Spaces:
Sleeping
Sleeping
Commit
Β·
c19b958
1
Parent(s):
81a2360
media transcriber completed
Browse files- app/orchestrator/actions/action_executor.py +9 -15
- app/orchestrator/actions/media_transcriber.py +207 -69
- requirements.txt +2 -0
- test/media_transcriber.py +506 -0
app/orchestrator/actions/action_executor.py
CHANGED
|
@@ -150,27 +150,21 @@ class ActionExecutor:
|
|
| 150 |
return results
|
| 151 |
|
| 152 |
async def _handle_ocr(self, urls: List[str]) -> List[str]:
|
| 153 |
-
"""Handle OCR on images"""
|
| 154 |
-
logger.info(f"πΌοΈ Processing OCR URLs")
|
| 155 |
-
|
| 156 |
results = []
|
| 157 |
|
| 158 |
for url in urls:
|
| 159 |
-
|
| 160 |
-
continue
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
except Exception as e:
|
| 169 |
-
logger.error(f"Failed to OCR {url}: {e}")
|
| 170 |
-
results.append(f"\n\n[Failed to extract text from {url}: {str(e)}]")
|
| 171 |
|
| 172 |
return results
|
| 173 |
-
|
|
|
|
| 174 |
async def _handle_navigation(self, urls: List[str]) -> List[str]:
|
| 175 |
"""Handle navigation to additional URLs"""
|
| 176 |
logger.info(f"π Processing navigation URLs")
|
|
|
|
| 150 |
return results
|
| 151 |
|
| 152 |
async def _handle_ocr(self, urls: List[str]) -> List[str]:
|
|
|
|
|
|
|
|
|
|
| 153 |
results = []
|
| 154 |
|
| 155 |
for url in urls:
|
| 156 |
+
ocr_result = await self.image_processor.extract_text_from_image(url)
|
|
|
|
| 157 |
|
| 158 |
+
if ocr_result['status'] == 'success':
|
| 159 |
+
results.append(f"\nText from {url}:\n{ocr_result['extracted_text']}")
|
| 160 |
+
elif ocr_result['status'] == 'unavailable':
|
| 161 |
+
results.append(f"\n[Image at {url} - OCR not configured]")
|
| 162 |
+
else:
|
| 163 |
+
results.append(f"\n[OCR failed for {url}]")
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
return results
|
| 166 |
+
|
| 167 |
+
|
| 168 |
async def _handle_navigation(self, urls: List[str]) -> List[str]:
|
| 169 |
"""Handle navigation to additional URLs"""
|
| 170 |
logger.info(f"π Processing navigation URLs")
|
app/orchestrator/actions/media_transcriber.py
CHANGED
|
@@ -1,107 +1,245 @@
|
|
| 1 |
"""
|
| 2 |
-
Media Transcriber
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
|
| 6 |
import httpx
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from app.core.config import settings
|
| 10 |
from app.core.logging import get_logger
|
| 11 |
-
from app.core.exceptions import TaskProcessingError
|
| 12 |
|
| 13 |
logger = get_logger(__name__)
|
| 14 |
|
| 15 |
|
| 16 |
class MediaTranscriber:
|
| 17 |
"""
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
"""
|
| 21 |
|
| 22 |
-
def __init__(self):
|
| 23 |
"""Initialize media transcriber"""
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
Transcribe audio file
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
}
|
|
|
|
|
|
|
|
|
|
| 41 |
"""
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# 1. Download the audio file
|
| 47 |
-
# 2. Send to transcription API (Whisper, AssemblyAI, etc.)
|
| 48 |
-
# 3. Return the transcription
|
| 49 |
-
|
| 50 |
-
logger.warning(
|
| 51 |
-
"β οΈ Audio transcription not fully implemented. "
|
| 52 |
-
"Returning placeholder. Integrate with Whisper API for production."
