Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,7 +11,6 @@ import spaces
|
|
| 11 |
from datetime import datetime
|
| 12 |
|
| 13 |
# --- Environment and Caching ---
|
| 14 |
-
|
| 15 |
# It's good practice to ensure the cache directory exists.
|
| 16 |
CACHE_DIR = "evaluation_cache"
|
| 17 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
|
@@ -26,14 +25,14 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
| 26 |
|
| 27 |
# --- Constants for Benchmarks ---
|
| 28 |
MMLU_DATASET = "cais/mmlu"
|
| 29 |
-
|
|
|
|
| 30 |
BENCHMARK_MAP = {
|
| 31 |
"MMLU": MMLU_DATASET,
|
| 32 |
-
"MMLU-Pro": MMLU_PRO_DATASET
|
| 33 |
}
|
| 34 |
|
| 35 |
# --- Data Loading and Preparation ---
|
| 36 |
-
|
| 37 |
def get_all_benchmark_options():
|
| 38 |
"""
|
| 39 |
Fetches and caches the available subjects (configs) for each benchmark dataset.
|
|
@@ -41,8 +40,9 @@ def get_all_benchmark_options():
|
|
| 41 |
"""
|
| 42 |
if benchmark_subject_cache:
|
| 43 |
return benchmark_subject_cache
|
| 44 |
-
|
| 45 |
print("Fetching benchmark configurations for the first time...")
|
|
|
|
|
|
|
| 46 |
for key, dataset_id in BENCHMARK_MAP.items():
|
| 47 |
try:
|
| 48 |
# Fetching dataset configurations requires authentication if the dataset is private
|
|
@@ -57,7 +57,6 @@ def get_all_benchmark_options():
|
|
| 57 |
# Initialize the cache on startup
|
| 58 |
ALL_BENCHMARK_SUBJECTS = get_all_benchmark_options()
|
| 59 |
|
| 60 |
-
|
| 61 |
@spaces.GPU()
|
| 62 |
def load_model(model_id):
|
| 63 |
"""
|
|
@@ -66,16 +65,14 @@ def load_model(model_id):
|
|
| 66 |
"""
|
| 67 |
if not model_id:
|
| 68 |
raise ValueError("Model ID cannot be empty.")
|
| 69 |
-
|
| 70 |
-
gr.Info(f"Attempting to load model: {model_id}...")
|
| 71 |
if model_id in model_cache:
|
| 72 |
gr.Info(f"Model '{model_id}' found in cache.")
|
| 73 |
return model_cache[model_id]
|
| 74 |
-
|
| 75 |
try:
|
| 76 |
# Use bfloat16 for better performance on modern GPUs
|
| 77 |
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
|
| 78 |
-
|
| 79 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True)
|
| 80 |
model = AutoModelForCausalLM.from_pretrained(
|
| 81 |
model_id,
|
|
@@ -84,7 +81,7 @@ def load_model(model_id):
|
|
| 84 |
trust_remote_code=True,
|
| 85 |
low_cpu_mem_usage=True, # Optimization for large models
|
| 86 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 87 |
-
|
| 88 |
# Create the pipeline for text generation
|
| 89 |
generator = pipeline(
|
| 90 |
"text-generation",
|
|
@@ -92,7 +89,7 @@ def load_model(model_id):
|
|
| 92 |
tokenizer=tokenizer,
|
| 93 |
device=0 if torch.cuda.is_available() else -1
|
| 94 |
)
|
| 95 |
-
|
| 96 |
model_cache[model_id] = generator
|
| 97 |
gr.Info(f"Model '{model_id}' loaded successfully.")
|
| 98 |
return generator
|
|
@@ -100,9 +97,7 @@ def load_model(model_id):
|
|
| 100 |
# Raise a more specific error to be caught by the main evaluation function
|
| 101 |
raise RuntimeError(f"Failed to load model '{model_id}'. Please verify the model ID and your Hugging Face token (if required). Error: {e}")
|
| 102 |
|
| 103 |
-
|
| 104 |
# --- Evaluation Logic ---
|
| 105 |
-
|
| 106 |
def format_prompt(item):
|
| 107 |
"""Formats the MMLU question and choices into a standardized prompt."""
|
| 108 |
prompt = f"Question: {item['question']}\n\nChoices:\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\n\nAnswer:"
|
|
@@ -121,12 +116,11 @@ def extract_predicted_letter(output_text):
|
|
| 121 |
match = re.search(r"Answer:\s*([ABCD])", output_text.strip(), re.IGNORECASE)
|
| 122 |
if match:
|
| 123 |
return match.group(1).upper()
|
| 124 |
-
|
| 125 |
# Fallback: if the model just outputs a letter
|
| 126 |
match = re.search(r"^\s*([ABCD])\b", output_text.strip())
|
| 127 |
if match:
|
| 128 |
return match.group(1).upper()
|
| 129 |
-
|
| 130 |
return None
|
| 131 |
|
| 132 |
def evaluate_single_subject(generator, dataset_id, subject, sample_count, progress):
|
|
@@ -150,23 +144,22 @@ def evaluate_single_subject(generator, dataset_id, subject, sample_count, progre
|
|
| 150 |
for item in progress.tqdm(dataset, desc=f"Evaluating {subject}"):
|
| 151 |
prompt, correct_answer_idx = format_prompt(item)
|
| 152 |
expected_letter = get_choice_letter(correct_answer_idx)
|
| 153 |
-
|
| 154 |
# The generated text is often just after the prompt. We need to slice it.
|
| 155 |
full_prompt_text = generator.tokenizer.decode(generator.tokenizer.encode(prompt), skip_special_tokens=True)
