Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import cv2 | |
| def assert_image_format(image, fcn_name: str, arg_name: str, force_alpha: bool = True): | |
| if not isinstance(image, np.ndarray): | |
| err_msg = 'The blend_modes function "{fcn_name}" received a value of type "{var_type}" for its argument ' \ | |
| '"{arg_name}". The function however expects a value of type "np.ndarray" for this argument. Please ' \ | |
| 'supply a variable of type np.ndarray to the "{arg_name}" argument.' \ | |
| .format(fcn_name=fcn_name, arg_name=arg_name, var_type=str(type(image).__name__)) | |
| raise TypeError(err_msg) | |
| if not image.dtype.kind == 'f': | |
| err_msg = 'The blend_modes function "{fcn_name}" received a numpy array of dtype (data type) kind ' \ | |
| '"{var_kind}" for its argument "{arg_name}". The function however expects a numpy array of the ' \ | |
| 'data type kind "f" (floating-point) for this argument. Please supply a numpy array with the data ' \ | |
| 'type kind "f" (floating-point) to the "{arg_name}" argument.' \ | |
| .format(fcn_name=fcn_name, arg_name=arg_name, var_kind=str(image.dtype.kind)) | |
| raise TypeError(err_msg) | |
| if not len(image.shape) == 3: | |
| err_msg = 'The blend_modes function "{fcn_name}" received a {n_dim}-dimensional numpy array for its argument ' \ | |
| '"{arg_name}". The function however expects a 3-dimensional array for this argument in the shape ' \ | |
| '(height x width x R/G/B/A layers). Please supply a 3-dimensional numpy array with that shape to ' \ | |
| 'the "{arg_name}" argument.' \ | |
| .format(fcn_name=fcn_name, arg_name=arg_name, n_dim=str(len(image.shape))) | |
| raise TypeError(err_msg) | |
| if force_alpha and not image.shape[2] == 4: | |
| err_msg = 'The blend_modes function "{fcn_name}" received a numpy array with {n_layers} layers for its ' \ | |
| 'argument "{arg_name}". The function however expects a 4-layer array representing red, green, ' \ | |
| 'blue, and alpha channel for this argument. Please supply a numpy array that includes all 4 layers ' \ | |
| 'to the "{arg_name}" argument.' \ | |
| .format(fcn_name=fcn_name, arg_name=arg_name, n_layers=str(image.shape[2])) | |
| raise TypeError(err_msg) | |
| def assert_opacity(opacity, fcn_name: str, arg_name: str = 'opacity'): | |
| if not isinstance(opacity, float) and not isinstance(opacity, int): | |
| err_msg = 'The blend_modes function "{fcn_name}" received a variable of type "{var_type}" for its argument ' \ | |
| '"{arg_name}". The function however expects the value passed to "{arg_name}" to be of type ' \ | |
| '"float". Please pass a variable of type "float" to the "{arg_name}" argument of function ' \ | |
| '"{fcn_name}".' \ | |
| .format(fcn_name=fcn_name, arg_name=arg_name, var_type=str(type(opacity).__name__)) | |
| raise TypeError(err_msg) | |
| if not 0.0 <= opacity <= 1.0: | |
| err_msg = 'The blend_modes function "{fcn_name}" received the value "{val}" for its argument "{arg_name}". ' \ | |
| 'The function however expects that the value for "{arg_name}" is inside the range 0.0 <= x <= 1.0. ' \ | |
| 'Please pass a variable in that range to the "{arg_name}" argument of function "{fcn_name}".' \ | |
| .format(fcn_name=fcn_name, arg_name=arg_name, val=str(opacity)) | |
| raise ValueError(err_msg) | |
| def _compose_alpha(img_in, img_layer, opacity): | |
| comp_alpha = np.minimum(img_in[:, :, 3], img_layer[:, :, 3]) * opacity | |
| new_alpha = img_in[:, :, 3] + (1.0 - img_in[:, :, 3]) * comp_alpha | |
| np.seterr(divide='ignore', invalid='ignore') | |
| ratio = comp_alpha / new_alpha | |
