neural networks. To enforce the disentanglement of causal variables, we formulate a variational objective and leverage auxiliary label information in a prior to regularize the latent space. We propose a DDIM-based counterfactual generation procedure subject to do-interventions. Finally, to address the limited label supervision scenario, we also study the application of CausalDiffAE when a part of the training data is unlabeled, which also enables granular control over the strength of interventions in generating counterfactuals during inference. We empirically show that CausalDiffAE learns a disentangled latent space and is capable of generating high-quality counterfactual images.
Pixels Versus Priors: Controlling Knowledge Priors in Vision-Language Models through Visual Counterfacts
Multimodal Large Language Models (MLLMs) perform well on tasks such as visual question answering, but it remains unclear whether their reasoning relies more on memorized world knowledge or on the visual information present in the input image. To investigate this, we introduce Visual CounterFact, a new dataset of visually-realistic counterfactuals that put world knowledge priors (e.g, red strawberry) into direct conflict with visual input (e.g, blue strawberry). Using Visual CounterFact, we show that model predictions initially reflect memorized priors, but shift toward visual evidence in mid-to-late layers. This dynamic reveals a competition between the two modalities, with visual input ultimately overriding priors during evaluation. To control this behavior, we propose Pixels Versus Priors (PvP) steering vectors, a mechanism for controlling model outputs toward either world knowledge or visual input through activation-level interventions. On average, PvP successfully shifts 92.5% of color and 74.6% of size predictions from priors to counterfactuals. Together, these findings offer new tools for interpreting and controlling factual behavior in multimodal models.
Accurate Use of Label Dependency in Multi-Label Text Classification Through the Lens of Causality
Multi-Label Text Classification (MLTC) aims to assign the most relevant labels to each given text. Existing methods demonstrate that label dependency can help to improve the model's performance. However, the introduction of label dependency may cause the model to suffer from unwanted prediction bias. In this study, we attribute the bias to the model's misuse of label dependency, i.e., the model tends to utilize the correlation shortcut in label dependency rather than fusing text information and label dependency for prediction. Motivated by causal inference, we propose a CounterFactual Text Classifier (CFTC) to eliminate the correlation bias, and make causality-based predictions. Specifically, our CFTC first adopts the predict-then-modify backbone to extract precise label information embedded in label dependency, then blocks the correlation shortcut through the counterfactual de-bias technique with the help of the human causal graph. Experimental results on three datasets demonstrate that our CFTC significantly outperforms the baselines and effectively eliminates the correlation bias in datasets.
Relevant Irrelevance: Generating Alterfactual Explanations for Image Classifiers
In this paper, we demonstrate the feasibility of alterfactual explanations for black box image classifiers. Traditional explanation mechanisms from the field of Counterfactual Thinking are a widely-used paradigm for Explainable Artificial Intelligence (XAI), as they follow a natural way of reasoning that humans are familiar with. However, most common approaches from this field are based on communicating information about features or characteristics that are especially important for an AI's decision. However, to fully understand a decision, not only knowledge about relevant features is needed, but the awareness of irrelevant information also highly contributes to the creation of a user's mental model of an AI system. To this end, a novel approach for explaining AI systems called alterfactual explanations was recently proposed on a conceptual level. It is based on showing an alternative reality where irrelevant features of an AI's input are altered. By doing so, the user directly sees which input data characteristics can change arbitrarily without influencing the AI's decision. In this paper, we show for the first time that it is possible to apply this idea to black box models based on neural networks. To this end, we present a GAN-based approach to generate these alterfactual explanations for binary image classifiers. Further, we present a user study that gives interesting insights on how alterfactual explanations can complement counterfactual explanations.
Reasoning or Reciting? Exploring the Capabilities and Limitations of Language Models Through Counterfactual Tasks
The impressive performance of recent language models across a wide range of tasks suggests that they possess a degree of abstract reasoning skills. Are these skills general and transferable, or specialized to specific tasks seen during pretraining? To disentangle these effects, we propose an evaluation framework based on "counterfactual" task variants that deviate from the default assumptions underlying standard tasks. Across a suite of 11 tasks, we observe nontrivial performance on the counterfactual variants, but nevertheless find that performance substantially and consistently degrades compared to the default conditions. This suggests that while current LMs may possess abstract task-solving skills to a degree, they often also rely on narrow, non-transferable procedures for task-solving. These results motivate a more careful interpretation of language model performance that teases apart these aspects of behavior.
High Fidelity Image Counterfactuals with Probabilistic Causal Models
We present a general causal generative modelling framework for accurate estimation of high fidelity image counterfactuals with deep structural causal models. Estimation of interventional and counterfactual queries for high-dimensional structured variables, such as images, remains a challenging task. We leverage ideas from causal mediation analysis and advances in generative modelling to design new deep causal mechanisms for structured variables in causal models. Our experiments demonstrate that our proposed mechanisms are capable of accurate abduction and estimation of direct, indirect and total effects as measured by axiomatic soundness of counterfactuals.
What Evidence Do Language Models Find Convincing?