|
| 156 |
-
|
| 157 |
# Generate a short response, aiming for a single letter answer.
|
| 158 |
# do_sample=False (greedy decoding) is crucial for reproducibility.
|
| 159 |
raw_output = generator(prompt, max_new_tokens=5, do_sample=False, pad_token_id=generator.tokenizer.eos_token_id)[0]["generated_text"]
|
| 160 |
-
|
| 161 |
# Isolate the newly generated part
|
| 162 |
generated_text_only = raw_output[len(full_prompt_text):].strip()
|
| 163 |
-
|
| 164 |
predicted_letter = extract_predicted_letter(generated_text_only)
|
| 165 |
is_correct = (predicted_letter == expected_letter)
|
| 166 |
-
|
| 167 |
if is_correct:
|
| 168 |
correct_predictions += 1
|
| 169 |
-
|
| 170 |
results_details.append({
|
| 171 |
"Question": item['question'],
|
| 172 |
"Correct": "β
" if is_correct else "β",
|
|
@@ -174,11 +167,9 @@ def evaluate_single_subject(generator, dataset_id, subject, sample_count, progre
|
|
| 174 |
"Predicted": predicted_letter or "N/A",
|
| 175 |
"Model Output": generated_text_only
|
| 176 |
})
|
| 177 |
-
|
| 178 |
accuracy = (correct_predictions / num_samples) * 100 if num_samples > 0 else 0
|
| 179 |
return accuracy, results_details
|
| 180 |
|
| 181 |
-
|
| 182 |
@spaces.GPU()
|
| 183 |
def run_evaluation(model_id, benchmark_category, subject_name, sample_count, progress=gr.Progress(track_tqdm=True)):
|
| 184 |
"""
|
|
@@ -189,7 +180,7 @@ def run_evaluation(model_id, benchmark_category, subject_name, sample_count, pro
|
|
| 189 |
try:
|
| 190 |
gr.Info("Starting evaluation...")
|
| 191 |
generator = load_model(model_id)
|
| 192 |
-
|
| 193 |
dataset_id = BENCHMARK_MAP.get(benchmark_category)
|
| 194 |
if not dataset_id:
|
| 195 |
raise ValueError(f"Invalid benchmark category: {benchmark_category}")
|
|
@@ -198,7 +189,7 @@ def run_evaluation(model_id, benchmark_category, subject_name, sample_count, pro
|
|
| 198 |
summary_lines = []
|
| 199 |
total_correct = 0
|
| 200 |
total_samples = 0
|
| 201 |
-
|
| 202 |
subjects_to_run = []
|
| 203 |
if subject_name == "ALL":
|
| 204 |
# Exclude the "ALL" placeholder from the list of subjects to run
|
|
@@ -219,23 +210,22 @@ def run_evaluation(model_id, benchmark_category, subject_name, sample_count, pro
|
|
| 219 |
gr.Info(f"Evaluating {benchmark_category} - {subject} ({i+1}/{len(subjects_to_run)})...")
|
| 220 |
try:
|
| 221 |
accuracy, subject_details = evaluate_single_subject(generator, dataset_id, subject, sample_count, progress)
|
| 222 |
-
|
| 223 |
all_results_details.extend(subject_details)
|
| 224 |
num_correct = sum(1 for d in subject_details if d['Correct'] == "β
")
|
| 225 |
num_evaluated = len(subject_details)
|
| 226 |
-
|
| 227 |
total_correct += num_correct
|
| 228 |
total_samples += num_evaluated
|
| 229 |
summary_lines.append(f"- **{subject}**: {accuracy:.2f}% ({num_correct}/{num_evaluated})")
|
| 230 |
-
|
| 231 |
except Exception as e:
|
| 232 |
error_trace = traceback.format_exc()
|
| 233 |
gr.Error(f"Skipping {subject} due to an error: {e}")
|
| 234 |
summary_lines.append(f"- **{subject}**: Evaluation failed. See logs for details:\n```\n{error_trace}\n```")
|
| 235 |
continue
|
| 236 |
-
|
| 237 |
overall_accuracy = (total_correct / total_samples) * 100 if total_samples > 0 else 0
|
| 238 |
-
|
| 239 |
# --- Prepare Outputs ---
|
| 240 |
if subject_name == "ALL":
|
| 241 |
result_summary = f"### Overall Average Accuracy: {overall_accuracy:.2f}%\n"
|
|
@@ -244,7 +234,7 @@ def run_evaluation(model_id, benchmark_category, subject_name, sample_count, pro
|
|
| 244 |
else:
|
| 245 |
result_summary = f"### Accuracy for {benchmark_category} - {subject_name}: {overall_accuracy:.2f}%\n"
|
| 246 |
result_summary += f"({total_correct:,}/{total_samples:,} correct)"
|
| 247 |
-
|
| 248 |
# Save results for leaderboard
|
| 249 |
record = {
|
| 250 |
"model_id": model_id,
|
|
@@ -256,11 +246,11 @@ def run_evaluation(model_id, benchmark_category, subject_name, sample_count, pro
|
|
| 256 |
}
|
| 257 |
with open(EVAL_FILE, "a") as f:
|
| 258 |
f.write(json.dumps(record) + "\n")
|
| 259 |
-
|
| 260 |
gr.Info("Evaluation completed successfully!")
|
| 261 |
-
|
| 262 |
df_details = pd.DataFrame(all_results_details)
|
| 263 |
-
|
| 264 |
# Return a dictionary of component updates
|
| 265 |
return {
|
| 266 |
result_summary_output: gr.update(value=result_summary, visible=True),
|
|
@@ -268,12 +258,11 @@ def run_evaluation(model_id, benchmark_category, subject_name, sample_count, pro
|
|
| 268 |
details_box: gr.update(visible=True),
|
| 269 |
detailed_results_df: gr.update(value=df_details)
|
| 270 |
}
|
| 271 |
-
|
| 272 |
except Exception as e:
|
| 273 |
error_message = f"An unexpected error occurred during setup: {e}"
|
| 274 |
error_details = traceback.format_exc()
|
| 275 |
gr.Error(error_message)
|
| 276 |
-
|
| 277 |
return {
|
| 278 |
result_summary_output: gr.update(visible=False),
|
| 279 |
error_box: gr.update(visible=True),
|
|
@@ -282,9 +271,7 @@ def run_evaluation(model_id, benchmark_category, subject_name, sample_count, pro
|
|
| 282 |
details_box: gr.update(visible=False)
|
| 283 |
}
|
| 284 |
|
| 285 |
-
|
| 286 |
# --- UI Helper Functions ---
|
| 287 |
-
|
| 288 |
def update_subject_dropdown(benchmark_category):
|
| 289 |
"""Updates the subject dropdown choices based on the selected benchmark."""
