new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Make-A-Voice: Unified Voice Synthesis With Discrete Representation

Various applications of voice synthesis have been developed independently despite the fact that they generate "voice" as output in common. In addition, the majority of voice synthesis models currently rely on annotated audio data, but it is crucial to scale them to self-supervised datasets in order to effectively capture the wide range of acoustic variations present in human voice, including speaker identity, emotion, and prosody. In this work, we propose Make-A-Voice, a unified framework for synthesizing and manipulating voice signals from discrete representations. Make-A-Voice leverages a "coarse-to-fine" approach to model the human voice, which involves three stages: 1) semantic stage: model high-level transformation between linguistic content and self-supervised semantic tokens, 2) acoustic stage: introduce varying control signals as acoustic conditions for semantic-to-acoustic modeling, and 3) generation stage: synthesize high-fidelity waveforms from acoustic tokens. Make-A-Voice offers notable benefits as a unified voice synthesis framework: 1) Data scalability: the major backbone (i.e., acoustic and generation stage) does not require any annotations, and thus the training data could be scaled up. 2) Controllability and conditioning flexibility: we investigate different conditioning mechanisms and effectively handle three voice synthesis applications, including text-to-speech (TTS), voice conversion (VC), and singing voice synthesis (SVS) by re-synthesizing the discrete voice representations with prompt guidance. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models. Audio samples are available at https://Make-A-Voice.github.io

  • 10 authors
·
May 30, 2023

Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search

In code search, the Generation-Augmented Retrieval (GAR) framework, which generates exemplar code snippets to augment queries, has emerged as a promising strategy to address the principal challenge of modality misalignment between code snippets and natural language queries, particularly with the demonstrated code generation capabilities of Large Language Models (LLMs). Nevertheless, our preliminary investigations indicate that the improvements conferred by such an LLM-augmented framework are somewhat constrained. This limitation could potentially be ascribed to the fact that the generated codes, albeit functionally accurate, frequently display a pronounced stylistic deviation from the ground truth code in the codebase. In this paper, we extend the foundational GAR framework and propose a simple yet effective method that additionally Rewrites the Code (ReCo) within the codebase for style normalization. Experimental results demonstrate that ReCo significantly boosts retrieval accuracy across sparse (up to 35.7%), zero-shot dense (up to 27.6%), and fine-tuned dense (up to 23.6%) retrieval settings in diverse search scenarios. To further elucidate the advantages of ReCo and stimulate research in code style normalization, we introduce Code Style Similarity, the first metric tailored to quantify stylistic similarities in code. Notably, our empirical findings reveal the inadequacy of existing metrics in capturing stylistic nuances.

  • 3 authors
·
Jan 9, 2024

Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer

Despite the impressive generative capabilities of diffusion models, existing diffusion model-based style transfer methods require inference-stage optimization (e.g. fine-tuning or textual inversion of style) which is time-consuming, or fails to leverage the generative ability of large-scale diffusion models. To address these issues, we introduce a novel artistic style transfer method based on a pre-trained large-scale diffusion model without any optimization. Specifically, we manipulate the features of self-attention layers as the way the cross-attention mechanism works; in the generation process, substituting the key and value of content with those of style image. This approach provides several desirable characteristics for style transfer including 1) preservation of content by transferring similar styles into similar image patches and 2) transfer of style based on similarity of local texture (e.g. edge) between content and style images. Furthermore, we introduce query preservation and attention temperature scaling to mitigate the issue of disruption of original content, and initial latent Adaptive Instance Normalization (AdaIN) to deal with the disharmonious color (failure to transfer the colors of style). Our experimental results demonstrate that our proposed method surpasses state-of-the-art methods in both conventional and diffusion-based style transfer baselines.

  • 3 authors
·
Dec 11, 2023

Few shot font generation via transferring similarity guided global style and quantization local style

Automatic few-shot font generation (AFFG), aiming at generating new fonts with only a few glyph references, reduces the labor cost of manually designing fonts. However, the traditional AFFG paradigm of style-content disentanglement cannot capture the diverse local details of different fonts. So, many component-based approaches are proposed to tackle this problem. The issue with component-based approaches is that they usually require special pre-defined glyph components, e.g., strokes and radicals, which is infeasible for AFFG of different languages. In this paper, we present a novel font generation approach by aggregating styles from character similarity-guided global features and stylized component-level representations. We calculate the similarity scores of the target character and the referenced samples by measuring the distance along the corresponding channels from the content features, and assigning them as the weights for aggregating the global style features. To better capture the local styles, a cross-attention-based style transfer module is adopted to transfer the styles of reference glyphs to the components, where the components are self-learned discrete latent codes through vector quantization without manual definition. With these designs, our AFFG method could obtain a complete set of component-level style representations, and also control the global glyph characteristics. The experimental results reflect the effectiveness and generalization of the proposed method on different linguistic scripts, and also show its superiority when compared with other state-of-the-art methods. The source code can be found at https://github.com/awei669/VQ-Font.

  • 5 authors
·
Sep 2, 2023

ArtFusion: Arbitrary Style Transfer using Dual Conditional Latent Diffusion Models

Arbitrary Style Transfer (AST) aims to transform images by adopting the style from any selected artwork. Nonetheless, the need to accommodate diverse and subjective user preferences poses a significant challenge. While some users wish to preserve distinct content structures, others might favor a more pronounced stylization. Despite advances in feed-forward AST methods, their limited customizability hinders their practical application. We propose a new approach, ArtFusion, which provides a flexible balance between content and style. In contrast to traditional methods reliant on biased similarity losses, ArtFusion utilizes our innovative Dual Conditional Latent Diffusion Probabilistic Models (Dual-cLDM). This approach mitigates repetitive patterns and enhances subtle artistic aspects like brush strokes and genre-specific features. Despite the promising results of conditional diffusion probabilistic models (cDM) in various generative tasks, their introduction to style transfer is challenging due to the requirement for paired training data. ArtFusion successfully navigates this issue, offering more practical and controllable stylization. A key element of our approach involves using a single image for both content and style during model training, all the while maintaining effective stylization during inference. ArtFusion outperforms existing approaches on outstanding controllability and faithful presentation of artistic details, providing evidence of its superior style transfer capabilities. Furthermore, the Dual-cLDM utilized in ArtFusion carries the potential for a variety of complex multi-condition generative tasks, thus greatly broadening the impact of our research.