Retrieval-augmented language models are being increasingly tasked with subjective, contentious, and conflicting queries such as "is aspartame linked to cancer". To resolve these ambiguous queries, one must search through a large range of websites and consider "which, if any, of this evidence do I find convincing?". In this work, we study how LLMs answer this question. In particular, we construct ConflictingQA, a dataset that pairs controversial queries with a series of real-world evidence documents that contain different facts (e.g., quantitative results), argument styles (e.g., appeals to authority), and answers (Yes or No). We use this dataset to perform sensitivity and counterfactual analyses to explore which text features most affect LLM predictions. Overall, we find that current models rely heavily on the relevance of a website to the query, while largely ignoring stylistic features that humans find important such as whether a text contains scientific references or is written with a neutral tone. Taken together, these results highlight the importance of RAG corpus quality (e.g., the need to filter misinformation), and possibly even a shift in how LLMs are trained to better align with human judgements.
Self-Interpretable Time Series Prediction with Counterfactual Explanations
Interpretable time series prediction is crucial for safety-critical areas such as healthcare and autonomous driving. Most existing methods focus on interpreting predictions by assigning important scores to segments of time series. In this paper, we take a different and more challenging route and aim at developing a self-interpretable model, dubbed Counterfactual Time Series (CounTS), which generates counterfactual and actionable explanations for time series predictions. Specifically, we formalize the problem of time series counterfactual explanations, establish associated evaluation protocols, and propose a variational Bayesian deep learning model equipped with counterfactual inference capability of time series abduction, action, and prediction. Compared with state-of-the-art baselines, our self-interpretable model can generate better counterfactual explanations while maintaining comparable prediction accuracy.
One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs
Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.
Causal Fairness under Unobserved Confounding: A Neural Sensitivity Framework
Fairness for machine learning predictions is widely required in practice for legal, ethical, and societal reasons. Existing work typically focuses on settings without unobserved confounding, even though unobserved confounding can lead to severe violations of causal fairness and, thus, unfair predictions. In this work, we analyze the sensitivity of causal fairness to unobserved confounding. Our contributions are three-fold. First, we derive bounds for causal fairness metrics under different sources of unobserved confounding. This enables practitioners to examine the sensitivity of their machine learning models to unobserved confounding in fairness-critical applications. Second, we propose a novel neural framework for learning fair predictions, which allows us to offer worst-case guarantees of the extent to which causal fairness can be violated due to unobserved confounding. Third, we demonstrate the effectiveness of our framework in a series of experiments, including a real-world case study about predicting prison sentences. To the best of our knowledge, ours is the first work to study causal fairness under unobserved confounding. To this end, our work is of direct practical value as a refutation strategy to ensure the fairness of predictions in high-stakes applications.
If Pigs Could Fly... Can LLMs Logically Reason Through Counterfactuals?
Large Language Models (LLMs) demonstrate impressive reasoning capabilities in familiar contexts, but struggle when the context conflicts with their parametric knowledge. To investigate this phenomenon, we introduce CounterLogic, a dataset containing 1,800 examples across 9 logical schemas, explicitly designed to evaluate logical reasoning through counterfactual (hypothetical knowledge-conflicting) scenarios. Our systematic evaluation of 11 LLMs across 6 different datasets reveals a consistent performance degradation, with accuracies dropping by 27% on average when reasoning through counterfactual information. We propose Self-Segregate, a prompting method enabling metacognitive awareness (explicitly identifying knowledge conflicts) before reasoning. Our method dramatically narrows the average performance gaps from 27% to just 11%, while significantly increasing the overall accuracy (+7.5%). We discuss the implications of these findings and draw parallels to human cognitive processes, particularly on how humans disambiguate conflicting information during reasoning tasks. Our findings offer practical insights for understanding and enhancing LLMs reasoning capabilities in real-world applications, especially where models must logically reason independently of their factual knowledge.
Can LLMs Simulate Personas with Reversed Performance? A Benchmark for Counterfactual Instruction Following
Large Language Models (LLMs) are now increasingly widely used to simulate personas in virtual environments, leveraging their instruction-following capability. However, we discovered that even state-of-the-art LLMs cannot simulate personas with reversed performance (e.g., student personas with low proficiency in educational settings), which impairs the simulation diversity and limits the practical applications of the simulated environments. In this work, using mathematical reasoning as a representative scenario, we propose the first benchmark dataset for evaluating LLMs on simulating personas with reversed performance, a capability that we dub "counterfactual instruction following". We evaluate both open-weight and closed-source LLMs on this task and find that LLMs, including the OpenAI o1 reasoning model, all struggle to follow counterfactual instructions for simulating reversedly performing personas. Intersectionally simulating both the performance level and the race population of a persona worsens the effect even further. These results highlight the challenges of counterfactual instruction following and the need for further research.