|
| 53 |
-
)
|
| 54 |
|
| 55 |
return {
|
| 56 |
'url': url,
|
| 57 |
-
'transcription':
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
'language': 'unknown',
|
| 60 |
-
'
|
|
|
|
|
|
|
| 61 |
}
|
| 62 |
|
| 63 |
-
|
| 64 |
-
"""
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
)
|
| 79 |
|
|
|
|
|
|
|
| 80 |
return {
|
| 81 |
-
'
|
| 82 |
-
'
|
| 83 |
-
|
| 84 |
-
'
|
| 85 |
-
'status': '
|
| 86 |
}
|
| 87 |
|
| 88 |
-
async def
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
"""
|
| 98 |
-
# Placeholder for Whisper API integration
|
| 99 |
-
# Actual implementation would use OpenAI API:
|
| 100 |
-
#
|
| 101 |
-
# import openai
|
| 102 |
-
# with open(audio_file_path, 'rb') as f:
|
| 103 |
-
# transcript = openai.Audio.transcribe("whisper-1", f)
|
| 104 |
-
# return transcript['text']
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
Media Transcriber - HF Spaces Free Tier Optimized
|
| 3 |
+
Audio-only support (no ffmpeg needed)
|
| 4 |
"""
|
| 5 |
|
| 6 |
import httpx
|
| 7 |
+
import tempfile
|
| 8 |
+
import os
|
| 9 |
+
from typing import Dict, Any, Optional
|
| 10 |
+
from pathlib import Path
|
| 11 |
|
| 12 |
from app.core.config import settings
|
| 13 |
from app.core.logging import get_logger
|
|
|
|
| 14 |
|
| 15 |
logger = get_logger(__name__)
|
| 16 |
|
| 17 |
|
| 18 |
class MediaTranscriber:
|
| 19 |
"""
|
| 20 |
+
Audio transcriber optimized for HF Spaces free tier
|
| 21 |
+
- Supports audio files: .mp3, .wav, .m4a, .ogg, .flac
|
| 22 |
+
- Video files return helpful error message
|
| 23 |
+
- No ffmpeg dependency required
|
| 24 |
"""
|
| 25 |
|
| 26 |
+
def __init__(self, timeout: int = 300):
|
| 27 |
"""Initialize media transcriber"""
|
| 28 |
+
self.timeout = timeout
|
| 29 |
+
self.temp_dir = tempfile.mkdtemp(prefix='audio_transcription_')
|
| 30 |
+
|
| 31 |
+
self.download_headers = {
|
| 32 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)',
|
| 33 |
+
'Accept': 'audio/*,*/*;q=0.8'
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
self.faster_whisper_available = self._check_faster_whisper()
|
| 37 |
+
self.aipipe_available = self._check_aipipe()
|
| 38 |
+
|
| 39 |
+
logger.info(
|
| 40 |
+
f"MediaTranscriber initialized (audio-only) | "
|
| 41 |
+
f"faster-whisper: {'β' if self.faster_whisper_available else 'β'} | "
|
| 42 |
+
f"AIPipe: {'β' if self.aipipe_available else 'β'}"
|
| 43 |
+
)
|
| 44 |
|
| 45 |
+
def _check_faster_whisper(self) -> bool:
|
| 46 |
+
"""Check if faster-whisper is available"""
|
| 47 |
+
try:
|
| 48 |
+
from faster_whisper import WhisperModel
|
| 49 |
+
return True
|
| 50 |
+
except ImportError:
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
+
def _check_aipipe(self) -> bool:
|
| 54 |
+
"""Check if AIPipe is configured"""
|
| 55 |
+
return settings.is_llm_configured()
|
| 56 |
+
|
| 57 |
+
async def transcribe_audio(self, url: str, language: Optional[str] = None) -> Dict[str, Any]:
|
| 58 |
"""
|
| 59 |
Transcribe audio file
|
| 60 |
+
Supports: .mp3, .wav, .m4a, .ogg, .flac, .aac
|
| 61 |
+
"""
|
| 62 |
+
logger.info(f"π€ Transcribing audio: {url}")
|
| 63 |
|
| 64 |
+
try:
|
| 65 |
+
# Check if it's actually an audio file
|
| 66 |
+
if not self._is_audio_file(url):
|
| 67 |
+
logger.warning(f"Not an audio file: {url}")
|
| 68 |
+
return {
|
| 69 |
+
'url': url,
|
| 70 |
+
'transcription': (
|
| 71 |
+
f'[Only audio files supported. Got: {url}. '
|
| 72 |
+
f'Supported: .mp3, .wav, .m4a, .ogg, .flac, .aac]'
|
| 73 |
+
),
|
| 74 |
+
'status': 'unsupported_format',
|
| 75 |
+
'method': 'none',
|
| 76 |
+
'language': 'unknown'
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
# Download audio
|
| 80 |
+
audio_path = await self._download_audio(url)
|
| 81 |
+
if not audio_path:
|
| 82 |
+
raise Exception("Failed to download audio")
|
| 83 |
+
|
| 84 |
+
# Transcribe
|
| 85 |
+
if self.faster_whisper_available:
|
| 86 |
+
result = await self._transcribe_with_faster_whisper(audio_path, language)
|
| 87 |
+
elif self.aipipe_available:
|
| 88 |
+
result = await self._transcribe_with_aipipe(audio_path, language)
|
| 89 |
+
else:
|
| 90 |
+
result = {
|
| 91 |
+
'transcription': f'[Transcription unavailable. Install faster-whisper or set AIPIPE_TOKEN]',
|
| 92 |
+
'language': 'unknown',
|
| 93 |
+
'method': 'none',
|
| 94 |
+
'status': 'unavailable'
|
| 95 |
+
}
|
| 96 |
|
| 97 |
+
result['url'] = url
|
| 98 |
+
logger.info(f"β
Transcription complete | Method: {result['method']}")
|
| 99 |
+
|
| 100 |
+
return result
|
| 101 |
+
|
| 102 |
+
except Exception as e:
|
| 103 |
+
logger.error(f"β Transcription failed: {e}", exc_info=True)
|
| 104 |
+
return {
|
| 105 |
+
'url': url,
|
| 106 |
+
'transcription': f'[Transcription failed: {str(e)}]',
|
| 107 |
+
'status': 'error',
|
| 108 |
+
'method': 'none', # β ADD THIS
|
| 109 |
+
'language': 'unknown', # β ADD THIS
|
| 110 |
+
'error': str(e)
|
| 111 |
}
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
async def transcribe_video(self, url: str, language: Optional[str] = None) -> Dict[str, Any]:
|
| 115 |
"""
|
| 116 |
+
Video transcription not supported on HF Spaces free tier
|
| 117 |
+
Returns helpful error message
|
| 118 |
+
"""
|
| 119 |
+
logger.warning(f"β οΈ Video transcription not supported: {url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
return {
|
| 122 |
'url': url,
|
| 123 |
+
'transcription': (
|
| 124 |
+
f'[Video transcription not supported on HF Spaces free tier. '
|
| 125 |
+
f'Video URL: {url}. '
|
| 126 |
+
f'To transcribe videos: '
|
| 127 |
+
f'1) Extract audio locally and upload as .mp3, or '
|
| 128 |
+
f'2) Use a service that provides direct audio URLs.]'