|
| 290 |
choices = ALL_BENCHMARK_SUBJECTS.get(benchmark_category, [])
|
|
@@ -300,7 +287,7 @@ def load_leaderboard(benchmark_filter, progress=gr.Progress()):
|
|
| 300 |
try:
|
| 301 |
if not os.path.exists(EVAL_FILE):
|
| 302 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
| 303 |
-
|
| 304 |
df = pd.read_json(EVAL_FILE, lines=True)
|
| 305 |
if df.empty:
|
| 306 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
|
@@ -308,22 +295,21 @@ def load_leaderboard(benchmark_filter, progress=gr.Progress()):
|
|
| 308 |
# Coerce accuracy to numeric and filter valid entries
|
| 309 |
df['accuracy'] = pd.to_numeric(df['accuracy'], errors='coerce')
|
| 310 |
df.dropna(subset=['accuracy'], inplace=True)
|
| 311 |
-
|
| 312 |
# Filter by the selected benchmark (e.g., MMLU or MMLU-Pro)
|
| 313 |
df_filtered = df[(df['benchmark'] == benchmark_filter) & (df['subject'] == 'ALL')].copy()
|
| 314 |
-
|
| 315 |
if df_filtered.empty:
|
| 316 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
| 317 |
|
| 318 |
# Find the latest evaluation for each model
|
| 319 |
df_filtered['timestamp'] = pd.to_datetime(df_filtered['timestamp'])
|
| 320 |
latest_evals = df_filtered.loc[df_filtered.groupby('model_id')['timestamp'].idxmax()].copy()
|
| 321 |
-
|
| 322 |
leaderboard_df = latest_evals.sort_values(by="accuracy", ascending=False).copy()
|
| 323 |
-
|
| 324 |
# Add Rank
|
| 325 |
leaderboard_df.insert(0, 'Rank', range(1, len(leaderboard_df) + 1))
|
| 326 |
-
|
| 327 |
# Rename and format columns
|
| 328 |
leaderboard_df.rename(columns={
|
| 329 |
'model_id': 'Model ID',
|
|
@@ -331,67 +317,169 @@ def load_leaderboard(benchmark_filter, progress=gr.Progress()):
|
|
| 331 |
'sample_count': 'Total Samples',
|
| 332 |
'timestamp': 'Date'
|
| 333 |
}, inplace=True)
|
| 334 |
-
|
| 335 |
leaderboard_df['Avg. Accuracy (%)'] = leaderboard_df['Avg. Accuracy (%)'].map('{:.2f}'.format)
|
| 336 |
leaderboard_df['Date'] = leaderboard_df['Date'].dt.strftime('%Y-%m-%d')
|
| 337 |
-
|
| 338 |
progress(1, desc="Done.")
|
| 339 |
return leaderboard_df[['Rank', 'Model ID', 'Avg. Accuracy (%)', 'Total Samples', 'Date']]
|
| 340 |
-
|
| 341 |
except Exception as e:
|
| 342 |
gr.Error(f"Error loading leaderboard: {e}")
|
| 343 |
traceback.print_exc()
|
| 344 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
| 345 |
|
| 346 |
-
|
| 347 |
# --- Gradio Interface Definition ---
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
/* --- Global & Layout --- */
|
| 351 |
-
body { font-family: 'Inter', sans-serif; background-color: #
|
| 352 |
-
.gradio-container { max-width:
|
| 353 |
-
.gr-group {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
-
/* ---
|
| 356 |
-
|
| 357 |
-
.
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
| 364 |
/* --- Custom Radio Buttons (Segmented Control) --- */
|
| 365 |
#leaderboard-toggle-group { display: flex; justify-content: center; align-items: center; gap: 1rem; margin-bottom: 1.5rem; }
|
| 366 |
-
#leaderboard-toggle { background-color: #
|
| 367 |
#leaderboard-toggle div.gr-form { display: flex; gap: 5px; }
|
| 368 |
#leaderboard-toggle input[type='radio'] { display: none; }
|
| 369 |
-
#leaderboard-toggle label {
|
| 370 |
-
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
/* --- Dataframe / Table Styling --- */
|
| 373 |
.leaderboard-table .gr-dataframe table { border-collapse: collapse; width: 100%; }
|
| 374 |
-
.leaderboard-table .gr-dataframe thead th {
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
/* --- Error & Result Panes --- */
|
| 382 |
-
#error-display-box {
|
| 383 |
-
|
| 384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
gr.Markdown("<h1>π Open LLM Evaluator</h1>")
|
| 386 |
-
gr.Markdown("<p class='subtitle'>Benchmark leading models on MMLU
|
| 387 |
-
|
| 388 |
with gr.Tabs() as tabs:
|
| 389 |
# --- Leaderboard Tab ---
|
| 390 |
with gr.TabItem("π Leaderboard", id=0):
|
| 391 |
with gr.Column():
|
| 392 |
with gr.Row(elem_id="leaderboard-toggle-group"):
|
|
|
|
| 393 |
leaderboard_type_toggle = gr.Radio(
|
| 394 |
-
["MMLU"
|
| 395 |
label="Select Benchmark",
|
| 396 |
value="MMLU",
|
| 397 |
interactive=True,
|
|
@@ -400,15 +488,15 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), cs
|
|
| 400 |
show_label=False,
|
| 401 |
)
|
| 402 |
refresh_button = gr.Button("π Refresh", size="sm")
|
| 403 |
-
|
| 404 |
leaderboard_table_output = gr.DataFrame(
|
| 405 |
headers=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"],
|
| 406 |
interactive=False,
|
| 407 |
datatype=["number", "str", "str", "number", "str"],
|
| 408 |
-
row_count=15,
|
| 409 |
-
elem_classes="leaderboard-table"
|
|
|
|
| 410 |
)
|
| 411 |
-
|
| 412 |
# --- Evaluation Tab ---
|
| 413 |
with gr.TabItem("π Run Evaluation", id=1):
|
| 414 |
with gr.Row(variant='panel'):
|
|
@@ -418,10 +506,12 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), cs
|
|
| 418 |
model_id_input = gr.Textbox(
|
| 419 |
label="Hugging Face Model ID",
|
| 420 |
placeholder="e.g., meta-llama/Meta-Llama-3-8B-Instruct",
|
| 421 |