MatheMagic: Generating Dynamic Mathematics Benchmarks Robust to Memorization
Conducting contamination-free evaluation of mathematical capabilities can be difficult for two reasons: models may memorize a test set once it is made public, and current mathematical benchmarks are prone to overfitting due to having limited diversity of symbols and rules, coupled with closed-ended answers. This paper proposes a method to leverage these shortcomings as useful features to a construct dynamic, counterfactual benchmark, which can be used to both reveal overfitting and measure true reasoning. We demonstrate this via MatheMagic, which generates math test instances with the interpretations of numbers and operators altered, yet has automatically verifiable answers. Test instances are randomly seeded and constructed at test time to evaluate a model's induction or deduction capability, offering stability, extensibility, comparability, and robustness to overfitting. Our experiments find that models solve deduction more easily than induction, but they revert to standard math. Further analysis reveals that math-adapted models fail to exhibit a general "skill" of reasoning, and fine-tuning on induction tasks generalizes poorly.
CounterCurate: Enhancing Physical and Semantic Visio-Linguistic Compositional Reasoning via Counterfactual Examples
We propose CounterCurate, a framework to comprehensively improve the visio-linguistic compositional reasoning capability for both contrastive and generative multimodal models. In particular, we identify two under-explored critical problems: the neglect of the physically grounded reasoning (counting and position understanding) and the potential of using highly capable text and image generation models for semantic counterfactual fine-tuning. Our work pioneers an approach that addresses these gaps. We first spotlight the near-chance performance of multimodal models like CLIP and LLaVA in physically grounded compositional reasoning. We then apply simple data augmentation using a grounded image generation model, GLIGEN, to generate finetuning data, resulting in significant performance improvements: +33% and +37% for CLIP and LLaVA, respectively, on our newly curated Flickr30k-Positions benchmark. Moreover, we exploit the capabilities of high-performing text generation and image generation models, specifically GPT-4V and DALLE-3, to curate challenging semantic counterfactuals, thereby further enhancing compositional reasoning capabilities on benchmarks such as SugarCrepe, where CounterCurate outperforms GPT-4V.
Detecting Edit Failures In Large Language Models: An Improved Specificity Benchmark
Recent model editing techniques promise to mitigate the problem of memorizing false or outdated associations during LLM training. However, we show that these techniques can introduce large unwanted side effects which are not detected by existing specificity benchmarks. We extend the existing CounterFact benchmark to include a dynamic component and dub our benchmark CounterFact+. Additionally, we extend the metrics used for measuring specificity by a principled KL divergence-based metric. We use this improved benchmark to evaluate recent model editing techniques and find that they suffer from low specificity. Our findings highlight the need for improved specificity benchmarks that identify and prevent unwanted side effects.
Testing Neural Network Verifiers: A Soundness Benchmark with Hidden Counterexamples
In recent years, many neural network (NN) verifiers have been developed to formally verify certain properties of neural networks such as robustness. Although many benchmarks have been constructed to evaluate the performance of NN verifiers, they typically lack a ground-truth for hard instances where no current verifier can verify and no counterexample can be found, which makes it difficult to check the soundness of a new verifier if it claims to verify hard instances which no other verifier can do. We propose to develop a soundness benchmark for NN verification. Our benchmark contains instances with deliberately inserted counterexamples while we also try to hide the counterexamples from regular adversarial attacks which can be used for finding counterexamples. We design a training method to produce neural networks with such hidden counterexamples. Our benchmark aims to be used for testing the soundness of NN verifiers and identifying falsely claimed verifiability when it is known that hidden counterexamples exist. We systematically construct our benchmark and generate instances across diverse model architectures, activation functions, input sizes, and perturbation radii. We demonstrate that our benchmark successfully identifies bugs in state-of-the-art NN verifiers, as well as synthetic bugs, providing a crucial step toward enhancing the reliability of testing NN verifiers. Our code is available at https://github.com/MVP-Harry/SoundnessBench and our benchmark is available at https://huggingface.co/datasets/SoundnessBench/SoundnessBench.
DiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering Classifier Differences Neuron Visualisations and Visual Counterfactual Explanations
While deep learning has led to huge progress in complex image classification tasks like ImageNet, unexpected failure modes, e.g. via spurious features, call into question how reliably these classifiers work in the wild. Furthermore, for safety-critical tasks the black-box nature of their decisions is problematic, and explanations or at least methods which make decisions plausible are needed urgently. In this paper, we address these problems by generating images that optimize a classifier-derived objective using a framework for guided image generation. We analyze the decisions of image classifiers by visual counterfactual explanations (VCEs), detection of systematic mistakes by analyzing images where classifiers maximally disagree, and visualization of neurons and spurious features. In this way, we validate existing observations, e.g. the shape bias of adversarially robust models, as well as novel failure modes, e.g. systematic errors of zero-shot CLIP classifiers. Moreover, our VCEs outperform previous work while being more versatile.
Global Counterfactual Directions
Despite increasing progress in development of methods for generating visual counterfactual explanations, especially with the recent rise of Denoising Diffusion Probabilistic Models, previous works consider them as an entirely local technique. In this work, we take the first step at globalizing them. Specifically, we discover that the latent space of Diffusion Autoencoders encodes the inference process of a given classifier in the form of global directions. We propose a novel proxy-based approach that discovers two types of these directions with the use of only single image in an entirely black-box manner. Precisely, g-directions allow for flipping the decision of a given classifier on an entire dataset of images, while h-directions further increase the diversity of explanations. We refer to them in general as Global Counterfactual Directions (GCDs). Moreover, we show that GCDs can be naturally combined with Latent Integrated Gradients resulting in a new black-box attribution method, while simultaneously enhancing the understanding of counterfactual explanations. We validate our approach on existing benchmarks and show that it generalizes to real-world use-cases.