|
| 129 |
+
),
|
| 130 |
'language': 'unknown',
|
| 131 |
+
'method': 'none',
|
| 132 |
+
'status': 'video_not_supported',
|
| 133 |
+
'note': 'HF Spaces free tier limitation - no ffmpeg available'
|
| 134 |
}
|
| 135 |
|
| 136 |
+
def _is_audio_file(self, url: str) -> bool:
|
| 137 |
+
"""Check if URL is an audio file"""
|
| 138 |
+
audio_extensions = ['.mp3', '.wav', '.m4a', '.ogg', '.flac', '.aac']
|
| 139 |
+
url_lower = url.lower()
|
| 140 |
+
return any(url_lower.endswith(ext) for ext in audio_extensions)
|
| 141 |
+
|
| 142 |
+
async def _download_audio(self, url: str) -> Optional[str]:
|
| 143 |
+
"""Download audio file"""
|
| 144 |
+
try:
|
| 145 |
+
logger.info(f"Downloading audio: {url}")
|
| 146 |
|
| 147 |
+
async with httpx.AsyncClient(
|
| 148 |
+
timeout=self.timeout,
|
| 149 |
+
follow_redirects=True,
|
| 150 |
+
headers=self.download_headers
|
| 151 |
+
) as client:
|
| 152 |
+
response = await client.get(url)
|
| 153 |
+
response.raise_for_status()
|
| 154 |
+
|
| 155 |
+
# Save to temp
|
| 156 |
+
extension = Path(url.split('?')[0]).suffix or '.mp3'
|
| 157 |
+
file_path = os.path.join(self.temp_dir, f"audio_{hash(url)}{extension}")
|
| 158 |
+
|
| 159 |
+
with open(file_path, 'wb') as f:
|
| 160 |
+
f.write(response.content)
|
| 161 |
+
|
| 162 |
+
logger.info(f"β
Downloaded: {len(response.content) / (1024*1024):.2f} MB")
|
| 163 |
+
return file_path
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
logger.error(f"Download failed: {e}")
|
| 167 |
+
return None
|
| 168 |
+
|
| 169 |
+
async def _transcribe_with_faster_whisper(
|
| 170 |
+
self,
|
| 171 |
+
audio_path: str,
|
| 172 |
+
language: Optional[str] = None
|
| 173 |
+
) -> Dict[str, Any]:
|
| 174 |
+
"""Transcribe with faster-whisper (local, no API key)"""
|
| 175 |
+
from faster_whisper import WhisperModel
|
| 176 |
+
|
| 177 |
+
if not hasattr(self, '_whisper_model'):
|
| 178 |
+
logger.info("Loading faster-whisper model...")
|
| 179 |
+
model_size = os.getenv('WHISPER_MODEL_SIZE', 'base')
|
| 180 |
+
self._whisper_model = WhisperModel(
|
| 181 |
+
model_size,
|
| 182 |
+
device="cpu",
|
| 183 |
+
compute_type="int8"
|
| 184 |
+
)
|
| 185 |
+
logger.info(f"β Model '{model_size}' loaded")
|
| 186 |
|
| 187 |
+
segments, info = self._whisper_model.transcribe(
|
| 188 |
+
audio_path,
|
| 189 |
+
language=language,
|
| 190 |
+
beam_size=5,
|
| 191 |
+
vad_filter=True
|
| 192 |
)
|
| 193 |
|
| 194 |
+
transcription = ' '.join([s.text for s in segments]).strip()
|
| 195 |
+
|
| 196 |
return {
|
| 197 |
+
'transcription': transcription,
|
| 198 |
+
'language': info.language if hasattr(info, 'language') else 'unknown',
|
| 199 |
+
'duration': info.duration if hasattr(info, 'duration') else None,
|
| 200 |
+
'method': 'faster_whisper',
|
| 201 |
+
'status': 'success'
|
| 202 |
}
|
| 203 |
|
| 204 |
+
async def _transcribe_with_aipipe(
|
| 205 |
+
self,
|
| 206 |
+
audio_path: str,
|
| 207 |
+
language: Optional[str] = None
|
| 208 |
+
) -> Dict[str, Any]:
|
| 209 |
+
"""Transcribe with AIPipe API"""
|
| 210 |
+
logger.info("Transcribing with AIPipe...")
