Spaces:
Running
Running
visualization
Browse files
app.py
CHANGED
|
@@ -48,7 +48,7 @@ def word_embedding_space_analysis(
|
|
| 48 |
for t in side_tokens:
|
| 49 |
word = tokenizer.decode([t])
|
| 50 |
if (
|
| 51 |
-
len(word) > 2 and
|
| 52 |
word[1:].isalpha() and word[1:].lower().islower()
|
| 53 |
):
|
| 54 |
word = word[1:]
|
|
@@ -65,7 +65,7 @@ def word_embedding_space_analysis(
|
|
| 65 |
data,
|
| 66 |
columns=["Words Contributing to the Style"],
|
| 67 |
index=[f"Dim#{_i}" for _i in range(n_dim)],
|
| 68 |
-
)
|
| 69 |
|
| 70 |
|
| 71 |
# rgb tuple to hex color
|
|
@@ -77,6 +77,8 @@ def main():
|
|
| 77 |
# set up the page
|
| 78 |
random.seed(0)
|
| 79 |
nltk.download('words')
|
|
|
|
|
|
|
| 80 |
title = "LM-Steer: Word Embeddings Are Steers for Language Models"
|
| 81 |
st.set_page_config(
|
| 82 |
layout="wide",
|
|
@@ -92,8 +94,12 @@ def main():
|
|
| 92 |
https://github.com/Glaciohound/LM-Steer.
|
| 93 |
'''
|
| 94 |
st.subheader("Overview")
|
| 95 |
-
st.
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
'''
|
| 98 |
Language models (LMs) automatically learn word embeddings during
|
| 99 |
pre-training on language corpora. Although word embeddings are usually
|
|
@@ -168,7 +174,7 @@ def main():
|
|
| 168 |
"Detoxification Strength (Toxic ↔︎ Clean)",
|
| 169 |
-steer_range, steer_range, 0.0,
|
| 170 |
steer_interval)
|
| 171 |
-
max_length = col3.number_input("Max length", 20,
|
| 172 |
col1, col2, col3, _ = st.columns(4)
|
| 173 |
randomness = col2.checkbox("Random sampling", value=False)
|
| 174 |
|
|
@@ -191,8 +197,9 @@ def main():
|
|
| 191 |
do_sample=True,
|
| 192 |
top_p=0.9,
|
| 193 |
)
|
| 194 |
-
|
| 195 |
-
|
|
|
|
| 196 |
|
| 197 |
# Analysing the sentence
|
| 198 |
st.divider()
|
|
@@ -202,17 +209,19 @@ def main():
|
|
| 202 |
LM-Steer also serves as a probe for analyzing the text. It can be used to
|
| 203 |
analyze the sentiment and detoxification of the text. Now, we proceed and
|
| 204 |
use LM-Steer to analyze the text in the box above. You can also modify the
|
| 205 |
-
text or use your own.
|
| 206 |
entangled, as a negative sentiment may also detoxify the text.
|
| 207 |
'''
|
|
|
|
|
|
|
| 208 |
if st.session_state.get("analyzed_text", "") != "" and \
|
| 209 |
st.button("Analyze the text above", type="primary"):
|
| 210 |
col1, col2 = st.columns(2)
|
| 211 |
for name, col, dim, color, axis_annotation in zip(
|
| 212 |
-
|
| 213 |
[col1, col2],
|
| 214 |
[2, 0],
|
| 215 |
-
|
| 216 |
["Negative ↔︎ Positive", "Toxic ↔︎ Clean"]
|
| 217 |
):
|
| 218 |
with st.spinner(f"Analyzing {name}..."):
|
|
@@ -269,10 +278,10 @@ def main():
|
|
| 269 |
style. This analysis can be used to understand the word embedding space
|
| 270 |
and how it steers the model's generation.