  • 1 authors
·
Jun 15, 2023

A Meta-Evaluation of Style and Attribute Transfer Metrics

LLMs make it easy to rewrite text in any style, be it more polite, persuasive, or more positive. We present a large-scale study of evaluation metrics for style and attribute transfer with a focus on content preservation; meaning content not attributed to the style shift is preserved. The de facto evaluation approach uses lexical or semantic similarity metrics often between source sentences and rewrites. While these metrics are not designed to distinguish between style or content differences, empirical meta-evaluation shows a reasonable correlation to human judgment. In fact, recent works find that LLMs prompted as evaluators are only comparable to semantic similarity metrics, even though intuitively, the LLM approach should better fit the task. To investigate this discrepancy, we benchmark 8 metrics for evaluating content preservation on existing datasets and additionally construct a new test set that better aligns with the meta-evaluation aim. Indeed, we then find that the empirical conclusion aligns with the intuition: content preservation metrics for style/attribute transfer must be conditional on the style shift. To support this, we propose a new efficient zero-shot evaluation method using the likelihood of the next token. We hope our meta-evaluation can foster more research on evaluating content preservation metrics, and also to ensure fair evaluation of methods for conducting style transfer.

  • 3 authors
·
Feb 20, 2025

StyleSinger: Style Transfer for Out-of-Domain Singing Voice Synthesis

Style transfer for out-of-domain (OOD) singing voice synthesis (SVS) focuses on generating high-quality singing voices with unseen styles (such as timbre, emotion, pronunciation, and articulation skills) derived from reference singing voice samples. However, the endeavor to model the intricate nuances of singing voice styles is an arduous task, as singing voices possess a remarkable degree of expressiveness. Moreover, existing SVS methods encounter a decline in the quality of synthesized singing voices in OOD scenarios, as they rest upon the assumption that the target vocal attributes are discernible during the training phase. To overcome these challenges, we propose StyleSinger, the first singing voice synthesis model for zero-shot style transfer of out-of-domain reference singing voice samples. StyleSinger incorporates two critical approaches for enhanced effectiveness: 1) the Residual Style Adaptor (RSA) which employs a residual quantization module to capture diverse style characteristics in singing voices, and 2) the Uncertainty Modeling Layer Normalization (UMLN) to perturb the style attributes within the content representation during the training phase and thus improve the model generalization. Our extensive evaluations in zero-shot style transfer undeniably establish that StyleSinger outperforms baseline models in both audio quality and similarity to the reference singing voice samples. Access to singing voice samples can be found at https://stylesinger.github.io/.

  • 9 authors
·
Dec 17, 2023

Towards Multi-View Consistent Style Transfer with One-Step Diffusion via Vision Conditioning

The stylization of 3D scenes is an increasingly attractive topic in 3D vision. Although image style transfer has been extensively researched with promising results, directly applying 2D style transfer methods to 3D scenes often fails to preserve the structural and multi-view properties of 3D environments, resulting in unpleasant distortions in images from different viewpoints. To address these issues, we leverage the remarkable generative prior of diffusion-based models and propose a novel style transfer method, OSDiffST, based on a pre-trained one-step diffusion model (i.e., SD-Turbo) for rendering diverse styles in multi-view images of 3D scenes. To efficiently adapt the pre-trained model for multi-view style transfer on small datasets, we introduce a vision condition module to extract style information from the reference style image to serve as conditional input for the diffusion model and employ LoRA in diffusion model for adaptation. Additionally, we consider color distribution alignment and structural similarity between the stylized and content images using two specific loss functions. As a result, our method effectively preserves the structural information and multi-view consistency in stylized images without any 3D information. Experiments show that our method surpasses other promising style transfer methods in synthesizing various styles for multi-view images of 3D scenes. Stylized images from different viewpoints generated by our method achieve superior visual quality, with better structural integrity and less distortion. The source code is available at https://github.com/YushenZuo/OSDiffST.

  • 8 authors
·
Nov 15, 2024

Studying the role of named entities for content preservation in text style transfer

Text style transfer techniques are gaining popularity in Natural Language Processing, finding various applications such as text detoxification, sentiment, or formality transfer. However, the majority of the existing approaches were tested on such domains as online communications on public platforms, music, or entertainment yet none of them were applied to the domains which are typical for task-oriented production systems, such as personal plans arrangements (e.g. booking of flights or reserving a table in a restaurant). We fill this gap by studying formality transfer in this domain. We noted that the texts in this domain are full of named entities, which are very important for keeping the original sense of the text. Indeed, if for example, someone communicates the destination city of a flight it must not be altered. Thus, we concentrate on the role of named entities in content preservation for formality text style transfer. We collect a new dataset for the evaluation of content similarity measures in text style transfer. It is taken from a corpus of task-oriented dialogues and contains many important entities related to realistic requests that make this dataset particularly useful for testing style transfer models before using them in production. Besides, we perform an error analysis of a pre-trained formality transfer model and introduce a simple technique to use information about named entities to enhance the performance of baseline content similarity measures used in text style transfer.