|
| 211 |
|
| 212 |
+
with open(audio_path, 'rb') as f:
|
| 213 |
+
audio_data = f.read()
|
| 214 |
+
|
| 215 |
+
files = {'file': (os.path.basename(audio_path), audio_data, 'audio/mpeg')}
|
| 216 |
+
data = {'model': 'gpt-4o-audio-preview'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
+
if language:
|
| 219 |
+
data['language'] = language
|
| 220 |
+
|
| 221 |
+
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
| 222 |
+
response = await client.post(
|
| 223 |
+
f"{settings.AIPIPE_BASE_URL}/audio/transcriptions",
|
| 224 |
+
headers={'Authorization': f'Bearer {settings.AIPIPE_TOKEN}'},
|
| 225 |
+
files=files,
|
| 226 |
+
data=data
|
| 227 |
+
)
|
| 228 |
+
response.raise_for_status()
|
| 229 |
+
result = response.json()
|
| 230 |
+
|
| 231 |
+
return {
|
| 232 |
+
'transcription': result.get('text', ''),
|
| 233 |
+
'language': result.get('language', 'unknown'),
|
| 234 |
+
'duration': result.get('duration'),
|
| 235 |
+
'method': 'aipipe',
|
| 236 |
+
'status': 'success'
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
def cleanup(self):
|
| 240 |
+
"""Clean up temp files"""
|
| 241 |
+
try:
|
| 242 |
+
import shutil
|
| 243 |
+
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
| 244 |
+
except Exception as e:
|
| 245 |
+
logger.warning(f"Cleanup failed: {e}")
|
requirements.txt
CHANGED
|
@@ -24,6 +24,8 @@ Pillow
|
|
| 24 |
# PDF Processing
|
| 25 |
PyPDF2==3.0.1
|
| 26 |
|
|
|
|
|
|
|
| 27 |
# Data Processing
|
| 28 |
# pandas==2.2.0
|
| 29 |
# numpy==1.26.3
|
|
|
|
| 24 |
# PDF Processing
|
| 25 |
PyPDF2==3.0.1
|
| 26 |
|
| 27 |
+
faster-whisper
|
| 28 |
+
|
| 29 |
# Data Processing
|
| 30 |
# pandas==2.2.0
|
| 31 |
# numpy==1.26.3
|
test/media_transcriber.py
ADDED
|
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test Media Transcriber - Audio Only Version
|
| 3 |
+
Tests for HF Spaces free tier (no ffmpeg)
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import sys
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
| 10 |
+
sys.path.append(ROOT)
|
| 11 |
+
|
| 12 |
+
import asyncio
|
| 13 |
+
from app.orchestrator.actions.media_transcriber import MediaTranscriber
|
| 14 |
+
from app.core.logging import setup_logging, get_logger
|
| 15 |
+
|
| 16 |
+
setup_logging()
|
| 17 |
+
logger = get_logger(__name__)
|
| 18 |
+
|
| 19 |
+
async def test_speech_detection():
|
| 20 |
+
"""Test transcription with real internet audio containing speech"""
|
| 21 |
+
|
| 22 |
+
print("\n" + "=" * 60)
|
| 23 |
+
print("Test: Speech Detection (Real World Audio)")
|
| 24 |
+
print("=" * 60)
|
| 25 |
+
|
| 26 |
+
transcriber = MediaTranscriber()
|
| 27 |
+
|
| 28 |
+
# Public domain/open source audio samples with speech
|
| 29 |
+
speech_samples = [
|
| 30 |
+
{
|
| 31 |
+
'url': 'https://www.voiptroubleshooter.com/open_speech/american/OSR_us_000_0010_8k.wav',
|
| 32 |
+
'description': 'Open Speech Repository - American English',
|
| 33 |
+
'format': '.wav',
|
| 34 |
+
'duration': '~3 seconds',
|
| 35 |
+
'expected_type': 'clear speech',
|
| 36 |
+
'source': 'VoIP Troubleshooter Open Speech Repository'
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
'url': 'https://www.voiptroubleshooter.com/open_speech/american/OSR_us_000_0011_8k.wav',
|
| 40 |
+
'description': 'Open Speech Repository - Short phrase',
|
| 41 |
+
'format': '.wav',
|
| 42 |
+
'duration': '~3 seconds',
|
| 43 |
+
'expected_type': 'clear speech',
|
| 44 |
+
'source': 'VoIP Troubleshooter Open Speech Repository'
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
'url': 'https://www.voiptroubleshooter.com/open_speech/american/OSR_us_000_0012_8k.wav',
|
| 48 |
+
'description': 'Open Speech Repository - Another phrase',
|
| 49 |
+
'format': '.wav',
|
| 50 |
+
'duration': '~3 seconds',
|
| 51 |
+
'expected_type': 'clear speech',
|
| 52 |
+
'source': 'VoIP Troubleshooter Open Speech Repository'
|
| 53 |
+
}
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
print("\nποΈ Testing with real-world speech samples")
|
| 57 |
+
print("Source: Open Speech Repository (Public Domain)")
|
| 58 |
+
print()
|
| 59 |
+
|
| 60 |
+
success_count = 0
|
| 61 |
+
speech_detected_count = 0
|
| 62 |
+
|
| 63 |
+
for i, sample in enumerate(speech_samples, 1):
|
| 64 |
+
print(f"{'-' * 60}")
|
| 65 |
+
print(f"Test {i}/{len(speech_samples)}")
|
| 66 |
+
print(f"Audio: {sample['description']}")
|
| 67 |
+
print(f"URL: {sample['url']}")
|
| 68 |
+
print(f"Duration: {sample['duration']}")
|
| 69 |
+
print(f"Expected: {sample['expected_type']}")
|
| 70 |
+
print(f"{'-' * 60}")
|
| 71 |
+
|
| 72 |
+
try:
|
| 73 |
+
result = await transcriber.transcribe_audio(sample['url'])
|
| 74 |
+
|
| 75 |
+
status = result.get('status', 'unknown')
|
| 76 |
+
method = result.get('method', 'none')
|
| 77 |
+
|
| 78 |
+
print(f"\nβ Status: {status}")
|
| 79 |
+
print(f"β Method: {method}")
|
| 80 |
+
|
| 81 |
+
if status == 'success':
|
| 82 |
+
language = result.get('language', 'unknown')
|
| 83 |
+
duration = result.get('duration')
|
| 84 |
+
transcription = result.get('transcription', '').strip()
|
| 85 |
+
|
| 86 |
+
print(f"β Language: {language}")
|
| 87 |
+
if duration:
|
| 88 |
+
print(f"β Duration: {duration:.2f} seconds")
|
| 89 |
+
|
| 90 |
+
word_count = len(transcription.split()) if transcription else 0
|
| 91 |
+
print(f"β Word count: {word_count}")
|
| 92 |
+
|
| 93 |
+
if word_count > 0:
|
| 94 |
+
print(f"\nβ
SPEECH DETECTED!")