-
interactive=True
|
|
|
|
| 422 |
)
|
|
|
|
| 423 |
benchmark_selection_radio = gr.Radio(
|
| 424 |
-
["MMLU"
|
| 425 |
label="Benchmark",
|
| 426 |
value="MMLU",
|
| 427 |
interactive=True,
|
|
@@ -429,7 +519,8 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), cs
|
|
| 429 |
with gr.Row():
|
| 430 |
benchmark_subject_dropdown = gr.Dropdown(
|
| 431 |
label="Subject",
|
| 432 |
-
|
|
|
|
| 433 |
value="ALL",
|
| 434 |
interactive=True
|
| 435 |
)
|
|
@@ -437,21 +528,20 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), cs
|
|
| 437 |
label="Samples per Subject",
|
| 438 |
minimum=5, maximum=100, value=25, step=5, interactive=True
|
| 439 |
)
|
| 440 |
-
|
| 441 |
run_button = gr.Button("Start Evaluation", variant="primary", scale=1)
|
| 442 |
-
|
| 443 |
with gr.Column(scale=3):
|
| 444 |
gr.Markdown("### 2. View Results")
|
| 445 |
-
|
| 446 |
# Panel for displaying the summary of results
|
| 447 |
with gr.Group(visible=False) as result_summary_box:
|
| 448 |
result_summary_output = gr.Markdown(elem_id="result-summary-box")
|
| 449 |
-
|
| 450 |
# Panel for displaying errors
|
| 451 |
with gr.Group(visible=False) as error_box:
|
| 452 |
error_output = gr.Textbox(label="Error Message", interactive=False, elem_id="error-display-box")
|
| 453 |
error_details_output = gr.Textbox(label="Error Details (Traceback)", interactive=False, lines=8)
|
| 454 |
-
|
| 455 |
# Panel for detailed, row-by-row results
|
| 456 |
with gr.Group(visible=False) as details_box:
|
| 457 |
gr.Markdown("#### Detailed Evaluation Log")
|
|
@@ -459,20 +549,19 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), cs
|
|
| 459 |
headers=["Question", "Correct", "Expected", "Predicted", "Model Output"],
|
| 460 |
datatype=["str", "str", "str", "str", "str"],
|
| 461 |
interactive=False,
|
| 462 |
-
row_count=10,
|
| 463 |
-
col_count
|
| 464 |
wrap=True,
|
| 465 |
)
|
| 466 |
|
| 467 |
-
# --- Event Handlers & Logic ---
|
| 468 |
-
|
| 469 |
# Update subject dropdown when benchmark type changes
|
| 470 |
benchmark_selection_radio.change(
|
| 471 |
fn=update_subject_dropdown,
|
| 472 |
inputs=[benchmark_selection_radio],
|
| 473 |
outputs=[benchmark_subject_dropdown]
|
| 474 |
)
|
| 475 |
-
|
| 476 |
# Main evaluation trigger
|
| 477 |
run_button.click(
|
| 478 |
fn=run_evaluation,
|
|
@@ -506,4 +595,4 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), cs
|
|
| 506 |
|
| 507 |
# Launch the Gradio app
|
| 508 |
if __name__ == "__main__":
|
| 509 |
-
demo.launch(debug=True)
|
|
|
|
| 11 |
from datetime import datetime
|
| 12 |
|
| 13 |
# --- Environment and Caching ---
|
|
|
|
| 14 |
# It's good practice to ensure the cache directory exists.
|
| 15 |
CACHE_DIR = "evaluation_cache"
|
| 16 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
|
|
|
| 25 |
|
| 26 |
# --- Constants for Benchmarks ---
|
| 27 |
MMLU_DATASET = "cais/mmlu"
|
| 28 |
+
# Temporarily remove MMLU-Pro references
|
| 29 |
+
# MMLU_PRO_DATASET = "TIGER-Lab/MMLU-Pro"
|
| 30 |
BENCHMARK_MAP = {
|
| 31 |
"MMLU": MMLU_DATASET,
|
| 32 |
+
# "MMLU-Pro": MMLU_PRO_DATASET # Temporarily removed
|
| 33 |
}
|
| 34 |
|
| 35 |
# --- Data Loading and Preparation ---
|
|
|
|
| 36 |
def get_all_benchmark_options():
|
| 37 |
"""
|
| 38 |
Fetches and caches the available subjects (configs) for each benchmark dataset.
|
|
|
|
| 40 |
"""
|
| 41 |
if benchmark_subject_cache:
|
| 42 |
return benchmark_subject_cache
|
|
|
|
| 43 |
print("Fetching benchmark configurations for the first time...")
|
| 44 |
+
|
| 45 |
+
# Only iterate over the allowed benchmarks (MMLU)
|
| 46 |
for key, dataset_id in BENCHMARK_MAP.items():
|
| 47 |
try:
|
| 48 |
# Fetching dataset configurations requires authentication if the dataset is private
|
|
|
|
| 57 |
# Initialize the cache on startup
|
| 58 |
ALL_BENCHMARK_SUBJECTS = get_all_benchmark_options()
|
| 59 |
|
|
|
|
| 60 |
@spaces.GPU()
|
| 61 |
def load_model(model_id):
|
| 62 |
"""
|
|
|
|
| 65 |
"""
|
| 66 |
if not model_id:
|
| 67 |
raise ValueError("Model ID cannot be empty.")
|
| 68 |
+
gr.Info(f"Attempting to load model: {model_id}...")
|
|
|
|
| 69 |
if model_id in model_cache:
|
| 70 |
gr.Info(f"Model '{model_id}' found in cache.")
|
| 71 |
return model_cache[model_id]
|
|
|
|
| 72 |
try:
|
| 73 |
# Use bfloat16 for better performance on modern GPUs
|
| 74 |
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
|
| 75 |
+
|
| 76 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True)
|
| 77 |
model = AutoModelForCausalLM.from_pretrained(
|
| 78 |
model_id,
|
|
|
|
| 81 |
trust_remote_code=True,
|
| 82 |
low_cpu_mem_usage=True, # Optimization for large models
|
| 83 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 84 |
+
|
| 85 |
# Create the pipeline for text generation
|
| 86 |
generator = pipeline(
|
| 87 |
"text-generation",
|
|
|
|
| 89 |
tokenizer=tokenizer,
|
| 90 |
device=0 if torch.cuda.is_available() else -1
|
| 91 |
)
|
| 92 |
+
|
| 93 |
model_cache[model_id] = generator
|
| 94 |
gr.Info(f"Model '{model_id}' loaded successfully.")