  • 5 authors
·
Jun 20, 2022

TCSinger: Zero-Shot Singing Voice Synthesis with Style Transfer and Multi-Level Style Control

Zero-shot singing voice synthesis (SVS) with style transfer and style control aims to generate high-quality singing voices with unseen timbres and styles (including singing method, emotion, rhythm, technique, and pronunciation) from audio and text prompts. However, the multifaceted nature of singing styles poses a significant challenge for effective modeling, transfer, and control. Furthermore, current SVS models often fail to generate singing voices rich in stylistic nuances for unseen singers. To address these challenges, we introduce TCSinger, the first zero-shot SVS model for style transfer across cross-lingual speech and singing styles, along with multi-level style control. Specifically, TCSinger proposes three primary modules: 1) the clustering style encoder employs a clustering vector quantization model to stably condense style information into a compact latent space; 2) the Style and Duration Language Model (S\&D-LM) concurrently predicts style information and phoneme duration, which benefits both; 3) the style adaptive decoder uses a novel mel-style adaptive normalization method to generate singing voices with enhanced details. Experimental results show that TCSinger outperforms all baseline models in synthesis quality, singer similarity, and style controllability across various tasks, including zero-shot style transfer, multi-level style control, cross-lingual style transfer, and speech-to-singing style transfer. Singing voice samples can be accessed at https://tcsinger.github.io/.

  • 8 authors
·
Sep 24, 2024

StableVC: Style Controllable Zero-Shot Voice Conversion with Conditional Flow Matching

Zero-shot voice conversion (VC) aims to transfer the timbre from the source speaker to an arbitrary unseen speaker while preserving the original linguistic content. Despite recent advancements in zero-shot VC using language model-based or diffusion-based approaches, several challenges remain: 1) current approaches primarily focus on adapting timbre from unseen speakers and are unable to transfer style and timbre to different unseen speakers independently; 2) these approaches often suffer from slower inference speeds due to the autoregressive modeling methods or the need for numerous sampling steps; 3) the quality and similarity of the converted samples are still not fully satisfactory. To address these challenges, we propose a style controllable zero-shot VC approach named StableVC, which aims to transfer timbre and style from source speech to different unseen target speakers. Specifically, we decompose speech into linguistic content, timbre, and style, and then employ a conditional flow matching module to reconstruct the high-quality mel-spectrogram based on these decomposed features. To effectively capture timbre and style in a zero-shot manner, we introduce a novel dual attention mechanism with an adaptive gate, rather than using conventional feature concatenation. With this non-autoregressive design, StableVC can efficiently capture the intricate timbre and style from different unseen speakers and generate high-quality speech significantly faster than real-time. Experiments demonstrate that our proposed StableVC outperforms state-of-the-art baseline systems in zero-shot VC and achieves flexible control over timbre and style from different unseen speakers. Moreover, StableVC offers approximately 25x and 1.65x faster sampling compared to autoregressive and diffusion-based baselines.

  • 7 authors
·
Dec 5, 2024

Constructing a Singing Style Caption Dataset

Singing voice synthesis and conversion have emerged as significant subdomains of voice generation, leading to much demands on prompt-conditioned generation. Unlike common voice data, generating a singing voice requires an understanding of various associated vocal and musical characteristics, such as the vocal tone of the singer or emotional expressions. However, existing open-source audio-text datasets for voice generation tend to capture only a very limited range of attributes, often missing musical characteristics of the audio. To fill this gap, we introduce S2Cap, an audio-text pair dataset with a diverse set of attributes. S2Cap consists of pairs of textual prompts and music audio samples with a wide range of vocal and musical attributes, including pitch, volume, tempo, mood, singer's gender and age, and musical genre and emotional expression. Utilizing S2Cap, we suggest an effective novel baseline algorithm for singing style captioning. Singing style captioning is a relative task to voice generation that generates text descriptions of vocal characteristics, which we first suggested. First, to mitigate the misalignment between the audio encoder and the text decoder, we present a novel mechanism called CRESCENDO, which utilizes positive-pair similarity learning to synchronize the embedding spaces of a pretrained audio encoder to get similar embeddings with a text encoder. We additionally supervise the model using the singer's voice, which is demixed by the accompaniment. This supervision allows the model to more accurately capture vocal characteristics, leading to improved singing style captions that better reflect the style of the singer. The dataset and the codes are available at https://github.com/HJ-Ok/S2cap.

  • 2 authors
·
Sep 15, 2024

Master: Meta Style Transformer for Controllable Zero-Shot and Few-Shot Artistic Style Transfer

Transformer-based models achieve favorable performance in artistic style transfer recently thanks to its global receptive field and powerful multi-head/layer attention operations. Nevertheless, the over-paramerized multi-layer structure increases parameters significantly and thus presents a heavy burden for training. Moreover, for the task of style transfer, vanilla Transformer that fuses content and style features by residual connections is prone to content-wise distortion. In this paper, we devise a novel Transformer model termed as Master specifically for style transfer. On the one hand, in the proposed model, different Transformer layers share a common group of parameters, which (1) reduces the total number of parameters, (2) leads to more robust training convergence, and (3) is readily to control the degree of stylization via tuning the number of stacked layers freely during inference. On the other hand, different from the vanilla version, we adopt a learnable scaling operation on content features before content-style feature interaction, which better preserves the original similarity between a pair of content features while ensuring the stylization quality. We also propose a novel meta learning scheme for the proposed model so that it can not only work in the typical setting of arbitrary style transfer, but also adaptable to the few-shot setting, by only fine-tuning the Transformer encoder layer in the few-shot stage for one specific style. Text-guided few-shot style transfer is firstly achieved with the proposed framework. Extensive experiments demonstrate the superiority of Master under both zero-shot and few-shot style transfer settings.

