Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,16 @@
|
|
| 1 |
-
# Use a pipeline as a high-level helper
|
| 2 |
-
from transformers import pipeline
|
| 3 |
import streamlit as st
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
st.
|
| 8 |
|
| 9 |
-
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
st.write(pipe(messages))
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
|
| 4 |
+
model_name = "deepseek-ai/DeepSeek-V3-Base"
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, quantization_config=None)
|
| 7 |
|
| 8 |
+
st.title("DeepSeek Chatbot")
|
| 9 |
|
| 10 |
+
prompt = st.text_input("Enter your message:")
|
| 11 |
|
| 12 |
+
if prompt:
|
| 13 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
| 14 |
+
outputs = model.generate(inputs)
|
| 15 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 16 |
+
st.write(response)
|
|
|
|
|
|
|
|
|