|
| 95 |
return generator
|
|
|
|
| 97 |
# Raise a more specific error to be caught by the main evaluation function
|
| 98 |
raise RuntimeError(f"Failed to load model '{model_id}'. Please verify the model ID and your Hugging Face token (if required). Error: {e}")
|
| 99 |
|
|
|
|
| 100 |
# --- Evaluation Logic ---
|
|
|
|
| 101 |
def format_prompt(item):
|
| 102 |
"""Formats the MMLU question and choices into a standardized prompt."""
|
| 103 |
prompt = f"Question: {item['question']}\n\nChoices:\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\n\nAnswer:"
|
|
|
|
| 116 |
match = re.search(r"Answer:\s*([ABCD])", output_text.strip(), re.IGNORECASE)
|
| 117 |
if match:
|
| 118 |
return match.group(1).upper()
|
| 119 |
+
|
| 120 |
# Fallback: if the model just outputs a letter
|
| 121 |
match = re.search(r"^\s*([ABCD])\b", output_text.strip())
|
| 122 |
if match:
|
| 123 |
return match.group(1).upper()
|
|
|
|
| 124 |
return None
|
| 125 |
|
| 126 |
def evaluate_single_subject(generator, dataset_id, subject, sample_count, progress):
|
|
|
|
| 144 |
for item in progress.tqdm(dataset, desc=f"Evaluating {subject}"):
|
| 145 |
prompt, correct_answer_idx = format_prompt(item)
|
| 146 |
expected_letter = get_choice_letter(correct_answer_idx)
|
| 147 |
+
|
| 148 |
# The generated text is often just after the prompt. We need to slice it.
|
| 149 |
full_prompt_text = generator.tokenizer.decode(generator.tokenizer.encode(prompt), skip_special_tokens=True)
|
| 150 |
+
|
| 151 |
# Generate a short response, aiming for a single letter answer.
|
| 152 |
# do_sample=False (greedy decoding) is crucial for reproducibility.
|
| 153 |
raw_output = generator(prompt, max_new_tokens=5, do_sample=False, pad_token_id=generator.tokenizer.eos_token_id)[0]["generated_text"]
|
| 154 |
+
|
| 155 |
# Isolate the newly generated part
|
| 156 |
generated_text_only = raw_output[len(full_prompt_text):].strip()
|
|
|
|
| 157 |
predicted_letter = extract_predicted_letter(generated_text_only)
|
| 158 |
is_correct = (predicted_letter == expected_letter)
|
| 159 |
+
|
| 160 |
if is_correct:
|
| 161 |
correct_predictions += 1
|
| 162 |
+
|
| 163 |
results_details.append({
|
| 164 |
"Question": item['question'],
|
| 165 |
"Correct": "β
" if is_correct else "β",
|
|
|
|
| 167 |
"Predicted": predicted_letter or "N/A",
|
| 168 |
"Model Output": generated_text_only
|
| 169 |
})
|
|
|
|
| 170 |
accuracy = (correct_predictions / num_samples) * 100 if num_samples > 0 else 0
|
| 171 |
return accuracy, results_details
|
| 172 |
|
|
|
|
| 173 |
@spaces.GPU()
|
| 174 |
def run_evaluation(model_id, benchmark_category, subject_name, sample_count, progress=gr.Progress(track_tqdm=True)):
|
| 175 |
"""
|
|
|
|
| 180 |
try:
|
| 181 |
gr.Info("Starting evaluation...")
|
| 182 |
generator = load_model(model_id)
|
| 183 |
+
|
| 184 |
dataset_id = BENCHMARK_MAP.get(benchmark_category)
|
| 185 |
if not dataset_id:
|
| 186 |
raise ValueError(f"Invalid benchmark category: {benchmark_category}")
|
|
|
|
| 189 |
summary_lines = []
|
| 190 |
total_correct = 0
|
| 191 |
total_samples = 0
|
| 192 |
+
|
| 193 |
subjects_to_run = []
|
| 194 |
if subject_name == "ALL":
|
| 195 |
# Exclude the "ALL" placeholder from the list of subjects to run
|
|
|
|
| 210 |
gr.Info(f"Evaluating {benchmark_category} - {subject} ({i+1}/{len(subjects_to_run)})...")
|
| 211 |
try:
|
| 212 |
accuracy, subject_details = evaluate_single_subject(generator, dataset_id, subject, sample_count, progress)
|
| 213 |
+
|
| 214 |
all_results_details.extend(subject_details)
|
| 215 |
num_correct = sum(1 for d in subject_details if d['Correct'] == "β
")
|
| 216 |
num_evaluated = len(subject_details)
|
|
|
|
| 217 |
total_correct += num_correct
|
| 218 |
total_samples += num_evaluated
|
| 219 |
summary_lines.append(f"- **{subject}**: {accuracy:.2f}% ({num_correct}/{num_evaluated})")
|
| 220 |
+
|
| 221 |
except Exception as e:
|
| 222 |
error_trace = traceback.format_exc()
|
| 223 |
gr.Error(f"Skipping {subject} due to an error: {e}")
|
| 224 |
summary_lines.append(f"- **{subject}**: Evaluation failed. See logs for details:\n```\n{error_trace}\n```")
|
| 225 |
continue
|
| 226 |
+
|
| 227 |
overall_accuracy = (total_correct / total_samples) * 100 if total_samples > 0 else 0
|
| 228 |
+
|
| 229 |
# --- Prepare Outputs ---
|
| 230 |
if subject_name == "ALL":
|
| 231 |
result_summary = f"### Overall Average Accuracy: {overall_accuracy:.2f}%\n"
|
|
|
|
| 234 |
else:
|
| 235 |
result_summary = f"### Accuracy for {benchmark_category} - {subject_name}: {overall_accuracy:.2f}%\n"
|
| 236 |
result_summary += f"({total_correct:,}/{total_samples:,} correct)"
|
| 237 |
+
|
| 238 |
# Save results for leaderboard
|
| 239 |
record = {
|
| 240 |
"model_id": model_id,
|
|
|
|
| 246 |
}
|
| 247 |
with open(EVAL_FILE, "a") as f:
|
| 248 |
f.write(json.dumps(record) + "\n")
|
| 249 |
+
|
| 250 |
gr.Info("Evaluation completed successfully!")