  • 7 authors
·
Apr 24, 2023

StyleTTS-ZS: Efficient High-Quality Zero-Shot Text-to-Speech Synthesis with Distilled Time-Varying Style Diffusion

The rapid development of large-scale text-to-speech (TTS) models has led to significant advancements in modeling diverse speaker prosody and voices. However, these models often face issues such as slow inference speeds, reliance on complex pre-trained neural codec representations, and difficulties in achieving naturalness and high similarity to reference speakers. To address these challenges, this work introduces StyleTTS-ZS, an efficient zero-shot TTS model that leverages distilled time-varying style diffusion to capture diverse speaker identities and prosodies. We propose a novel approach that represents human speech using input text and fixed-length time-varying discrete style codes to capture diverse prosodic variations, trained adversarially with multi-modal discriminators. A diffusion model is then built to sample this time-varying style code for efficient latent diffusion. Using classifier-free guidance, StyleTTS-ZS achieves high similarity to the reference speaker in the style diffusion process. Furthermore, to expedite sampling, the style diffusion model is distilled with perceptual loss using only 10k samples, maintaining speech quality and similarity while reducing inference speed by 90%. Our model surpasses previous state-of-the-art large-scale zero-shot TTS models in both naturalness and similarity, offering a 10-20 faster sampling speed, making it an attractive alternative for efficient large-scale zero-shot TTS systems. The audio demo, code and models are available at https://styletts-zs.github.io/.

  • 4 authors
·
Sep 16, 2024 1

ControlSpeech: Towards Simultaneous and Independent Zero-shot Speaker Cloning and Zero-shot Language Style Control

In this paper, we present ControlSpeech, a text-to-speech (TTS) system capable of fully cloning the speaker's voice and enabling arbitrary control and adjustment of speaking style. Prior zero-shot TTS models only mimic the speaker's voice without further control and adjustment capabilities while prior controllable TTS models cannot perform speaker-specific voice generation. Therefore, ControlSpeech focuses on a more challenging task: a TTS system with controllable timbre, content, and style at the same time. ControlSpeech takes speech prompts, content prompts, and style prompts as inputs and utilizes bidirectional attention and mask-based parallel decoding to capture codec representations corresponding to timbre, content, and style in a discrete decoupling codec space. Moreover, we analyze the many-to-many issue in textual style control and propose the Style Mixture Semantic Density (SMSD) module, which is based on Gaussian mixture density networks, to resolve this problem. To facilitate empirical validations, we make available a new style controllable dataset called VccmDataset. Our experimental results demonstrate that ControlSpeech exhibits comparable or state-of-the-art (SOTA) performance in terms of controllability, timbre similarity, audio quality, robustness, and generalizability. The relevant code and demo are available at https://github.com/jishengpeng/ControlSpeech .

  • 11 authors
·
Jun 3, 2024

MimicTalk: Mimicking a personalized and expressive 3D talking face in minutes

Talking face generation (TFG) aims to animate a target identity's face to create realistic talking videos. Personalized TFG is a variant that emphasizes the perceptual identity similarity of the synthesized result (from the perspective of appearance and talking style). While previous works typically solve this problem by learning an individual neural radiance field (NeRF) for each identity to implicitly store its static and dynamic information, we find it inefficient and non-generalized due to the per-identity-per-training framework and the limited training data. To this end, we propose MimicTalk, the first attempt that exploits the rich knowledge from a NeRF-based person-agnostic generic model for improving the efficiency and robustness of personalized TFG. To be specific, (1) we first come up with a person-agnostic 3D TFG model as the base model and propose to adapt it into a specific identity; (2) we propose a static-dynamic-hybrid adaptation pipeline to help the model learn the personalized static appearance and facial dynamic features; (3) To generate the facial motion of the personalized talking style, we propose an in-context stylized audio-to-motion model that mimics the implicit talking style provided in the reference video without information loss by an explicit style representation. The adaptation process to an unseen identity can be performed in 15 minutes, which is 47 times faster than previous person-dependent methods. Experiments show that our MimicTalk surpasses previous baselines regarding video quality, efficiency, and expressiveness. Source code and video samples are available at https://mimictalk.github.io .

  • 13 authors
·
Oct 9, 2024

ImprovNet -- Generating Controllable Musical Improvisations with Iterative Corruption Refinement

Despite deep learning's remarkable advances in style transfer across various domains, generating controllable performance-level musical style transfer for complete symbolically represented musical works remains a challenging area of research. Much of this is owed to limited datasets, especially for genres such as jazz, and the lack of unified models that can handle multiple music generation tasks. This paper presents ImprovNet, a transformer-based architecture that generates expressive and controllable musical improvisations through a self-supervised corruption-refinement training strategy. The improvisational style transfer is aimed at making meaningful modifications to one or more musical elements - melody, harmony or rhythm of the original composition with respect to the target genre. ImprovNet unifies multiple capabilities within a single model: it can perform cross-genre and intra-genre improvisations, harmonize melodies with genre-specific styles, and execute short prompt continuation and infilling tasks. The model's iterative generation framework allows users to control the degree of style transfer and structural similarity to the original composition. Objective and subjective evaluations demonstrate ImprovNet's effectiveness in generating musically coherent improvisations while maintaining structural relationships with the original pieces. The model outperforms Anticipatory Music Transformer in short continuation and infilling tasks and successfully achieves recognizable genre conversion, with 79\% of participants correctly identifying jazz-style improvisations of classical pieces. Our code and demo page can be found at https://github.com/keshavbhandari/improvnet.