Towards Causal Market Simulators
Market generators using deep generative models have shown promise for synthetic financial data generation, but existing approaches lack causal reasoning capabilities essential for counterfactual analysis and risk assessment. We propose a Time-series Neural Causal Model VAE (TNCM-VAE) that combines variational autoencoders with structural causal models to generate counterfactual financial time series while preserving both temporal dependencies and causal relationships. Our approach enforces causal constraints through directed acyclic graphs in the decoder architecture and employs the causal Wasserstein distance for training. We validate our method on synthetic autoregressive models inspired by the Ornstein-Uhlenbeck process, demonstrating superior performance in counterfactual probability estimation with L1 distances as low as 0.03-0.10 compared to ground truth. The model enables financial stress testing, scenario analysis, and enhanced backtesting by generating plausible counterfactual market trajectories that respect underlying causal mechanisms.
Hallucination Augmented Recitations for Language Models
Attribution is a key concept in large language models (LLMs) as it enables control over information sources and enhances the factuality of LLMs. While existing approaches utilize open book question answering to improve attribution, factual datasets may reward language models to recall facts that they already know from their pretraining data, not attribution. In contrast, counterfactual open book QA datasets would further improve attribution because the answer could only be grounded in the given text. We propose Hallucination Augmented Recitations (HAR) for creating counterfactual datasets by utilizing hallucination in LLMs to improve attribution. For open book QA as a case study, we demonstrate that models finetuned with our counterfactual datasets improve text grounding, leading to better open book QA performance, with up to an 8.0% increase in F1 score. Our counterfactual dataset leads to significantly better performance than using humanannotated factual datasets, even with 4x smaller datasets and 4x smaller models. We observe that improvements are consistent across various model sizes and datasets, including multi-hop, biomedical, and adversarial QA datasets.
Examining False Positives under Inference Scaling for Mathematical Reasoning
Recent advancements in language models have led to significant improvements in mathematical reasoning across various benchmarks. However, most of these benchmarks rely on automatic evaluation methods that only compare final answers using heuristics, without verifying the underlying reasoning steps. This limitation results in false positive solutions, where models may produce correct final answers but with flawed deduction paths. In this paper, we systematically examine the prevalence of false positive solutions in mathematical problem solving for language models. We analyze the characteristics and extent of this issue across different open-source models, datasets of varying difficulty levels, and decoding strategies. Specifically, we explore how false positives influence the inference time scaling behavior of language models. Our experimental results reveal that: (1) false positive solutions persist across different models, datasets, and decoding methods, (2) sampling-based inference time scaling methods do not alleviate the problem, and (3) the pass@N evaluation metric is more susceptible to false positives, suggesting a significantly lower scaling ceiling than what automatic evaluations indicate. Additionally, we analyze specific instances of false positives and discuss potential limitations in self-improvement techniques and synthetic data generation under such conditions. Our data and code are publicly available at https://github.com/Wloner0809/False-Positives-in-Math.
Causal Reasoning and Large Language Models: Opening a New Frontier for Causality
The causal capabilities of large language models (LLMs) are a matter of significant debate, with critical implications for the use of LLMs in societally impactful domains such as medicine, science, law, and policy. We conduct a "behavorial" study of LLMs to benchmark their capability in generating causal arguments. Across a wide range of tasks, we find that LLMs can generate text corresponding to correct causal arguments with high probability, surpassing the best-performing existing methods. Algorithms based on GPT-3.5 and 4 outperform existing algorithms on a pairwise causal discovery task (97%, 13 points gain), counterfactual reasoning task (92%, 20 points gain) and event causality (86% accuracy in determining necessary and sufficient causes in vignettes). We perform robustness checks across tasks and show that the capabilities cannot be explained by dataset memorization alone, especially since LLMs generalize to novel datasets that were created after the training cutoff date. That said, LLMs exhibit unpredictable failure modes, and we discuss the kinds of errors that may be improved and what are the fundamental limits of LLM-based answers. Overall, by operating on the text metadata, LLMs bring capabilities so far understood to be restricted to humans, such as using collected knowledge to generate causal graphs or identifying background causal context from natural language. As a result, LLMs may be used by human domain experts to save effort in setting up a causal analysis, one of the biggest impediments to the widespread adoption of causal methods. Given that LLMs ignore the actual data, our results also point to a fruitful research direction of developing algorithms that combine LLMs with existing causal techniques. Code and datasets are available at https://github.com/py-why/pywhy-llm.