| ratio[ratio == np.nan] = 0.0 | |
| return ratio | |
| def create_hard_light_layover(img_in, img_layer, opacity, disable_type_checks: bool = False): | |
| if not disable_type_checks: | |
| _fcn_name = 'hard_light' | |
| assert_image_format(img_in, _fcn_name, 'img_in') | |
| assert_image_format(img_layer, _fcn_name, 'img_layer') | |
| assert_opacity(opacity, _fcn_name) | |
| img_in_norm = img_in / 255.0 | |
| img_layer_norm = img_layer / 255.0 | |
| ratio = _compose_alpha(img_in_norm, img_layer_norm, opacity) | |
| comp = np.greater(img_layer_norm[:, :, :3], 0.5) \ | |
| * np.minimum(1.0 - ((1.0 - img_in_norm[:, :, :3]) | |
| * (1.0 - (img_layer_norm[:, :, :3] - 0.5) * 2.0)), 1.0) \ | |
| + np.logical_not(np.greater(img_layer_norm[:, :, :3], 0.5)) \ | |
| * np.minimum(img_in_norm[:, :, :3] * (img_layer_norm[:, :, :3] * 2.0), 1.0) | |
| ratio_rs = np.reshape(np.repeat(ratio, 3), [comp.shape[0], comp.shape[1], comp.shape[2]]) | |
| img_out = comp * ratio_rs + img_in_norm[:, :, :3] * (1.0 - ratio_rs) | |
| img_out = np.nan_to_num(np.dstack((img_out, img_in_norm[:, :, 3]))) # add alpha channel and replace nans | |
| return img_out * 255.0 | |
| def create_soft_light_layover(img_in, img_layer, opacity, disable_type_checks: bool = False): | |
| if not disable_type_checks: | |
| _fcn_name = 'soft_light' | |
| assert_image_format(img_in, _fcn_name, 'img_in') | |
| assert_image_format(img_layer, _fcn_name, 'img_layer') | |
| assert_opacity(opacity, _fcn_name) | |
| img_in_norm = img_in / 255.0 | |
| img_layer_norm = img_layer / 255.0 | |
| ratio = _compose_alpha(img_in_norm, img_layer_norm, opacity) | |
| # The following code does this: | |
| # multiply = img_in_norm[:, :, :3]*img_layer[:, :, :3] | |
| # screen = 1.0 - (1.0-img_in_norm[:, :, :3])*(1.0-img_layer[:, :, :3]) | |
| # comp = (1.0 - img_in_norm[:, :, :3]) * multiply + img_in_norm[:, :, :3] * screen | |
| # ratio_rs = np.reshape(np.repeat(ratio,3),comp.shape) | |
| # img_out = comp*ratio_rs + img_in_norm[:, :, :3] * (1.0-ratio_rs) | |
| comp = (1.0 - img_in_norm[:, :, :3]) * img_in_norm[:, :, :3] * img_layer_norm[:, :, :3] \ | |
| + img_in_norm[:, :, :3] * (1.0 - (1.0 - img_in_norm[:, :, :3]) * (1.0 - img_layer_norm[:, :, :3])) | |
| ratio_rs = np.reshape(np.repeat(ratio, 3), [comp.shape[0], comp.shape[1], comp.shape[2]]) | |
| img_out = comp * ratio_rs + img_in_norm[:, :, :3] * (1.0 - ratio_rs) | |
| img_out = np.nan_to_num(np.dstack((img_out, img_in_norm[:, :, 3]))) # add alpha channel and replace nans | |
| return img_out * 255.0 | |
| def stitch_images(image1, image2, overlap_width): | |
| """Stitch two images side by side with overlapping edges.""" | |
| height = min(image1.shape[0], image2.shape[0]) | |
| image1 = cv2.resize(image1, (image1.shape[1], height)) | |
| image2 = cv2.resize(image2, (image2.shape[1], height)) | |
| mask = np.zeros((height, overlap_width), dtype=np.float32) | |
| mask[:, :overlap_width] = np.linspace(1, 0, overlap_width) | |
| mask = np.dstack([mask] * 3) | |
| overlap1 = image1[:, -overlap_width:] | |
| overlap2 = image2[:, :overlap_width] | |
| blended_overlap = overlap1 * mask + overlap2 * (1 - mask) | |
| blended_overlap = blended_overlap.astype(np.uint8) | |
| stitched_image = np.hstack((image1[:, :-overlap_width], blended_overlap, image2[:, overlap_width:])) | |
| return stitched_image | |
| def tile_image_to_dimensions(image, target_width, target_height, overlap_width): | |
| times_width = target_width // (image.shape[1] - overlap_width) + 1 | |
| times_height = target_height // (image.shape[0] - overlap_width) + 1 | |