  • 7 authors
·
Feb 6, 2025

LiteReality: Graphics-Ready 3D Scene Reconstruction from RGB-D Scans

We propose LiteReality, a novel pipeline that converts RGB-D scans of indoor environments into compact, realistic, and interactive 3D virtual replicas. LiteReality not only reconstructs scenes that visually resemble reality but also supports key features essential for graphics pipelines -- such as object individuality, articulation, high-quality physically based rendering materials, and physically based interaction. At its core, LiteReality first performs scene understanding and parses the results into a coherent 3D layout and objects with the help of a structured scene graph. It then reconstructs the scene by retrieving the most visually similar 3D artist-crafted models from a curated asset database. Next, the Material Painting module enhances realism by recovering high-quality, spatially varying materials. Finally, the reconstructed scene is integrated into a simulation engine with basic physical properties to enable interactive behavior. The resulting scenes are compact, editable, and fully compatible with standard graphics pipelines, making them suitable for applications in AR/VR, gaming, robotics, and digital twins. In addition, LiteReality introduces a training-free object retrieval module that achieves state-of-the-art similarity performance on the Scan2CAD benchmark, along with a robust material painting module capable of transferring appearances from images of any style to 3D assets -- even under severe misalignment, occlusion, and poor lighting. We demonstrate the effectiveness of LiteReality on both real-life scans and public datasets. Project page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c

  • 6 authors
·
Jul 3, 2025

StyleMaster: Stylize Your Video with Artistic Generation and Translation

Style control has been popular in video generation models. Existing methods often generate videos far from the given style, cause content leakage, and struggle to transfer one video to the desired style. Our first observation is that the style extraction stage matters, whereas existing methods emphasize global style but ignore local textures. In order to bring texture features while preventing content leakage, we filter content-related patches while retaining style ones based on prompt-patch similarity; for global style extraction, we generate a paired style dataset through model illusion to facilitate contrastive learning, which greatly enhances the absolute style consistency. Moreover, to fill in the image-to-video gap, we train a lightweight motion adapter on still videos, which implicitly enhances stylization extent, and enables our image-trained model to be seamlessly applied to videos. Benefited from these efforts, our approach, StyleMaster, not only achieves significant improvement in both style resemblance and temporal coherence, but also can easily generalize to video style transfer with a gray tile ControlNet. Extensive experiments and visualizations demonstrate that StyleMaster significantly outperforms competitors, effectively generating high-quality stylized videos that align with textual content and closely resemble the style of reference images. Our project page is at https://zixuan-ye.github.io/stylemaster

  • 6 authors
·
Dec 10, 2024 3

Low-Resource Authorship Style Transfer with In-Context Learning

Authorship style transfer involves altering the style of text to match the style of some target author whilst preserving the semantic meaning of the original text. Existing approaches to unsupervised authorship style transfer like STRAP have largely focused on style transfer for target authors with many examples of their writing style through books, speeches, or other published works (Krishna et al., 2020). Due to this high-resource training data requirement (often greater than 100,000 words), these approaches are often only useful for style transfer to the style of published authors, politicians, or other well-known figures and authorship styles. In this paper, we attempt to perform low-resource authorship style transfer, a more challenging class of authorship style transfer where only a limited amount of text in the target author's style may exist. In our experiments, we specifically choose source and target authors from Reddit to perform style transfer over their Reddit posts, limiting ourselves to just 16 posts (on average approx 500 words) of the target author's style. We then propose a method for automatic evaluation on the low-resource authorship style transfer task utilizing authorship and style representation embeddings (Rivera-Soto et al., 2021; Wegmann et al., 2022). We evaluate our style transferred outputs with the proposed automatic evaluation method and find that our method, STYLL, is able to outperform STRAP and a comprehensive set of baselines.

  • 3 authors
·
Dec 17, 2022

FreestyleRet: Retrieving Images from Style-Diversified Queries

Image Retrieval aims to retrieve corresponding images based on a given query. In application scenarios, users intend to express their retrieval intent through various query styles. However, current retrieval tasks predominantly focus on text-query retrieval exploration, leading to limited retrieval query options and potential ambiguity or bias in user intention. In this paper, we propose the Style-Diversified Query-Based Image Retrieval task, which enables retrieval based on various query styles. To facilitate the novel setting, we propose the first Diverse-Style Retrieval dataset, encompassing diverse query styles including text, sketch, low-resolution, and art. We also propose a light-weighted style-diversified retrieval framework. For various query style inputs, we apply the Gram Matrix to extract the query's textural features and cluster them into a style space with style-specific bases. Then we employ the style-init prompt tuning module to enable the visual encoder to comprehend the texture and style information of the query. Experiments demonstrate that our model, employing the style-init prompt tuning strategy, outperforms existing retrieval models on the style-diversified retrieval task. Moreover, style-diversified queries~(sketch+text, art+text, etc) can be simultaneously retrieved in our model. The auxiliary information from other queries enhances the retrieval performance within the respective query.

  • 8 authors
·
Dec 4, 2023

StyDeco: Unsupervised Style Transfer with Distilling Priors and Semantic Decoupling

Diffusion models have emerged as the dominant paradigm for style transfer, but their text-driven mechanism is hindered by a core limitation: it treats textual descriptions as uniform, monolithic guidance. This limitation overlooks the semantic gap between the non-spatial nature of textual descriptions and the spatially-aware attributes of visual style, often leading to the loss of semantic structure and fine-grained details during stylization. In this paper, we propose StyDeco, an unsupervised framework that resolves this limitation by learning text representations specifically tailored for the style transfer task. Our framework first employs Prior-Guided Data Distillation (PGD), a strategy designed to distill stylistic knowledge without human supervision. It leverages a powerful frozen generative model to automatically synthesize pseudo-paired data. Subsequently, we introduce Contrastive Semantic Decoupling (CSD), a task-specific objective that adapts a text encoder using domain-specific weights. CSD performs a two-class clustering in the semantic space, encouraging source and target representations to form distinct clusters. Extensive experiments on three classic benchmarks demonstrate that our framework outperforms several existing approaches in both stylistic fidelity and structural preservation, highlighting its effectiveness in style transfer with semantic preservation. In addition, our framework supports a unique de-stylization process, further demonstrating its extensibility. Our code is vailable at https://github.com/QuanjianSong/StyDeco.