Explaining Time Series via Contrastive and Locally Sparse Perturbations
Explaining multivariate time series is a compound challenge, as it requires identifying important locations in the time series and matching complex temporal patterns. Although previous saliency-based methods addressed the challenges, their perturbation may not alleviate the distribution shift issue, which is inevitable especially in heterogeneous samples. We present ContraLSP, a locally sparse model that introduces counterfactual samples to build uninformative perturbations but keeps distribution using contrastive learning. Furthermore, we incorporate sample-specific sparse gates to generate more binary-skewed and smooth masks, which easily integrate temporal trends and select the salient features parsimoniously. Empirical studies on both synthetic and real-world datasets show that ContraLSP outperforms state-of-the-art models, demonstrating a substantial improvement in explanation quality for time series data. The source code is available at https://github.com/zichuan-liu/ContraLSP.
The Base-Rate Effect on LLM Benchmark Performance: Disambiguating Test-Taking Strategies from Benchmark Performance
Cloze testing is a common method for measuring the behavior of large language models on a number of benchmark tasks. Using the MMLU dataset, we show that the base-rate probability (BRP) differences across answer tokens are significant and affect task performance ie. guess A if uncertain. We find that counterfactual prompting does sufficiently mitigate the BRP effect. The BRP effect is found to have a similar effect to test taking strategies employed by humans leading to the conflation of task performance and test-taking ability. We propose the Nvr-X-MMLU task, a variation of MMLU, which helps to disambiguate test-taking ability from task performance and reports the latter.
Robust Counterfactual Explanations on Graph Neural Networks
Massive deployment of Graph Neural Networks (GNNs) in high-stake applications generates a strong demand for explanations that are robust to noise and align well with human intuition. Most existing methods generate explanations by identifying a subgraph of an input graph that has a strong correlation with the prediction. These explanations are not robust to noise because independently optimizing the correlation for a single input can easily overfit noise. Moreover, they do not align well with human intuition because removing an identified subgraph from an input graph does not necessarily change the prediction result. In this paper, we propose a novel method to generate robust counterfactual explanations on GNNs by explicitly modelling the common decision logic of GNNs on similar input graphs. Our explanations are naturally robust to noise because they are produced from the common decision boundaries of a GNN that govern the predictions of many similar input graphs. The explanations also align well with human intuition because removing the set of edges identified by an explanation from the input graph changes the prediction significantly. Exhaustive experiments on many public datasets demonstrate the superior performance of our method.
Forecast constraints on cosmic strings from future CMB, pulsar timing and gravitational wave direct detection experiments
We study future observational constraints on cosmic string parameters from various types of next-generation experiments: direct detection of gravitational waves (GWs), pulsar timing array, and the cosmic microwave background (CMB). We consider both GW burst and stochastic GW background searches by ground- and space-based interferometers as well as GW background detection in pulsar timing experiments. We also consider cosmic string contributions to the CMB temperature and polarization anisotropies. These different types of observations offer independent probes of cosmic strings and may enable us to investigate cosmic string properties if the signature is detected. In this paper, we evaluate the power of future experiments to constrain cosmic string parameters, such as the string tension Gmu, the initial loop size alpha, and the reconnection probability p, by performing Fisher information matrix calculations. We find that combining the information from the different types of observations breaks parameter degeneracies and provides more stringent constraints on the parameters. We also find future space-borne interferometers independently provide a highly precise determination of the parameters.
Shaking the foundations: delusions in sequence models for interaction and control
The recent phenomenal success of language models has reinvigorated machine learning research, and large sequence models such as transformers are being applied to a variety of domains. One important problem class that has remained relatively elusive however is purposeful adaptive behavior. Currently there is a common perception that sequence models "lack the understanding of the cause and effect of their actions" leading them to draw incorrect inferences due to auto-suggestive delusions. In this report we explain where this mismatch originates, and show that it can be resolved by treating actions as causal interventions. Finally, we show that in supervised learning, one can teach a system to condition or intervene on data by training with factual and counterfactual error signals respectively.
Well-classified Examples are Underestimated in Classification with Deep Neural Networks
The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at: https://github.com/lancopku/well-classified-examples-are-underestimated.
Interpreting Black Box Models via Hypothesis Testing
In science and medicine, model interpretations may be reported as discoveries of natural phenomena or used to guide patient treatments. In such high-stakes tasks, false discoveries may lead investigators astray. These applications would therefore benefit from control over the finite-sample error rate of interpretations. We reframe black box model interpretability as a multiple hypothesis testing problem. The task is to discover "important" features by testing whether the model prediction is significantly different from what would be expected if the features were replaced with uninformative counterfactuals. We propose two testing methods: one that provably controls the false discovery rate but which is not yet feasible for large-scale applications, and an approximate testing method which can be applied to real-world data sets. In simulation, both tests have high power relative to existing interpretability methods. When applied to state-of-the-art vision and language models, the framework selects features that intuitively explain model predictions. The resulting explanations have the additional advantage that they are themselves easy to interpret.
