llm-quiz-analysis / test /test_task_decomposer.py
23f3003322's picture
step 8
baa1efb
"""
Test Task Decomposer
Comprehensive tests for task decomposition
"""
import sys
import os
ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(ROOT)
import asyncio
from app.decomposition.task_decomposer import TaskDecomposer
from app.orchestrator.models import TaskClassification, TaskType, ComplexityLevel, OutputFormat
from app.orchestrator.parameter_models import (
ExtractedParameters,
DataSource,
FilterCondition,
AggregationSpec,
VisualizationRequirement,
OutputRequirement
)
from app.core.logging import setup_logging, get_logger
setup_logging()
logger = get_logger(__name__)
def test_simple_task_no_decomposition():
"""Test that simple tasks don't get decomposed"""
print("\n" + "=" * 60)
print("Test 1: Simple Task (No Decomposition)")
print("=" * 60)
decomposer = TaskDecomposer()
# Simple task
classification = TaskClassification(
primary_task=TaskType.WEB_SCRAPING,
secondary_tasks=[],
complexity=ComplexityLevel.SIMPLE,
estimated_steps=1,
output_format=OutputFormat.CSV,
confidence=0.9,
reasoning="Simple scraping"
)
parameters = ExtractedParameters(
data_sources=[
DataSource(
type='url',
location='https://example.com',
format='html',
description='Test page'
)
]
)
task_description = "Scrape data from example.com"
print(f"\nπŸ“‹ Task: {task_description}")
print(f"Complexity: {classification.complexity.value}")
print(f"Estimated steps: {classification.estimated_steps}")
print("-" * 60)
# Decompose
result = decomposer.decompose(classification, parameters, task_description)
print(f"\nβœ… Decomposition Result:")
print(f" Subtasks: {len(result.subtasks)}")
print(f" Strategy: {result.execution_strategy}")
print(f" Needs decomposition: {result.metadata.get('decomposed', True)}")
assert len(result.subtasks) == 1, "Simple task should have 1 subtask"
assert result.execution_strategy == 'single', "Should use single strategy"
print("\nβœ“ Simple task correctly identified (no decomposition)")
def test_complex_task_sequential():
"""Test complex task with sequential decomposition"""
print("\n" + "=" * 60)
print("Test 2: Complex Task (Sequential Decomposition)")
print("=" * 60)
decomposer = TaskDecomposer()
# Complex task
classification = TaskClassification(
primary_task=TaskType.ML_ANALYSIS,
secondary_tasks=[TaskType.VISUALIZATION],
complexity=ComplexityLevel.COMPLEX,
estimated_steps=5,
output_format=OutputFormat.CSV,
confidence=0.85,
reasoning="Complex analysis with multiple steps"
)
parameters = ExtractedParameters(
data_sources=[
DataSource(
type='url',
location='https://example.com/data.csv',
format='csv',
description='Sales data'
)
],
filters=[
FilterCondition(
field='region',
operator='equals',
value='North',
description='Filter North region'
)
],
aggregations=[
AggregationSpec(
function='avg',
field='sales',
group_by=['category'],
description='Average sales by category'
)
],
visualizations=[
VisualizationRequirement(
type='chart',
chart_type='bar',
description='Bar chart'
)
],
output=OutputRequirement(
format='csv',
description='Export results'
)
)
task_description = "Analyze sales data, filter, aggregate, visualize, and export"
print(f"\nπŸ“‹ Task: {task_description}")
print(f"Complexity: {classification.complexity.value}")
print(f"Has filters: {len(parameters.filters)}")
print(f"Has aggregations: {len(parameters.aggregations)}")
print(f"Has visualizations: {len(parameters.visualizations)}")
print("-" * 60)
# Decompose
result = decomposer.decompose(classification, parameters, task_description)
print(f"\nβœ… Decomposition Result:")
print(f" Subtasks: {len(result.subtasks)}")
print(f" Strategy: {result.execution_strategy}")
print(f" Can parallelize: {result.can_parallelize}")
print(f" Complexity score: {result.complexity_score}")
print(f" Estimated duration: {result.estimated_total_duration}s")
print(f"\nπŸ“ Subtasks:")
for i, subtask in enumerate(result.subtasks, 1):
print(f" {i}. {subtask.name} ({subtask.type.value})")
print(f" ID: {subtask.id}")
print(f" Depends on: {subtask.depends_on if subtask.depends_on else 'None'}")
print(f" Priority: {subtask.priority}")
print(f" Duration: {subtask.estimated_duration}s")
print(f"\nπŸ”— Dependencies:")
for dep in result.dependencies:
print(f" {dep.subtask_id} depends on {dep.depends_on}")
assert len(result.subtasks) > 1, "Complex task should have multiple subtasks"