  • 6 authors
·
Aug 2, 2025

Text-to-Image Synthesis for Any Artistic Styles: Advancements in Personalized Artistic Image Generation via Subdivision and Dual Binding

Recent advancements in text-to-image models, such as Stable Diffusion, have demonstrated their ability to synthesize visual images through natural language prompts. One approach of personalizing text-to-image models, exemplified by DreamBooth, fine-tunes the pre-trained model by binding unique text identifiers with a few images of a specific subject. Although existing fine-tuning methods have demonstrated competence in rendering images according to the styles of famous painters, it is still challenging to learn to produce images encapsulating distinct art styles due to abstract and broad visual perceptions of stylistic attributes such as lines, shapes, textures, and colors. In this paper, we introduce a new method, Single-StyleForge, for personalization. It fine-tunes pre-trained text-to-image diffusion models to generate diverse images in specified styles from text prompts. By using around 15-20 images of the target style, the approach establishes a foundational binding of a unique token identifier with a broad range of the target style. It also utilizes auxiliary images to strengthen this binding, resulting in offering specific guidance on representing elements such as persons in a target style-consistent manner. In addition, we present ways to improve the quality of style and text-image alignment through a method called Multi-StyleForge, which inherits the strategy used in StyleForge and learns tokens in multiple. Experimental evaluation conducted on six distinct artistic styles demonstrates substantial improvements in both the quality of generated images and the perceptual fidelity metrics, such as FID, KID, and CLIP scores.

  • 3 authors
·
Apr 8, 2024

FashionBERT: Text and Image Matching with Adaptive Loss for Cross-modal Retrieval

In this paper, we address the text and image matching in cross-modal retrieval of the fashion industry. Different from the matching in the general domain, the fashion matching is required to pay much more attention to the fine-grained information in the fashion images and texts. Pioneer approaches detect the region of interests (i.e., RoIs) from images and use the RoI embeddings as image representations. In general, RoIs tend to represent the "object-level" information in the fashion images, while fashion texts are prone to describe more detailed information, e.g. styles, attributes. RoIs are thus not fine-grained enough for fashion text and image matching. To this end, we propose FashionBERT, which leverages patches as image features. With the pre-trained BERT model as the backbone network, FashionBERT learns high level representations of texts and images. Meanwhile, we propose an adaptive loss to trade off multitask learning in the FashionBERT modeling. Two tasks (i.e., text and image matching and cross-modal retrieval) are incorporated to evaluate FashionBERT. On the public dataset, experiments demonstrate FashionBERT achieves significant improvements in performances than the baseline and state-of-the-art approaches. In practice, FashionBERT is applied in a concrete cross-modal retrieval application. We provide the detailed matching performance and inference efficiency analysis.

  • 8 authors
·
May 19, 2020

Two Is Better Than One: Dual Embeddings for Complementary Product Recommendations

Embedding based product recommendations have gained popularity in recent years due to its ability to easily integrate to large-scale systems and allowing nearest neighbor searches in real-time. The bulk of studies in this area has predominantly been focused on similar item recommendations. Research on complementary item recommendations, on the other hand, still remains considerably under-explored. We define similar items as items that are interchangeable in terms of their utility and complementary items as items that serve different purposes, yet are compatible when used with one another. In this paper, we apply a novel approach to finding complementary items by leveraging dual embedding representations for products. We demonstrate that the notion of relatedness discovered in NLP for skip-gram negative sampling (SGNS) models translates effectively to the concept of complementarity when training item representations using co-purchase data. Since sparsity of purchase data is a major challenge in real-world scenarios, we further augment the model using synthetic samples to extend coverage. This allows the model to provide complementary recommendations for items that do not share co-purchase data by leveraging other abundantly available data modalities such as images, text, clicks etc. We establish the effectiveness of our approach in improving both coverage and quality of recommendations on real world data for a major online retail company. We further show the importance of task specific hyperparameter tuning in training SGNS. Our model is effective yet simple to implement, making it a great candidate for generating complementary item recommendations at any e-commerce website.

  • 4 authors
·
Nov 27, 2022

Enhancing Representation Generalization in Authorship Identification

Authorship identification ascertains the authorship of texts whose origins remain undisclosed. That authorship identification techniques work as reliably as they do has been attributed to the fact that authorial style is properly captured and represented. Although modern authorship identification methods have evolved significantly over the years and have proven effective in distinguishing authorial styles, the generalization of stylistic features across domains has not been systematically reviewed. The presented work addresses the challenge of enhancing the generalization of stylistic representations in authorship identification, particularly when there are discrepancies between training and testing samples. A comprehensive review of empirical studies was conducted, focusing on various stylistic features and their effectiveness in representing an author's style. The influencing factors such as topic, genre, and register on writing style were also explored, along with strategies to mitigate their impact. While some stylistic features, like character n-grams and function words, have proven to be robust and discriminative, others, such as content words, can introduce biases and hinder cross-domain generalization. Representations learned using deep learning models, especially those incorporating character n-grams and syntactic information, show promise in enhancing representation generalization. The findings underscore the importance of selecting appropriate stylistic features for authorship identification, especially in cross-domain scenarios. The recognition of the strengths and weaknesses of various linguistic features paves the way for more accurate authorship identification in diverse contexts.

  • 1 authors
·
Sep 30, 2023

A Massive Scale Semantic Similarity Dataset of Historical English

A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.