| row_image = image | |
| for _ in range(times_width - 1): | |
| row_image = stitch_images(row_image, image, overlap_width) | |
| final_image = row_image | |
| for _ in range(times_height - 1): | |
| final_image = np.vstack((final_image, row_image)) | |
| final_image = final_image[:target_height, :target_width] | |
| return final_image | |
| def create_image_with_feather_tile(tile_image, width, height, overlap_width): | |
| from PIL import Image | |
| tile_image = Image.open(tile_image) | |
| tile_image.save("tiled_image_pil_converted.png") | |
| tile_cv2 = cv2.imread("tiled_image_pil_converted.png") | |
| tiled_image = tile_image_to_dimensions(tile_cv2, width, height, overlap_width) | |
| cv2.imwrite('tiled_image.png', tiled_image) | |
| def stitch_images_with_control(image1, image2, overlap_width, direction='horizontal'): | |
| """Stitch two images side by side or top and bottom with overlapping edges.""" | |
| if direction == 'horizontal': | |
| height = min(image1.shape[0], image2.shape[0]) | |
| image1 = cv2.resize(image1, (image1.shape[1], height)) | |
| image2 = cv2.resize(image2, (image2.shape[1], height)) | |
| mask = np.zeros((height, overlap_width), dtype=np.float32) | |
| mask[:, :overlap_width] = np.linspace(1, 0, overlap_width) | |
| mask = np.dstack([mask] * 3) | |
| overlap1 = image1[:, -overlap_width:] | |
| overlap2 = image2[:, :overlap_width] | |
| blended_overlap = overlap1 * mask + overlap2 * (1 - mask) | |
| blended_overlap = blended_overlap.astype(np.uint8) | |
| stitched_image = np.hstack((image1[:, :-overlap_width], blended_overlap, image2[:, overlap_width:])) | |
| elif direction == 'vertical': | |
| width = min(image1.shape[1], image2.shape[1]) | |
| image1 = cv2.resize(image1, (width, image1.shape[0])) | |
| image2 = cv2.resize(image2, (width, image2.shape[0])) | |
| mask = np.zeros((overlap_width, width), dtype=np.float32) | |
| mask[:overlap_width, :] = np.linspace(1, 0, overlap_width).reshape(-1, 1) | |
| mask = np.dstack([mask] * 3) | |
| overlap1 = image1[-overlap_width:, :] | |
| overlap2 = image2[:overlap_width, :] | |
| blended_overlap = overlap1 * mask + overlap2 * (1 - mask) | |
| blended_overlap = blended_overlap.astype(np.uint8) | |
| stitched_image = np.vstack((image1[:-overlap_width, :], blended_overlap, image2[overlap_width:, :])) | |
| else: | |
| raise ValueError("Direction must be 'horizontal' or 'vertical'") | |
| return stitched_image | |
| def color_extract(image_path, new_width, new_height): | |
| from PIL import Image | |
| format_image = Image.open(image_path) | |
| format_image.save("pil_image.png") | |
| image = cv2.imread("pil_image.png") | |
| image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| height, width, _ = image_rgb.shape | |
| center_pixel = image_rgb[height // 2, width // 2] | |
| color = center_pixel | |
| new_image = np.full((new_height, new_width, 3), color, dtype=np.uint8) | |
| output_path = 'color_image.jpg' | |
| cv2.imwrite(output_path, cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)) | |
| print(f'Color image saved at {output_path}') | |
| def control_texture(texture_image, direction, overlap, width, height): | |
| import os | |
| import cv2 | |
| color_extract(texture_image, width, height) | |
| create_image_with_feather_tile(texture_image, width, height, overlap) | |
| img1 = cv2.imread('color_image.jpg') | |
| img2 = cv2.imread('tiled_image.png') | |
| control_tile_image = stitch_images_with_control(img1, | |
| img2, overlap, direction) | |
| os.remove('tiled_image.png') | |
| cv2.imwrite('tiled_image_2.png', control_tile_image) | |