|
| 251 |
+
|
| 252 |
df_details = pd.DataFrame(all_results_details)
|
| 253 |
+
|
| 254 |
# Return a dictionary of component updates
|
| 255 |
return {
|
| 256 |
result_summary_output: gr.update(value=result_summary, visible=True),
|
|
|
|
| 258 |
details_box: gr.update(visible=True),
|
| 259 |
detailed_results_df: gr.update(value=df_details)
|
| 260 |
}
|
|
|
|
| 261 |
except Exception as e:
|
| 262 |
error_message = f"An unexpected error occurred during setup: {e}"
|
| 263 |
error_details = traceback.format_exc()
|
| 264 |
gr.Error(error_message)
|
| 265 |
+
|
| 266 |
return {
|
| 267 |
result_summary_output: gr.update(visible=False),
|
| 268 |
error_box: gr.update(visible=True),
|
|
|
|
| 271 |
details_box: gr.update(visible=False)
|
| 272 |
}
|
| 273 |
|
|
|
|
| 274 |
# --- UI Helper Functions ---
|
|
|
|
| 275 |
def update_subject_dropdown(benchmark_category):
|
| 276 |
"""Updates the subject dropdown choices based on the selected benchmark."""
|
| 277 |
choices = ALL_BENCHMARK_SUBJECTS.get(benchmark_category, [])
|
|
|
|
| 287 |
try:
|
| 288 |
if not os.path.exists(EVAL_FILE):
|
| 289 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
| 290 |
+
|
| 291 |
df = pd.read_json(EVAL_FILE, lines=True)
|
| 292 |
if df.empty:
|
| 293 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
|
|
|
| 295 |
# Coerce accuracy to numeric and filter valid entries
|
| 296 |
df['accuracy'] = pd.to_numeric(df['accuracy'], errors='coerce')
|
| 297 |
df.dropna(subset=['accuracy'], inplace=True)
|
| 298 |
+
|
| 299 |
# Filter by the selected benchmark (e.g., MMLU or MMLU-Pro)
|
| 300 |
df_filtered = df[(df['benchmark'] == benchmark_filter) & (df['subject'] == 'ALL')].copy()
|
| 301 |
+
|
| 302 |
if df_filtered.empty:
|
| 303 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
| 304 |
|
| 305 |
# Find the latest evaluation for each model
|
| 306 |
df_filtered['timestamp'] = pd.to_datetime(df_filtered['timestamp'])
|
| 307 |
latest_evals = df_filtered.loc[df_filtered.groupby('model_id')['timestamp'].idxmax()].copy()
|
| 308 |
+
|
| 309 |
leaderboard_df = latest_evals.sort_values(by="accuracy", ascending=False).copy()
|
| 310 |
+
|
| 311 |
# Add Rank
|
| 312 |
leaderboard_df.insert(0, 'Rank', range(1, len(leaderboard_df) + 1))
|
|
|
|
| 313 |
# Rename and format columns
|
| 314 |
leaderboard_df.rename(columns={
|
| 315 |
'model_id': 'Model ID',
|
|
|
|
| 317 |
'sample_count': 'Total Samples',
|
| 318 |
'timestamp': 'Date'
|
| 319 |
}, inplace=True)
|
| 320 |
+
|
| 321 |
leaderboard_df['Avg. Accuracy (%)'] = leaderboard_df['Avg. Accuracy (%)'].map('{:.2f}'.format)
|
| 322 |
leaderboard_df['Date'] = leaderboard_df['Date'].dt.strftime('%Y-%m-%d')
|
| 323 |
+
|
| 324 |
progress(1, desc="Done.")
|
| 325 |
return leaderboard_df[['Rank', 'Model ID', 'Avg. Accuracy (%)', 'Total Samples', 'Date']]
|
|
|
|
| 326 |
except Exception as e:
|
| 327 |
gr.Error(f"Error loading leaderboard: {e}")
|
| 328 |
traceback.print_exc()
|
| 329 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
| 330 |
|
|
|
|
| 331 |
# --- Gradio Interface Definition ---
|
| 332 |
+
# Black/Orange Theme and bigger to fit screen
|
| 333 |
+
custom_css = """
|
| 334 |
+
/* --- Global & Layout (Bigger to fit screen) --- */
|
| 335 |
+
body { font-family: 'Inter', sans-serif; background-color: #1a1a1a; color: #f0f0f0; } /* Dark background, light text */
|
| 336 |
+
.gradio-container { max-width: 95% !important; margin: auto; padding: 20px; } /* Wider container */
|
| 337 |
+
.gr-group {
|
| 338 |
+
border-radius: 12px !important;
|
| 339 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.3) !important; /* Darker shadow */
|
| 340 |
+
border: 1px solid #333 !important; /* Darker border */
|
| 341 |
+
background-color: #2a2a2a; /* Darker group background */
|
| 342 |
+
}
|
| 343 |
+
.gr-panel {
|
| 344 |
+
border-radius: 12px !important;
|
| 345 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.3) !important;
|
| 346 |
+
border: 1px solid #333 !important;
|
| 347 |
+
background-color: #2a2a2a;
|
| 348 |
+
}
|
| 349 |
+
|
| 350 |
+
/* --- Typography (Orange Hues) --- */
|
| 351 |
+
h1 { text-align: center; font-size: 3rem !important; font-weight: 800; color: #ff8c00; margin-bottom: 0.5rem; letter-spacing: -1.5px; } /* Orange title */
|
| 352 |
+
h3, h4 { color: #ffa500; } /* Orange headings */
|
| 353 |
+
.subtitle { text-align: center; color: #cccccc; font-size: 1.2rem; margin-bottom: 2.5rem; max-width: 900px; margin-left: auto; margin-right: auto;}
|
| 354 |
+
label { color: #f0f0f0 !important; } /* Label text color */
|
| 355 |
|
| 356 |
+
/* --- Tabs --- */
|
| 357 |
+
.gradio-tabs { background-color: #2a2a2a; border-radius: 12px; }