  • 2 authors
·
Jun 30, 2023

AttenST: A Training-Free Attention-Driven Style Transfer Framework with Pre-Trained Diffusion Models

While diffusion models have achieved remarkable progress in style transfer tasks, existing methods typically rely on fine-tuning or optimizing pre-trained models during inference, leading to high computational costs and challenges in balancing content preservation with style integration. To address these limitations, we introduce AttenST, a training-free attention-driven style transfer framework. Specifically, we propose a style-guided self-attention mechanism that conditions self-attention on the reference style by retaining the query of the content image while substituting its key and value with those from the style image, enabling effective style feature integration. To mitigate style information loss during inversion, we introduce a style-preserving inversion strategy that refines inversion accuracy through multiple resampling steps. Additionally, we propose a content-aware adaptive instance normalization, which integrates content statistics into the normalization process to optimize style fusion while mitigating the content degradation. Furthermore, we introduce a dual-feature cross-attention mechanism to fuse content and style features, ensuring a harmonious synthesis of structural fidelity and stylistic expression. Extensive experiments demonstrate that AttenST outperforms existing methods, achieving state-of-the-art performance in style transfer dataset.

  • 5 authors
·
Mar 10, 2025

Specialized Document Embeddings for Aspect-based Similarity of Research Papers

Document embeddings and similarity measures underpin content-based recommender systems, whereby a document is commonly represented as a single generic embedding. However, similarity computed on single vector representations provides only one perspective on document similarity that ignores which aspects make two documents alike. To address this limitation, aspect-based similarity measures have been developed using document segmentation or pairwise multi-class document classification. While segmentation harms the document coherence, the pairwise classification approach scales poorly to large scale corpora. In this paper, we treat aspect-based similarity as a classical vector similarity problem in aspect-specific embedding spaces. We represent a document not as a single generic embedding but as multiple specialized embeddings. Our approach avoids document segmentation and scales linearly w.r.t.the corpus size. In an empirical study, we use the Papers with Code corpus containing 157,606 research papers and consider the task, method, and dataset of the respective research papers as their aspects. We compare and analyze three generic document embeddings, six specialized document embeddings and a pairwise classification baseline in the context of research paper recommendations. As generic document embeddings, we consider FastText, SciBERT, and SPECTER. To compute the specialized document embeddings, we compare three alternative methods inspired by retrofitting, fine-tuning, and Siamese networks. In our experiments, Siamese SciBERT achieved the highest scores. Additional analyses indicate an implicit bias of the generic document embeddings towards the dataset aspect and against the method aspect of each research paper. Our approach of aspect-based document embeddings mitigates potential risks arising from implicit biases by making them explicit.

  • 5 authors
·
Mar 28, 2022

How Well Do LLMs Imitate Human Writing Style?

Large language models (LLMs) can generate fluent text, but their ability to replicate the distinctive style of a specific human author remains unclear. We present a fast, training-free framework for authorship verification and style imitation analysis. The method integrates TF-IDF character n-grams with transformer embeddings and classifies text pairs through empirical distance distributions, eliminating the need for supervised training or threshold tuning. It achieves 97.5\% accuracy on academic essays and 94.5\% in cross-domain evaluation, while reducing training time by 91.8\% and memory usage by 59\% relative to parameter-based baselines. Using this framework, we evaluate five LLMs from three separate families (Llama, Qwen, Mixtral) across four prompting strategies - zero-shot, one-shot, few-shot, and text completion. Results show that the prompting strategy has a more substantial influence on style fidelity than model size: few-shot prompting yields up to 23.5x higher style-matching accuracy than zero-shot, and completion prompting reaches 99.9\% agreement with the original author's style. Crucially, high-fidelity imitation does not imply human-like unpredictability - human essays average a perplexity of 29.5, whereas matched LLM outputs average only 15.2. These findings demonstrate that stylistic fidelity and statistical detectability are separable, establishing a reproducible basis for future work in authorship modeling, detection, and identity-conditioned generation.

  • 2 authors
·
Sep 29, 2025

Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics

Traditionally, style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting. However, identical semantic subjects, like people, boats, and houses, can vary significantly across different artistic traditions, indicating that style also encompasses the underlying semantics. Therefore, in this study, we propose a zero-shot scheme for image variation with coordinated semantics. Specifically, our scheme transforms the image-to-image problem into an image-to-text-to-image problem. The image-to-text operation employs vision-language models e.g., BLIP) to generate text describing the content of the input image, including the objects and their positions. Subsequently, the input style keyword is elaborated into a detailed description of this style and then merged with the content text using the reasoning capabilities of ChatGPT. Finally, the text-to-image operation utilizes a Diffusion model to generate images based on the text prompt. To enable the Diffusion model to accommodate more styles, we propose a fine-tuning strategy that injects text and style constraints into cross-attention. This ensures that the output image exhibits similar semantics in the desired style. To validate the performance of the proposed scheme, we constructed a benchmark comprising images of various styles and scenes and introduced two novel metrics. Despite its simplicity, our scheme yields highly plausible results in a zero-shot manner, particularly for generating stylized images with high-fidelity semantics.