Explaining Speech Classification Models via Word-Level Audio Segments and Paralinguistic Features
Recent advances in eXplainable AI (XAI) have provided new insights into how models for vision, language, and tabular data operate. However, few approaches exist for understanding speech models. Existing work focuses on a few spoken language understanding (SLU) tasks, and explanations are difficult to interpret for most users. We introduce a new approach to explain speech classification models. We generate easy-to-interpret explanations via input perturbation on two information levels. 1) Word-level explanations reveal how each word-related audio segment impacts the outcome. 2) Paralinguistic features (e.g., prosody and background noise) answer the counterfactual: ``What would the model prediction be if we edited the audio signal in this way?'' We validate our approach by explaining two state-of-the-art SLU models on two speech classification tasks in English and Italian. Our findings demonstrate that the explanations are faithful to the model's inner workings and plausible to humans. Our method and findings pave the way for future research on interpreting speech models.
OCTET: Object-aware Counterfactual Explanations
Nowadays, deep vision models are being widely deployed in safety-critical applications, e.g., autonomous driving, and explainability of such models is becoming a pressing concern. Among explanation methods, counterfactual explanations aim to find minimal and interpretable changes to the input image that would also change the output of the model to be explained. Such explanations point end-users at the main factors that impact the decision of the model. However, previous methods struggle to explain decision models trained on images with many objects, e.g., urban scenes, which are more difficult to work with but also arguably more critical to explain. In this work, we propose to tackle this issue with an object-centric framework for counterfactual explanation generation. Our method, inspired by recent generative modeling works, encodes the query image into a latent space that is structured in a way to ease object-level manipulations. Doing so, it provides the end-user with control over which search directions (e.g., spatial displacement of objects, style modification, etc.) are to be explored during the counterfactual generation. We conduct a set of experiments on counterfactual explanation benchmarks for driving scenes, and we show that our method can be adapted beyond classification, e.g., to explain semantic segmentation models. To complete our analysis, we design and run a user study that measures the usefulness of counterfactual explanations in understanding a decision model. Code is available at https://github.com/valeoai/OCTET.
Counterfactual Fairness in Mortgage Lending via Matching and Randomization
Unfairness in mortgage lending has created generational inequality among racial and ethnic groups in the US. Many studies address this problem, but most existing work focuses on correlation-based techniques. In our work, we use the framework of counterfactual fairness to train fair machine learning models. We propose a new causal graph for the variables available in the Home Mortgage Disclosure Act (HMDA) data. We use a matching-based approach instead of the latent variable modeling approach, because the former approach does not rely on any modeling assumptions. Furthermore, matching provides us with counterfactual pairs in which the race variable is isolated. We first demonstrate the unfairness in mortgage approval and interest rates between African-American and non-Hispanic White sub-populations. Then, we show that having balanced data using matching does not guarantee perfect counterfactual fairness of the machine learning models.
The Geometry of Numerical Reasoning: Language Models Compare Numeric Properties in Linear Subspaces
This paper investigates whether large language models (LLMs) utilize numerical attributes encoded in a low-dimensional subspace of the embedding space when answering logical comparison questions (e.g., Was Cristiano born before Messi?). We first identified these subspaces using partial least squares regression, which effectively encodes the numerical attributes associated with the entities in comparison prompts. Further, we demonstrate causality by intervening in these subspaces to manipulate hidden states, thereby altering the LLM's comparison outcomes. Experimental results show that our findings hold for different numerical attributes, indicating that LLMs utilize the linearly encoded information for numerical reasoning.
AHA: Aligning Large Audio-Language Models for Reasoning Hallucinations via Counterfactual Hard Negatives
Although Large Audio-Language Models (LALMs) deliver state-of-the-art (SOTA) performance, they frequently suffer from hallucinations, e.g. generating text not grounded in the audio input. We analyze these grounding failures and identify a distinct taxonomy: Event Omission, False Event Identity, Temporal Relation Error, and Quantitative Temporal Error. To address this, we introduce the AHA (Audio Hallucination Alignment) framework. By leveraging counterfactual hard negative mining, our pipeline constructs a high-quality preference dataset that forces models to distinguish strict acoustic evidence from linguistically plausible fabrications. Additionally, we establish AHA-Eval, a diagnostic benchmark designed to rigorously test these fine-grained temporal reasoning capabilities. We apply this data to align Qwen2.5-Omni. The resulting model, Qwen-Audio-AHA, achieves a 13.7% improvement on AHA-Eval. Crucially, this benefit generalizes beyond our diagnostic set. Our model shows substantial gains on public benchmarks, including 1.3% on MMAU-Test and 1.6% on MMAR, outperforming latest SOTA methods.
Zero-Shot Statistical Tests for LLM-Generated Text Detection using Finite Sample Concentration Inequalities
Verifying the provenance of content is crucial to the function of many organizations, e.g., educational institutions, social media platforms, firms, etc. This problem is becoming increasingly difficult as text generated by Large Language Models (LLMs) becomes almost indistinguishable from human-generated content. In addition, many institutions utilize in-house LLMs and want to ensure that external, non-sanctioned LLMs do not produce content within the institution. In this paper, we answer the following question: Given a piece of text, can we identify whether it was produced by LLM A or B (where B can be a human)? We model LLM-generated text as a sequential stochastic process with complete dependence on history and design zero-shot statistical tests to distinguish between (i) the text generated by two different sets of LLMs A (in-house) and B (non-sanctioned) and also (ii) LLM-generated and human-generated texts. We prove that the type I and type II errors for our tests decrease exponentially in the text length. In designing our tests, we derive concentration inequalities on the difference between log-perplexity and the average entropy of the string under A. Specifically, for a given string, we demonstrate that if the string is generated by A, the log-perplexity of the string under A converges to the average entropy of the string under A, except with an exponentially small probability in string length. We also show that if B generates the text, except with an exponentially small probability in string length, the log-perplexity of the string under A converges to the average cross-entropy of B and A. Lastly, we present preliminary experimental results to support our theoretical results. By enabling guaranteed (with high probability) finding of the origin of harmful LLM-generated text with arbitrary size, we can help combat misinformation.