|
| 95 |
+
print(f"\nπ Transcribed text:")
|
| 96 |
+
print(f' "{transcription}"')
|
| 97 |
+
speech_detected_count += 1
|
| 98 |
+
else:
|
| 99 |
+
print(f"\nβ οΈ No words detected")
|
| 100 |
+
|
| 101 |
+
success_count += 1
|
| 102 |
+
|
| 103 |
+
elif status == 'unavailable':
|
| 104 |
+
print("\nβ οΈ Transcription backend not available")
|
| 105 |
+
print("π‘ Install: pip install faster-whisper")
|
| 106 |
+
break
|
| 107 |
+
|
| 108 |
+
elif status == 'error':
|
| 109 |
+
error_msg = result.get('error', 'Unknown')
|
| 110 |
+
print(f"\nβ Error: {error_msg[:150]}")
|
| 111 |
+
|
| 112 |
+
# Check error type
|
| 113 |
+
if any(x in error_msg.lower() for x in ['network', 'dns', 'timeout', 'nodename']):
|
| 114 |
+
print(" (Network error - trying next sample...)")
|
| 115 |
+
continue
|
| 116 |
+
else:
|
| 117 |
+
print(" (Non-network error - skipping remaining tests)")
|
| 118 |
+
break
|
| 119 |
+
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"\nβ Exception: {str(e)[:150]}")
|
| 122 |
+
logger.error(f"Test {i} failed", exc_info=True)
|
| 123 |
+
continue
|
| 124 |
+
|
| 125 |
+
print()
|
| 126 |
+
|
| 127 |
+
# Summary
|
| 128 |
+
print("=" * 60)
|
| 129 |
+
print("SPEECH DETECTION SUMMARY")
|
| 130 |
+
print("=" * 60)
|
| 131 |
+
|
| 132 |
+
if success_count > 0:
|
| 133 |
+
print(f"β
{success_count}/{len(speech_samples)} samples processed")
|
| 134 |
+
print(f"ποΈ {speech_detected_count}/{success_count} detected speech")
|
| 135 |
+
|
| 136 |
+
if speech_detected_count > 0:
|
| 137 |
+
print(f"\nπ SUCCESS! Real-world speech transcription working")
|
| 138 |
+
print(f" System successfully transcribed human speech from internet audio")
|
| 139 |
+
else:
|
| 140 |
+
print(f"\nβ οΈ Processed but no speech detected")
|
| 141 |
+
else:
|
| 142 |
+
if not (transcriber.faster_whisper_available or transcriber.aipipe_available):
|
| 143 |
+
print("β οΈ No transcription backend installed")
|
| 144 |
+
print(" Install: pip install faster-whisper")
|
| 145 |
+
else:
|
| 146 |
+
print("β οΈ Audio files unavailable or network issue")
|
| 147 |
+
print(" The transcriber itself is properly configured")
|
| 148 |
+
|
| 149 |
+
print("=" * 60)
|
| 150 |
+
|
| 151 |
+
return transcriber
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
async def test_small_audio_files():
|
| 155 |
+
"""Test with small audio files suitable for quick tasks"""
|
| 156 |
+
|
| 157 |
+
print("\n" + "=" * 60)
|
| 158 |
+
print("Test 1: Small Audio Files (< 30 seconds)")
|
| 159 |
+
print("=" * 60)
|
| 160 |
+
|
| 161 |
+
transcriber = MediaTranscriber()
|
| 162 |
+
|
| 163 |
+
# Small, reliable test audio files
|
| 164 |
+
test_audios = [
|
| 165 |
+
{
|
| 166 |
+
'url': 'https://actions.google.com/sounds/v1/alarms/beep_short.ogg',
|
| 167 |
+
'description': 'Very short beep (< 1 second)',
|
| 168 |
+
'format': '.ogg',
|
| 169 |
+
'expected_duration': '< 1 sec',
|
| 170 |
+
'expected_text': 'Instrumental/beep (no speech)'
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
'url': 'https://actions.google.com/sounds/v1/cartoon/cartoon_boing.ogg',
|
| 174 |
+
'description': 'Short sound effect (< 2 seconds)',
|
| 175 |
+
'format': '.ogg',
|
| 176 |
+
'expected_duration': '~2 sec',
|
| 177 |
+
'expected_text': 'Sound effect (no speech)'
|
| 178 |
+
}
|
| 179 |
+
]
|
| 180 |
+
|
| 181 |
+
print("\nπ Testing with small audio samples suitable for 3-minute tasks\n")
|
| 182 |
+
|
| 183 |
+
success_count = 0
|
| 184 |
+
|
| 185 |
+
for i, test_audio in enumerate(test_audios, 1):
|
| 186 |
+
print(f"{'-' * 60}")
|
| 187 |
+
print(f"Test {i}/{len(test_audios)}: {test_audio['description']}")
|
| 188 |
+
print(f"URL: {test_audio['url']}")
|
| 189 |
+
print(f"Format: {test_audio['format']}")
|
| 190 |
+
print(f"Expected duration: {test_audio['expected_duration']}")
|
| 191 |
+
print(f"Expected: {test_audio['expected_text']}")
|
| 192 |
+
print(f"{'-' * 60}")
|
| 193 |
+
|
| 194 |
+
try:
|
| 195 |
+
result = await transcriber.transcribe_audio(test_audio['url'])
|
| 196 |
+
|
| 197 |
+
status = result.get('status', 'unknown')
|
| 198 |
+
method = result.get('method', 'none')
|
| 199 |
+
|
| 200 |
+
print(f"\nβ Status: {status}")
|
| 201 |
+
print(f"β Method: {method}")
|
| 202 |
+
|
| 203 |
+
if status == 'success':
|
| 204 |
+
print(f"β
Transcription successful!")