  • 8 authors
·
Oct 24, 2024

Unified Vision-Language Representation Modeling for E-Commerce Same-Style Products Retrieval

Same-style products retrieval plays an important role in e-commerce platforms, aiming to identify the same products which may have different text descriptions or images. It can be used for similar products retrieval from different suppliers or duplicate products detection of one supplier. Common methods use the image as the detected object, but they only consider the visual features and overlook the attribute information contained in the textual descriptions, and perform weakly for products in image less important industries like machinery, hardware tools and electronic component, even if an additional text matching module is added. In this paper, we propose a unified vision-language modeling method for e-commerce same-style products retrieval, which is designed to represent one product with its textual descriptions and visual contents. It contains one sampling skill to collect positive pairs from user click log with category and relevance constrained, and a novel contrastive loss unit to model the image, text, and image+text representations into one joint embedding space. It is capable of cross-modal product-to-product retrieval, as well as style transfer and user-interactive search. Offline evaluations on annotated data demonstrate its superior retrieval performance, and online testings show it can attract more clicks and conversions. Moreover, this model has already been deployed online for similar products retrieval in alibaba.com, the largest B2B e-commerce platform in the world.

  • 6 authors
·
Feb 10, 2023

A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space

Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.

A Critical Assessment of Modern Generative Models' Ability to Replicate Artistic Styles

In recent years, advancements in generative artificial intelligence have led to the development of sophisticated tools capable of mimicking diverse artistic styles, opening new possibilities for digital creativity and artistic expression. This paper presents a critical assessment of the style replication capabilities of contemporary generative models, evaluating their strengths and limitations across multiple dimensions. We examine how effectively these models reproduce traditional artistic styles while maintaining structural integrity and compositional balance in the generated images. The analysis is based on a new large dataset of AI-generated works imitating artistic styles of the past, holding potential for a wide range of applications: the "AI-pastiche" dataset. The study is supported by extensive user surveys, collecting diverse opinions on the dataset and investigation both technical and aesthetic challenges, including the ability to generate outputs that are realistic and visually convincing, the versatility of models in handling a wide range of artistic styles, and the extent to which they adhere to the content and stylistic specifications outlined in prompts. This paper aims to provide a comprehensive overview of the current state of generative tools in style replication, offering insights into their technical and artistic limitations, potential advancements in model design and training methodologies, and emerging opportunities for enhancing digital artistry, human-AI collaboration, and the broader creative landscape.

  • 5 authors
·
Feb 21, 2025

VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain

The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.

  • 3 authors
·
Jul 31, 2023

FiVA: Fine-grained Visual Attribute Dataset for Text-to-Image Diffusion Models

Recent advances in text-to-image generation have enabled the creation of high-quality images with diverse applications. However, accurately describing desired visual attributes can be challenging, especially for non-experts in art and photography. An intuitive solution involves adopting favorable attributes from the source images. Current methods attempt to distill identity and style from source images. However, "style" is a broad concept that includes texture, color, and artistic elements, but does not cover other important attributes such as lighting and dynamics. Additionally, a simplified "style" adaptation prevents combining multiple attributes from different sources into one generated image. In this work, we formulate a more effective approach to decompose the aesthetics of a picture into specific visual attributes, allowing users to apply characteristics such as lighting, texture, and dynamics from different images. To achieve this goal, we constructed the first fine-grained visual attributes dataset (FiVA) to the best of our knowledge. This FiVA dataset features a well-organized taxonomy for visual attributes and includes around 1 M high-quality generated images with visual attribute annotations. Leveraging this dataset, we propose a fine-grained visual attribute adaptation framework (FiVA-Adapter), which decouples and adapts visual attributes from one or more source images into a generated one. This approach enhances user-friendly customization, allowing users to selectively apply desired attributes to create images that meet their unique preferences and specific content requirements.

  • 9 authors
·
Dec 10, 2024 2

InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation

Tuning-free diffusion-based models have demonstrated significant potential in the realm of image personalization and customization. However, despite this notable progress, current models continue to grapple with several complex challenges in producing style-consistent image generation. Firstly, the concept of style is inherently underdetermined, encompassing a multitude of elements such as color, material, atmosphere, design, and structure, among others. Secondly, inversion-based methods are prone to style degradation, often resulting in the loss of fine-grained details. Lastly, adapter-based approaches frequently require meticulous weight tuning for each reference image to achieve a balance between style intensity and text controllability. In this paper, we commence by examining several compelling yet frequently overlooked observations. We then proceed to introduce InstantStyle, a framework designed to address these issues through the implementation of two key strategies: 1) A straightforward mechanism that decouples style and content from reference images within the feature space, predicated on the assumption that features within the same space can be either added to or subtracted from one another. 2) The injection of reference image features exclusively into style-specific blocks, thereby preventing style leaks and eschewing the need for cumbersome weight tuning, which often characterizes more parameter-heavy designs.Our work demonstrates superior visual stylization outcomes, striking an optimal balance between the intensity of style and the controllability of textual elements. Our codes will be available at https://github.com/InstantStyle/InstantStyle.

  • 5 authors
·
Apr 3, 2024 5

StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Translation

Generating images that fit a given text description using machine learning has improved greatly with the release of technologies such as the CLIP image-text encoder model; however, current methods lack artistic control of the style of image to be generated. We present an approach for generating styled drawings for a given text description where a user can specify a desired drawing style using a sample image. Inspired by a theory in art that style and content are generally inseparable during the creative process, we propose a coupled approach, known here as StyleCLIPDraw, whereby the drawing is generated by optimizing for style and content simultaneously throughout the process as opposed to applying style transfer after creating content in a sequence. Based on human evaluation, the styles of images generated by StyleCLIPDraw are strongly preferred to those by the sequential approach. Although the quality of content generation degrades for certain styles, overall considering both content and style, StyleCLIPDraw is found far more preferred, indicating the importance of style, look, and feel of machine generated images to people as well as indicating that style is coupled in the drawing process itself. Our code (https://github.com/pschaldenbrand/StyleCLIPDraw), a demonstration (https://replicate.com/pschaldenbrand/style-clip-draw), and style evaluation data (https://www.kaggle.com/pittsburghskeet/drawings-with-style-evaluation-styleclipdraw) are publicly available.

  • 3 authors
·
Feb 24, 2022