|
| 358 |
+
.gradio-tab-item { color: #f0f0f0; }
|
| 359 |
+
.gradio-tabs button {
|
| 360 |
+
background-color: #3a3a3a !important;
|
| 361 |
+
color: #f0f0f0 !important;
|
| 362 |
+
border-radius: 8px 8px 0 0 !important;
|
| 363 |
+
transition: all 0.3s ease;
|
| 364 |
+
}
|
| 365 |
+
.gradio-tabs button.selected {
|
| 366 |
+
background-color: #ff8c00 !important; /* Orange selected tab */
|
| 367 |
+
color: #1a1a1a !important; /* Dark text on orange */
|
| 368 |
+
font-weight: 700;
|
| 369 |
+
}
|
| 370 |
+
.gradio-tabs button:hover { background-color: #555 !important; }
|
| 371 |
+
|
| 372 |
+
/* --- Inputs --- */
|
| 373 |
+
.gr-textbox, .gr-dropdown, .gr-slider {
|
| 374 |
+
background-color: #3a3a3a !important;
|
| 375 |
+
color: #f0f0f0 !important;
|
| 376 |
+
border: 1px solid #555 !important;
|
| 377 |
+
border-radius: 8px !important;
|
| 378 |
+
}
|
| 379 |
+
.gr-textbox textarea, .gr-textbox input, .gr-dropdown input {
|
| 380 |
+
color: #f0f0f0 !important;
|
| 381 |
+
}
|
| 382 |
+
.gr-textbox.gr-text-input:focus-within {
|
| 383 |
+
border-color: #ff8c00 !important; /* Orange focus border */
|
| 384 |
+
box-shadow: 0 0 0 2px rgba(255, 140, 0, 0.5) !important;
|
| 385 |
+
}
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
/* --- Buttons --- */
|
| 389 |
+
.gr-button { font-weight: 600 !important; transition: all 0.2s ease; border-radius: 8px !important; }
|
| 390 |
+
.gr-button-primary {
|
| 391 |
+
background-color: #ff8c00 !important; /* Orange primary button */
|
| 392 |
+
color: #1a1a1a !important;
|
| 393 |
+
box-shadow: 0 4px 10px rgba(255, 140, 0, 0.3);
|
| 394 |
+
border: none;
|
| 395 |
+
}
|
| 396 |
+
.gr-button-primary:hover {
|
| 397 |
+
transform: translateY(-2px);
|
| 398 |
+
box-shadow: 0 6px 15px rgba(255, 140, 0, 0.5);
|
| 399 |
+
background-color: #ffa500 !important; /* Slightly lighter orange on hover */
|
| 400 |
+
}
|
| 401 |
+
.gr-button-secondary {
|
| 402 |
+
background-color: #444 !important;
|
| 403 |
+
color: #f0f0f0 !important;
|
| 404 |
+
border: 1px solid #555 !important;
|
| 405 |
+
}
|
| 406 |
+
.gr-button-secondary:hover {
|
| 407 |
+
background-color: #555 !important;
|
| 408 |
+
}
|
| 409 |
|
| 410 |
/* --- Custom Radio Buttons (Segmented Control) --- */
|
| 411 |
#leaderboard-toggle-group { display: flex; justify-content: center; align-items: center; gap: 1rem; margin-bottom: 1.5rem; }
|
| 412 |
+
#leaderboard-toggle { background-color: #3a3a3a; padding: 5px; border-radius: 10px; display: inline-flex; border: 1px solid #555; }
|
| 413 |
#leaderboard-toggle div.gr-form { display: flex; gap: 5px; }
|
| 414 |
#leaderboard-toggle input[type='radio'] { display: none; }
|
| 415 |
+
#leaderboard-toggle label {
|
| 416 |
+
padding: 8px 16px;
|
| 417 |
+
border-radius: 8px;
|
| 418 |
+
cursor: pointer;
|
| 419 |
+
transition: all 0.3s ease;
|
| 420 |
+
font-weight: 500;
|
| 421 |
+
color: #f0f0f0;
|
| 422 |
+
background: transparent;
|
| 423 |
+
border: none;
|
| 424 |
+
box-shadow: none;
|
| 425 |
+
}
|
| 426 |
+
#leaderboard-toggle input[type='radio']:checked + label {
|
| 427 |
+
background-color: #ff8c00; /* Orange selected */
|
| 428 |
+
color: #1a1a1a;
|
| 429 |
+
font-weight: 600;
|
| 430 |
+
box-shadow: 0 2px 5px rgba(255, 140, 0, 0.3);
|
| 431 |
+
}
|
| 432 |
+
#leaderboard-toggle label:hover {
|
| 433 |
+
background-color: #555;
|
| 434 |
+
}
|
| 435 |
+
|
| 436 |
/* --- Dataframe / Table Styling --- */
|
| 437 |
.leaderboard-table .gr-dataframe table { border-collapse: collapse; width: 100%; }
|
| 438 |
+
.leaderboard-table .gr-dataframe thead th {
|
| 439 |
+
background-color: #3a3a3a !important;
|
| 440 |
+
color: #ffa500 !important; /* Orange headers */
|
| 441 |
+
font-weight: 600 !important;
|
| 442 |
+
text-align: left;
|
| 443 |
+
padding: 12px 15px;
|
| 444 |
+
border-bottom: 2px solid #555;
|
| 445 |
+
}
|
| 446 |
+
.leaderboard-table .gr-dataframe tbody tr:nth-of-type(even) { background-color: #2f2f2f; } /* Alternating row color */
|
| 447 |
+
.leaderboard-table .gr-dataframe tbody tr:hover { background-color: #4a4a4a; } /* Hover effect */
|
| 448 |
+
.leaderboard-table .gr-dataframe tbody td {
|
| 449 |
+
padding: 12px 15px;
|
| 450 |
+
border-bottom: 1px solid #3a3a3a;
|
| 451 |
+
color: #f0f0f0;
|
| 452 |
+
}
|
| 453 |
+
.leaderboard-table .gr-dataframe tbody td:first-child { font-weight: 700; color: #ffcc99; } /* Lighter orange for rank */
|
| 454 |
|
| 455 |
/* --- Error & Result Panes --- */
|
| 456 |
+
#error-display-box {
|
| 457 |
+
background-color: #4a1e1e !important; /* Dark red for error */
|
| 458 |
+
border-color: #8c2f2f !important;
|
| 459 |
+
color: #ffc9c9 !important; /* Lighter red text */