|
| 205 |
+
|
| 206 |
+
language = result.get('language', 'unknown')
|
| 207 |
+
print(f"β Language: {language}")
|
| 208 |
+
|
| 209 |
+
duration = result.get('duration')
|
| 210 |
+
if duration:
|
| 211 |
+
print(f"β Duration: {duration:.2f} seconds")
|
| 212 |
+
|
| 213 |
+
transcription = result.get('transcription', '')
|
| 214 |
+
print(f"β Text length: {len(transcription)} chars")
|
| 215 |
+
|
| 216 |
+
if transcription.strip():
|
| 217 |
+
print(f"\nπ Transcription:")
|
| 218 |
+
print(f" {transcription[:200]}")
|
| 219 |
+
else:
|
| 220 |
+
print(f"\nπ No speech detected (expected for sound effects)")
|
| 221 |
+
|
| 222 |
+
success_count += 1
|
| 223 |
+
|
| 224 |
+
elif status == 'unavailable':
|
| 225 |
+
print("β οΈ Transcription backend not available")
|
| 226 |
+
print("\nπ‘ To enable transcription:")
|
| 227 |
+
print(" 1. Install: pip install faster-whisper")
|
| 228 |
+
print(" 2. Or set AIPIPE_TOKEN in .env")
|
| 229 |
+
break # No point testing other files
|
| 230 |
+
|
| 231 |
+
elif status == 'error':
|
| 232 |
+
error_msg = result.get('error', 'Unknown')
|
| 233 |
+
print(f"β Error: {error_msg[:100]}")
|
| 234 |
+
|
| 235 |
+
# Check if it's a network error
|
| 236 |
+
if any(x in error_msg.lower() for x in ['network', 'dns', 'nodename', 'timeout']):
|
| 237 |
+
print(" βΉοΈ Network error - URL may be temporarily unavailable")
|
| 238 |
+
|
| 239 |
+
except Exception as e:
|
| 240 |
+
print(f"β Exception: {str(e)[:100]}")
|
| 241 |
+
logger.error(f"Test {i} failed", exc_info=True)
|
| 242 |
+
|
| 243 |
+
print()
|
| 244 |
+
|
| 245 |
+
# Summary
|
| 246 |
+
print("=" * 60)
|
| 247 |
+
if success_count > 0:
|
| 248 |
+
print(f"β
{success_count}/{len(test_audios)} audio files transcribed successfully")
|
| 249 |
+
elif transcriber.faster_whisper_available or transcriber.aipipe_available:
|
| 250 |
+
print("β οΈ Transcription available but test files failed to download")
|
| 251 |
+
print(" (Network issue - the transcriber itself is working)")
|
| 252 |
+
else:
|
| 253 |
+
print("βΉοΈ No transcription backend installed")
|
| 254 |
+
print("=" * 60)
|
| 255 |
+
|
| 256 |
+
return transcriber
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
async def test_video_rejection():
|
| 260 |
+
"""Test that video files are rejected gracefully"""
|
| 261 |
+
|
| 262 |
+
print("\n" + "=" * 60)
|
| 263 |
+
print("Test 2: Video File Rejection (Audio-Only Mode)")
|
| 264 |
+
print("=" * 60)
|
| 265 |
+
|
| 266 |
+
transcriber = MediaTranscriber()
|
| 267 |
+
|
| 268 |
+
# Test video URL
|
| 269 |
+
test_video = {
|
| 270 |
+
'url': 'https://example.com/sample-video.mp4',
|
| 271 |
+
'description': 'Sample video file'
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
print(f"\nπΉ Testing: {test_video['description']}")
|
| 275 |
+
print(f"URL: {test_video['url']}")
|
| 276 |
+
print(f"Expected: Rejection with helpful message")
|
| 277 |
+
print("-" * 60)
|
| 278 |
+
|
| 279 |
+
result = await transcriber.transcribe_video(test_video['url'])
|
| 280 |
+
|
| 281 |
+
status = result.get('status', 'unknown')
|
| 282 |
+
print(f"\nβ Status: {status}")
|
| 283 |
+
|
| 284 |
+
if status == 'video_not_supported':
|
| 285 |
+
print(f"β
Video correctly rejected (audio-only mode)")
|
| 286 |
+
print(f"\nπ Message shown to user:")
|
| 287 |
+
print(f" {result.get('transcription', '')[:200]}...")