print("\nβœ“ Complex task correctly decomposed")
def test_parallel_decomposition():
"""Test parallel decomposition with multiple data sources"""
print("\n" + "=" * 60)
print("Test 3: Parallel Decomposition (Multiple Sources)")
print("=" * 60)
decomposer = TaskDecomposer()
# Task with multiple data sources
classification = TaskClassification(
primary_task=TaskType.WEB_SCRAPING,
secondary_tasks=[],
complexity=ComplexityLevel.MEDIUM,
estimated_steps=3,
output_format=OutputFormat.JSON,
confidence=0.88,
reasoning="Multi-source data fetching"
)
parameters = ExtractedParameters(
data_sources=[
DataSource(
type='url',
location='https://source1.com/data',
format='json',
description='Source 1'
),
DataSource(
type='url',
location='https://source2.com/data',
format='json',
description='Source 2'
),
DataSource(
type='url',
location='https://source3.com/data',
format='json',
description='Source 3'
)
]
)
task_description = "Fetch data from 3 different sources"
print(f"\nπŸ“‹ Task: {task_description}")
print(f"Data sources: {len(parameters.data_sources)}")
print("-" * 60)
# Decompose
result = decomposer.decompose(classification, parameters, task_description)
print(f"\nβœ… Decomposition Result:")
print(f" Subtasks: {len(result.subtasks)}")
print(f" Strategy: {result.execution_strategy}")
print(f" Can parallelize: {result.can_parallelize}")
print(f"\nπŸ“ Subtasks:")
for subtask in result.subtasks:
parallel_indicator = "πŸ”€" if subtask.can_run_parallel else "➑️"
print(f" {parallel_indicator} {subtask.name}")
print(f" Can run parallel: {subtask.can_run_parallel}")
print(f" Depends on: {subtask.depends_on if subtask.depends_on else 'None'}")
print(f"\nπŸ“Š Execution Order (Batches):")
batches = result.get_execution_order()
for i, batch in enumerate(batches, 1):
print(f" Batch {i}: {batch}")
if len(batch) > 1:
print(f" ↳ Can execute in parallel")
assert result.can_parallelize, "Should support parallel execution"
assert result.execution_strategy == 'parallel', "Should use parallel strategy"
print("\nβœ“ Parallel decomposition working correctly")
def test_execution_order():
"""Test execution order calculation"""
print("\n" + "=" * 60)
print("Test 4: Execution Order Calculation")
print("=" * 60)
decomposer = TaskDecomposer()
# Complex task with dependencies
classification = TaskClassification(
primary_task=TaskType.ML_ANALYSIS,
secondary_tasks=[TaskType.VISUALIZATION],
complexity=ComplexityLevel.COMPLEX,
estimated_steps=4,
output_format=OutputFormat.CSV,
confidence=0.9,
reasoning="Test execution order"
)
parameters = ExtractedParameters(
data_sources=[
DataSource(
type='url',
location='https://example.com/data.csv',
format='csv',
description='Data'
)
],
filters=[FilterCondition(field='status', operator='equals', value='active', description='Active only')],
visualizations=[VisualizationRequirement(type='chart', chart_type='line', description='Line chart')],
output=OutputRequirement(format='csv', description='Export')
)
# Decompose
result = decomposer.decompose(classification, parameters, "Complex task")
print(f"\nπŸ“Š Execution Order:")
batches = result.get_execution_order()
for i, batch in enumerate(batches, 1):
print(f"\nBatch {i}:")
for subtask_id in batch:
subtask = result.get_subtask(subtask_id)
print(f" - {subtask.name} (ID: {subtask_id})")
print(f"\nβœ“ Total batches: {len(batches)}")
print(f"βœ“ All subtasks covered: {sum(len(b) for b in batches) == len(result.subtasks)}")
def run_all_tests():
"""Run all decomposer tests"""
print("\n" + "=" * 80)
print(" " * 20 + "TASK DECOMPOSER TEST SUITE")
print("=" * 80)
try:
test_simple_task_no_decomposition()
test_complex_task_sequential()
test_parallel_decomposition()
test_execution_order()
print("\n" + "=" * 80)
print(" " * 30 + "ALL TESTS PASSED")
print("=" * 80)
print("\nβœ… Task decomposer tests complete!")
print("\nπŸ“Š Summary:")
print(" βœ“ Simple tasks not decomposed")
print(" βœ“ Complex tasks decomposed sequentially")
print(" βœ“ Multiple sources decomposed in parallel")
print(" βœ“ Execution order calculated correctly")
print(" βœ“ Dependencies tracked properly")
except AssertionError as e:
print(f"\n❌ Assertion failed: {e}")
logger.error("Test assertion failed", exc_info=True)
raise
except Exception as e:
print(f"\n❌ Test failed: {e}")
logger.error("Test suite failed", exc_info=True)
raise
if __name__ == "__main__":
run_all_tests()