Shortcut Bias Mitigation via Ensemble Diversity Using Diffusion Probabilistic Models
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as simplicity bias, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) for shortcut bias mitigation. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on images displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection.
Aligning Large Language Models with Counterfactual DPO
Advancements in large language models (LLMs) have demonstrated remarkable capabilities across a diverse range of applications. These models excel in generating text completions that are contextually coherent and cover an extensive array of subjects. However, the vast datasets required for their training make aligning response styles during the pretraining and instruction tuning phases challenging. Consequently, an additional alignment phase is typically employed, wherein the model is further trained with human preference data to better align its outputs with human expectations. While this process doesn't introduce new capabilities per se, it does accentuate generation styles innate to the model. This paper explores the utilization of counterfactual prompting within the framework of Direct Preference Optimization (DPO) to align the model's style without relying on human intervention. We demonstrate that this method effectively instils desirable behaviour, mitigates undesirable ones, and encourages the model to disregard inappropriate instructions. Our findings suggest that counterfactual prompting with DPO presents a low-resource way to fine-tune LLMs to meet the demands for responsible and ethically aligned AI systems.
In Search of Insights, Not Magic Bullets: Towards Demystification of the Model Selection Dilemma in Heterogeneous Treatment Effect Estimation
Personalized treatment effect estimates are often of interest in high-stakes applications -- thus, before deploying a model estimating such effects in practice, one needs to be sure that the best candidate from the ever-growing machine learning toolbox for this task was chosen. Unfortunately, due to the absence of counterfactual information in practice, it is usually not possible to rely on standard validation metrics for doing so, leading to a well-known model selection dilemma in the treatment effect estimation literature. While some solutions have recently been investigated, systematic understanding of the strengths and weaknesses of different model selection criteria is still lacking. In this paper, instead of attempting to declare a global `winner', we therefore empirically investigate success- and failure modes of different selection criteria. We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them, and provide interesting insights into the relative (dis)advantages of different criteria alongside desiderata for the design of further illuminating empirical studies in this context.
UniCoMTE: A Universal Counterfactual Framework for Explaining Time-Series Classifiers on ECG Data
Machine learning models, particularly deep neural networks, have demonstrated strong performance in classifying complex time series data. However, their black-box nature limits trust and adoption, especially in high-stakes domains such as healthcare. To address this challenge, we introduce UniCoMTE, a model-agnostic framework for generating counterfactual explanations for multivariate time series classifiers. The framework identifies temporal features that most heavily influence a model's prediction by modifying the input sample and assessing its impact on the model's prediction. UniCoMTE is compatible with a wide range of model architectures and operates directly on raw time series inputs. In this study, we evaluate UniCoMTE's explanations on a time series ECG classifier. We quantify explanation quality by comparing our explanations' comprehensibility to comprehensibility of established techniques (LIME and SHAP) and assessing their generalizability to similar samples. Furthermore, clinical utility is assessed through a questionnaire completed by medical experts who review counterfactual explanations presented alongside original ECG samples. Results show that our approach produces concise, stable, and human-aligned explanations that outperform existing methods in both clarity and applicability. By linking model predictions to meaningful signal patterns, the framework advances the interpretability of deep learning models for real-world time series applications.
The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A"
We expose a surprising failure of generalization in auto-regressive large language models (LLMs). If a model is trained on a sentence of the form "A is B", it will not automatically generalize to the reverse direction "B is A". This is the Reversal Curse. For instance, if a model is trained on "Olaf Scholz was the ninth Chancellor of Germany", it will not automatically be able to answer the question, "Who was the ninth Chancellor of Germany?". Moreover, the likelihood of the correct answer ("Olaf Scholz") will not be higher than for a random name. Thus, models exhibit a basic failure of logical deduction and do not generalize a prevalent pattern in their training set (i.e. if "A is B'' occurs, "B is A" is more likely to occur). We provide evidence for the Reversal Curse by finetuning GPT-3 and Llama-1 on fictitious statements such as "Uriah Hawthorne is the composer of 'Abyssal Melodies'" and showing that they fail to correctly answer "Who composed 'Abyssal Melodies?'". The Reversal Curse is robust across model sizes and model families and is not alleviated by data augmentation. We also evaluate ChatGPT (GPT-3.5 and GPT-4) on questions about real-world celebrities, such as "Who is Tom Cruise's mother? [A: Mary Lee Pfeiffer]" and the reverse "Who is Mary Lee Pfeiffer's son?". GPT-4 correctly answers questions like the former 79% of the time, compared to 33% for the latter. This shows a failure of logical deduction that we hypothesize is caused by the Reversal Curse. Code is available at https://github.com/lukasberglund/reversal_curse.
Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems
Failure attribution in multi-agent systems -- pinpointing the exact step where a decisive error occurs -- is a critical yet unsolved challenge. Current methods treat this as a pattern recognition task over long conversation logs, leading to critically low step-level accuracy (below 17\%), which renders them impractical for debugging complex systems. Their core weakness is a fundamental inability to perform robust counterfactual reasoning: to determine if correcting a single action would have actually averted the task failure. To bridge this counterfactual inference gap, we introduce Abduct-Act-Predict (A2P) Scaffolding, a novel agent framework that transforms failure attribution from pattern recognition into a structured causal inference task. A2P explicitly guides a large language model through a formal three-step reasoning process within a single inference pass: (1) Abduction, to infer the hidden root causes behind an agent's actions; (2) Action, to define a minimal corrective intervention; and (3) Prediction, to simulate the subsequent trajectory and verify if the intervention resolves the failure. This structured approach leverages the holistic context of the entire conversation while imposing a rigorous causal logic on the model's analysis. Our extensive experiments on the Who\&When benchmark demonstrate its efficacy. On the Algorithm-Generated dataset, A2P achieves 47.46\% step-level accuracy, a 2.85times improvement over the 16.67\% of the baseline. On the more complex Hand-Crafted dataset, it achieves 29.31\% step accuracy, a 2.43times improvement over the baseline's 12.07\%. By reframing the problem through a causal lens, A2P Scaffolding provides a robust, verifiable, and significantly more accurate solution for automated failure attribution. Ours code are released at https://github.com/ResearAI/A2P.
Detecting and Mitigating Treatment Leakage in Text-Based Causal Inference: Distillation and Sensitivity Analysis
Text-based causal inference increasingly employs textual data as proxies for unobserved confounders, yet this approach introduces a previously undertheorized source of bias: treatment leakage. Treatment leakage occurs when text intended to capture confounding information also contains signals predictive of treatment status, thereby inducing post-treatment bias in causal estimates. Critically, this problem can arise even when documents precede treatment assignment, as authors may employ future-referencing language that anticipates subsequent interventions. Despite growing recognition of this issue, no systematic methods exist for identifying and mitigating treatment leakage in text-as-confounder applications. This paper addresses this gap through three contributions. First, we provide formal statistical and set-theoretic definitions of treatment leakage that clarify when and why bias occurs. Second, we propose four text distillation methods -- similarity-based passage removal, distant supervision classification, salient feature removal, and iterative nullspace projection -- designed to eliminate treatment-predictive content while preserving confounder information. Third, we validate these methods through simulations using synthetic text and an empirical application examining International Monetary Fund structural adjustment programs and child mortality. Our findings indicate that moderate distillation optimally balances bias reduction against confounder retention, whereas overly stringent approaches degrade estimate precision.
Holographic duality with a view toward many-body physics
These are notes based on a series of lectures given at the KITP workshop "Quantum Criticality and the AdS/CFT Correspondence" in July, 2009. The goal of the lectures was to introduce condensed matter physicists to the AdS/CFT correspondence. Discussion of string theory and of supersymmetry is avoided to the extent possible.
Strengthening Programming Comprehension in Large Language Models through Code Generation
Large language models (LLMs) have recently shown impressive results on diverse code-related tasks, benefiting from large-scale training and instruction tuning. However, studies reveal that their grasp of fundamental programming concepts, such as data flow and control flow, remains shallow, leading to fragile performance when code requires deeper reasoning. This limitation restricts the practical adoption of LLMs in real-world software development. To address this issue, this work introduces a counterfactual code augmentation framework combined with concept-aware tuning, designed to guide LLMs toward stronger conceptual understanding. Comprehensive evaluation across multiple models and benchmarks demonstrates the effectiveness of the proposed approach.
Locating and Editing Factual Associations in GPT
We analyze the storage and recall of factual associations in autoregressive transformer language models, finding evidence that these associations correspond to localized, directly-editable computations. We first develop a causal intervention for identifying neuron activations that are decisive in a model's factual predictions. This reveals a distinct set of steps in middle-layer feed-forward modules that mediate factual predictions while processing subject tokens. To test our hypothesis that these computations correspond to factual association recall, we modify feed-forward weights to update specific factual associations using Rank-One Model Editing (ROME). We find that ROME is effective on a standard zero-shot relation extraction (zsRE) model-editing task, comparable to existing methods. To perform a more sensitive evaluation, we also evaluate ROME on a new dataset of counterfactual assertions, on which it simultaneously maintains both specificity and generalization, whereas other methods sacrifice one or another. Our results confirm an important role for mid-layer feed-forward modules in storing factual associations and suggest that direct manipulation of computational mechanisms may be a feasible approach for model editing. The code, dataset, visualizations, and an interactive demo notebook are available at https://rome.baulab.info/