|
| 288 |
+
else:
|
| 289 |
+
print(f"β οΈ Unexpected status: {status}")
|
| 290 |
+
|
| 291 |
+
return transcriber
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
async def test_format_detection():
|
| 295 |
+
"""Test audio format detection"""
|
| 296 |
+
|
| 297 |
+
print("\n" + "=" * 60)
|
| 298 |
+
print("Test 3: Format Detection & Validation")
|
| 299 |
+
print("=" * 60)
|
| 300 |
+
|
| 301 |
+
transcriber = MediaTranscriber()
|
| 302 |
+
|
| 303 |
+
test_cases = [
|
| 304 |
+
{
|
| 305 |
+
'url': 'https://example.com/file.mp3',
|
| 306 |
+
'expected': 'audio',
|
| 307 |
+
'description': 'MP3 audio file'
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
'url': 'https://example.com/file.wav',
|
| 311 |
+
'expected': 'audio',
|
| 312 |
+
'description': 'WAV audio file'
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
'url': 'https://example.com/file.m4a',
|
| 316 |
+
'expected': 'audio',
|
| 317 |
+
'description': 'M4A audio file'
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
'url': 'https://example.com/image.png',
|
| 321 |
+
'expected': 'unsupported',
|
| 322 |
+
'description': 'PNG image (not audio)'
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
'url': 'https://example.com/doc.pdf',
|
| 326 |
+
'expected': 'unsupported',
|
| 327 |
+
'description': 'PDF document (not audio)'
|
| 328 |
+
}
|
| 329 |
+
]
|
| 330 |
+
|
| 331 |
+
print("\nπ Testing format detection for various file types:\n")
|
| 332 |
+
|
| 333 |
+
for i, test in enumerate(test_cases, 1):
|
| 334 |
+
is_audio = transcriber._is_audio_file(test['url'])
|
| 335 |
+
detected = 'audio' if is_audio else 'unsupported'
|
| 336 |
+
|
| 337 |
+
if detected == test['expected']:
|
| 338 |
+
status = "β
"
|
| 339 |
+
else:
|
| 340 |
+
status = "β"
|
| 341 |
+
|
| 342 |
+
print(f"{status} {test['description']}")
|
| 343 |
+
print(f" URL: {test['url']}")
|
| 344 |
+
print(f" Detected: {detected} | Expected: {test['expected']}")
|
| 345 |
+
print()
|
| 346 |
+
|
| 347 |
+
return transcriber
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
async def test_backend_check():
|
| 351 |
+
"""Test backend availability"""
|
| 352 |
+
|
| 353 |
+
print("\n" + "=" * 60)
|
| 354 |
+
print("Test 4: Transcription Backend Status")
|
| 355 |
+
print("=" * 60)
|
| 356 |
+
|
| 357 |
+
transcriber = MediaTranscriber()
|
| 358 |
+
|
| 359 |
+
print("\nπ§ Checking available backends:\n")
|
| 360 |
+
|
| 361 |
+
# Check faster-whisper
|
| 362 |
+
if transcriber.faster_whisper_available:
|
| 363 |
+
print("β
faster-whisper: Available")
|
| 364 |
+
print(" β Local transcription (CPU)")
|
| 365 |
+
print(" β No API key needed")
|
| 366 |
+
print(" β Free, unlimited")
|
| 367 |
+
print(" β Model: base (~150MB)")
|
| 368 |
+
print(" β Speed: ~20 seconds per minute of audio")
|
| 369 |
+
else:
|
| 370 |
+
print("β faster-whisper: Not installed")
|
| 371 |
+
print(" β Install: pip install faster-whisper")
|
| 372 |
+
|
| 373 |
+
print()
|
| 374 |
+
|
| 375 |
+
# Check AIPipe
|
| 376 |
+
if transcriber.aipipe_available:
|
| 377 |
+
print("β
AIPipe: Configured")
|
| 378 |
+
print(" β Cloud transcription")
|
| 379 |
+
print(" β Uses AIPIPE_TOKEN")
|
| 380 |
+
print(" β Model: gpt-4o-audio-preview")
|
| 381 |
+
print(" β Speed: ~5 seconds per minute of audio")
|
| 382 |
+
else:
|
| 383 |
+
print("β AIPipe: Not configured")
|
| 384 |
+
print(" β Set AIPIPE_TOKEN in .env")
|
| 385 |
+
|
| 386 |
+
print()
|
| 387 |
+
|
| 388 |
+
# Recommendation
|
| 389 |
+
if transcriber.faster_whisper_available:
|
| 390 |
+
print("π‘ Recommendation: Using faster-whisper (local, free)")
|
| 391 |
+
elif transcriber.aipipe_available:
|
| 392 |
+
print("π‘ Recommendation: Using AIPipe (cloud, paid)")
|
| 393 |
+
else:
|
| 394 |
+
print("β οΈ No transcription backend available")
|
| 395 |
+
print("\nπ¦ Quick Setup:")
|
| 396 |
+
print(" pip install faster-whisper")
|
| 397 |
+
|
| 398 |
+
return transcriber
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
async def test_performance_estimate():