|
| 460 |
+
}
|
| 461 |
+
#result-summary-box {
|
| 462 |
+
background-color: #1e3a2a !important; /* Dark green for success */
|
| 463 |
+
border-color: #2f8c4a !important;
|
| 464 |
+
color: #c9ffc9 !important; /* Lighter green text */
|
| 465 |
+
}
|
| 466 |
+
.gr-markdown p { color: #f0f0f0 !important; } /* Ensure markdown paragraph text is visible */
|
| 467 |
+
.gr-markdown strong { color: #ffa500 !important; } /* Strong text in orange */
|
| 468 |
+
.gradio-message { background-color: #ff8c00 !important; color: #1a1a1a !important; border: 1px solid #ff8c00 !important; } /* Gradio Info messages */
|
| 469 |
+
"""
|
| 470 |
+
|
| 471 |
+
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
|
| 472 |
gr.Markdown("<h1>π Open LLM Evaluator</h1>")
|
| 473 |
+
gr.Markdown("<p class='subtitle'>Benchmark leading models on MMLU. Your results contribute to a live leaderboard. Select a benchmark and run an evaluation, or view the current standings.</p>")
|
| 474 |
+
|
| 475 |
with gr.Tabs() as tabs:
|
| 476 |
# --- Leaderboard Tab ---
|
| 477 |
with gr.TabItem("π Leaderboard", id=0):
|
| 478 |
with gr.Column():
|
| 479 |
with gr.Row(elem_id="leaderboard-toggle-group"):
|
| 480 |
+
# Temporarily remove MMLU-Pro from radio options
|
| 481 |
leaderboard_type_toggle = gr.Radio(
|
| 482 |
+
["MMLU"],
|
| 483 |
label="Select Benchmark",
|
| 484 |
value="MMLU",
|
| 485 |
interactive=True,
|
|
|
|
| 488 |
show_label=False,
|
| 489 |
)
|
| 490 |
refresh_button = gr.Button("π Refresh", size="sm")
|
|
|
|
| 491 |
leaderboard_table_output = gr.DataFrame(
|
| 492 |
headers=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"],
|
| 493 |
interactive=False,
|
| 494 |
datatype=["number", "str", "str", "number", "str"],
|
| 495 |
+
row_count=15, # Adjusted for more rows
|
| 496 |
+
elem_classes="leaderboard-table",
|
| 497 |
+
# Removed col_count to allow dynamic width
|
| 498 |
)
|
| 499 |
+
|
| 500 |
# --- Evaluation Tab ---
|
| 501 |
with gr.TabItem("π Run Evaluation", id=1):
|
| 502 |
with gr.Row(variant='panel'):
|
|
|
|
| 506 |
model_id_input = gr.Textbox(
|
| 507 |
label="Hugging Face Model ID",
|
| 508 |
placeholder="e.g., meta-llama/Meta-Llama-3-8B-Instruct",
|
| 509 |
+
interactive=True,
|
| 510 |
+
scale=2 # Increased scale for textbox
|
| 511 |
)
|
| 512 |
+
# Temporarily remove MMLU-Pro from radio options
|
| 513 |
benchmark_selection_radio = gr.Radio(
|
| 514 |
+
["MMLU"],
|
| 515 |
label="Benchmark",
|
| 516 |
value="MMLU",
|
| 517 |
interactive=True,
|
|
|
|
| 519 |
with gr.Row():
|
| 520 |
benchmark_subject_dropdown = gr.Dropdown(
|
| 521 |
label="Subject",
|
| 522 |
+
# Ensure only MMLU subjects are fetched
|
| 523 |
+
choices=ALL_BENCHMARK_SUBJECTS.get("MMLU", []),
|
| 524 |
value="ALL",
|
| 525 |
interactive=True
|
| 526 |
)
|
|
|
|
| 528 |
label="Samples per Subject",
|
| 529 |
minimum=5, maximum=100, value=25, step=5, interactive=True
|
| 530 |
)
|
|
|
|
| 531 |
run_button = gr.Button("Start Evaluation", variant="primary", scale=1)
|
| 532 |
+
|
| 533 |
with gr.Column(scale=3):
|
| 534 |
gr.Markdown("### 2. View Results")
|
| 535 |
+
|
| 536 |
# Panel for displaying the summary of results
|
| 537 |
with gr.Group(visible=False) as result_summary_box:
|
| 538 |
result_summary_output = gr.Markdown(elem_id="result-summary-box")
|
| 539 |
+
|
| 540 |
# Panel for displaying errors
|
| 541 |
with gr.Group(visible=False) as error_box:
|
| 542 |
error_output = gr.Textbox(label="Error Message", interactive=False, elem_id="error-display-box")
|
| 543 |
error_details_output = gr.Textbox(label="Error Details (Traceback)", interactive=False, lines=8)
|
| 544 |
+
|
| 545 |
# Panel for detailed, row-by-row results
|
| 546 |
with gr.Group(visible=False) as details_box:
|
| 547 |
gr.Markdown("#### Detailed Evaluation Log")
|
|
|
|
| 549 |
headers=["Question", "Correct", "Expected", "Predicted", "Model Output"],
|
| 550 |
datatype=["str", "str", "str", "str", "str"],
|
| 551 |
interactive=False,
|
| 552 |
+
row_count=10, # Adjusted for more rows
|
| 553 |
+
# Removed col_count to allow dynamic width
|
| 554 |
wrap=True,
|
| 555 |
)
|
| 556 |
|
| 557 |
+
# --- Event Handlers & Logic ---
|
|
|
|
| 558 |
# Update subject dropdown when benchmark type changes
|
| 559 |
benchmark_selection_radio.change(
|
| 560 |
fn=update_subject_dropdown,
|
| 561 |
inputs=[benchmark_selection_radio],
|
| 562 |
outputs=[benchmark_subject_dropdown]
|
| 563 |
)
|
| 564 |
+
|
| 565 |
# Main evaluation trigger
|
| 566 |
run_button.click(
|
| 567 |
fn=run_evaluation,
|
|
|
|
| 595 |
|
| 596 |
# Launch the Gradio app
|
| 597 |
if __name__ == "__main__":
|
| 598 |
+
demo.launch(debug=True)
|