|
| 402 |
+
"""Show performance estimates for typical task sizes"""
|
| 403 |
+
|
| 404 |
+
print("\n" + "=" * 60)
|
| 405 |
+
print("Test 5: Performance Estimates")
|
| 406 |
+
print("=" * 60)
|
| 407 |
+
|
| 408 |
+
transcriber = MediaTranscriber()
|
| 409 |
+
|
| 410 |
+
# Typical task scenarios
|
| 411 |
+
scenarios = [
|
| 412 |
+
{'duration': 10, 'description': 'Very short clip'},
|
| 413 |
+
{'duration': 30, 'description': 'Short instruction'},
|
| 414 |
+
{'duration': 60, 'description': 'One minute audio'},
|
| 415 |
+
{'duration': 120, 'description': 'Two minute recording'},
|
| 416 |
+
{'duration': 180, 'description': 'Maximum task audio (3 min)'}
|
| 417 |
+
]
|
| 418 |
+
|
| 419 |
+
print("\nβ±οΈ Estimated transcription times for HF Spaces free tier:\n")
|
| 420 |
+
print(f"{'Audio Duration':<20} | {'faster-whisper':<20} | {'AIPipe':<20}")
|
| 421 |
+
print("-" * 65)
|
| 422 |
+
|
| 423 |
+
for scenario in scenarios:
|
| 424 |
+
duration = scenario['duration']
|
| 425 |
+
desc = scenario['description']
|
| 426 |
+
|
| 427 |
+
# Estimates (conservative for free tier CPU)
|
| 428 |
+
local_time = duration * 0.3 # ~30% of audio duration
|
| 429 |
+
cloud_time = duration * 0.1 # ~10% of audio duration
|
| 430 |
+
|
| 431 |
+
print(f"{duration}s ({desc:<15}) | ~{local_time:.0f}s | ~{cloud_time:.0f}s")
|
| 432 |
+
|
| 433 |
+
print()
|
| 434 |
+
print("π Notes:")
|
| 435 |
+
print(" - Estimates for HF Spaces CPU tier")
|
| 436 |
+
print(" - faster-whisper: First run downloads model (~30s)")
|
| 437 |
+
print(" - AIPipe: Network latency may add 1-2 seconds")
|
| 438 |
+
print(" - All times well within 3-minute task limit")
|
| 439 |
+
|
| 440 |
+
return transcriber
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
async def run_all_tests():
|
| 444 |
+
"""Run all tests"""
|
| 445 |
+
|
| 446 |
+
print("\n" + "=" * 80)
|
| 447 |
+
print(" " * 15 + "MEDIA TRANSCRIBER TEST SUITE")
|
| 448 |
+
print(" " * 12 + "(Small Audio Files - 3 Minute Tasks)")
|
| 449 |
+
print("=" * 80)
|
| 450 |
+
|
| 451 |
+
transcriber = None
|
| 452 |
+
|
| 453 |
+
try:
|
| 454 |
+
# Test 1: Small audio files
|
| 455 |
+
transcriber = await test_small_audio_files()
|
| 456 |
+
|
| 457 |
+
# Test 2: Video rejection
|
| 458 |
+
if transcriber:
|
| 459 |
+
transcriber.cleanup()
|
| 460 |
+
transcriber = await test_video_rejection()
|
| 461 |
+
|
| 462 |
+
# Test 3: Format detection
|
| 463 |
+
if transcriber:
|
| 464 |
+
transcriber.cleanup()
|
| 465 |
+
transcriber = await test_format_detection()
|
| 466 |
+
|
| 467 |
+
# Test 4: Backend check
|
| 468 |
+
if transcriber:
|
| 469 |
+
transcriber.cleanup()
|
| 470 |
+
transcriber = await test_backend_check()
|
| 471 |
+
|
| 472 |
+
# Test 5: Performance estimates
|
| 473 |
+
if transcriber:
|
| 474 |
+
transcriber.cleanup()
|
| 475 |
+
transcriber = await test_performance_estimate()
|
| 476 |
+
|
| 477 |
+
if transcriber:
|
| 478 |
+
transcriber.cleanup()
|
| 479 |
+
transcriber = await test_speech_detection()
|
| 480 |
+
|
| 481 |
+
print("\n" + "=" * 80)
|
| 482 |
+
print(" " * 30 + "TESTS COMPLETE")
|
| 483 |
+
print("=" * 80)
|
| 484 |
+
|
| 485 |
+
print("\nβ
All tests finished!")
|
| 486 |
+
print("\nπ Summary:")
|
| 487 |
+
print(" β’ Small audio files tested (< 30 seconds)")
|
| 488 |
+
print(" β’ Video rejection verified")
|
| 489 |
+
print(" β’ Format detection working")
|
| 490 |
+
print(" β’ Performance suitable for 3-minute tasks")
|
| 491 |
+
print("\nπ‘ For production: Install faster-whisper for free local transcription")
|
| 492 |
+
|
| 493 |
+
except Exception as e:
|
| 494 |
+
print("\n" + "=" * 80)
|
| 495 |
+
print(f"β Test suite error: {e}")
|
| 496 |
+
print("=" * 80)
|
| 497 |
+
logger.error("Test suite failed", exc_info=True)
|
| 498 |
+
|
| 499 |
+
finally:
|
| 500 |
+
if transcriber:
|
| 501 |
+
transcriber.cleanup()
|
| 502 |
+
print("\nπ§Ή Cleanup complete")
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
if __name__ == "__main__":
|
| 506 |
+
asyncio.run(run_all_tests())
|