|
| 271 |
'''
|
| 272 |
-
for dimension in
|
| 273 |
f'##### {dimension} Word Dimensions'
|
| 274 |
dim = 2 if dimension == "Sentiment" else 0
|
| 275 |
-
analysis_result = word_embedding_space_analysis(
|
| 276 |
model_name, dim)
|
| 277 |
with st.expander("Show the analysis results"):
|
| 278 |
color_scale = 7
|
|
@@ -291,6 +300,25 @@ def main():
|
|
| 291 |
for i in range(len(x))
|
| 292 |
]
|
| 293 |
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
|
| 296 |
if __name__ == "__main__":
|
|
|
|
| 48 |
for t in side_tokens:
|
| 49 |
word = tokenizer.decode([t])
|
| 50 |
if (
|
| 51 |
+
len(word) > 2 and word[0] == " " and
|
| 52 |
word[1:].isalpha() and word[1:].lower().islower()
|
| 53 |
):
|
| 54 |
word = word[1:]
|
|
|
|
| 65 |
data,
|
| 66 |
columns=["Words Contributing to the Style"],
|
| 67 |
index=[f"Dim#{_i}" for _i in range(n_dim)],
|
| 68 |
+
), D
|
| 69 |
|
| 70 |
|
| 71 |
# rgb tuple to hex color
|
|
|
|
| 77 |
# set up the page
|
| 78 |
random.seed(0)
|
| 79 |
nltk.download('words')
|
| 80 |
+
dimension_names = ["Detoxification", "Sentiment"]
|
| 81 |
+
dimension_colors = ["#1f77b4", "#ff7f0e"]
|
| 82 |
title = "LM-Steer: Word Embeddings Are Steers for Language Models"
|
| 83 |
st.set_page_config(
|
| 84 |
layout="wide",
|
|
|
|
| 94 |
https://github.com/Glaciohound/LM-Steer.
|
| 95 |
'''
|
| 96 |
st.subheader("Overview")
|
| 97 |
+
col1, col2, col3 = st.columns([1, 5, 1])
|
| 98 |
+
col2.image(
|
| 99 |
+
'https://raw.githubusercontent.com/Glaciohound/LM-Steer'
|
| 100 |
+
'/refs/heads/main/assets/overview_fig.jpg',
|
| 101 |
+
caption="LM-Steer Method Overview"
|
| 102 |
+
)
|
| 103 |
'''
|
| 104 |
Language models (LMs) automatically learn word embeddings during
|
| 105 |
pre-training on language corpora. Although word embeddings are usually
|
|
|
|
| 174 |
"Detoxification Strength (Toxic ↔︎ Clean)",
|
| 175 |
-steer_range, steer_range, 0.0,
|
| 176 |
steer_interval)
|
| 177 |
+
max_length = col3.number_input("Max length", 20, 300, 20, 40)
|
| 178 |
col1, col2, col3, _ = st.columns(4)
|
| 179 |
randomness = col2.checkbox("Random sampling", value=False)
|
| 180 |
|
|
|
|
| 197 |
do_sample=True,
|
| 198 |
top_p=0.9,
|
| 199 |
)
|
| 200 |
+
|
| 201 |
+
with st.chat_message("human"):
|
| 202 |
+
st.write(st.session_state.output)
|
| 203 |
|
| 204 |
# Analysing the sentence
|
| 205 |
st.divider()
|
|
|
|
| 209 |
LM-Steer also serves as a probe for analyzing the text. It can be used to
|
| 210 |
analyze the sentiment and detoxification of the text. Now, we proceed and
|
| 211 |
use LM-Steer to analyze the text in the box above. You can also modify the
|
| 212 |
+
text or use your own. You may observe that these two dimensions can be
|
| 213 |
entangled, as a negative sentiment may also detoxify the text.
|
| 214 |
'''
|
| 215 |
+
st.session_state.analyzed_text = \
|
| 216 |
+
st.text_area("Text to analyze:", st.session_state.output, height=200)
|
| 217 |
if st.session_state.get("analyzed_text", "") != "" and \
|
| 218 |
st.button("Analyze the text above", type="primary"):
|
| 219 |
col1, col2 = st.columns(2)
|
| 220 |
for name, col, dim, color, axis_annotation in zip(
|
| 221 |
+
dimension_names,
|
| 222 |
[col1, col2],
|
| 223 |
[2, 0],
|
| 224 |
+
dimension_colors,
|
| 225 |
["Negative ↔︎ Positive", "Toxic ↔︎ Clean"]
|
| 226 |
):
|
| 227 |
with st.spinner(f"Analyzing {name}..."):
|
|
|
|
| 278 |
style. This analysis can be used to understand the word embedding space
|
| 279 |
and how it steers the model's generation.
|
| 280 |
'''
|
| 281 |
+
for dimension, color in zip(dimension_names, dimension_colors):
|
| 282 |
f'##### {dimension} Word Dimensions'
|
| 283 |
dim = 2 if dimension == "Sentiment" else 0
|
| 284 |
+
analysis_result, D = word_embedding_space_analysis(
|
| 285 |
model_name, dim)
|
| 286 |
with st.expander("Show the analysis results"):
|
| 287 |
color_scale = 7
|
|
|
|
| 300 |
for i in range(len(x))
|
| 301 |
]
|
| 302 |
))
|
| 303 |
+
embeddings = model.steer.lm_head.weight
|
| 304 |
+
dim1 = embeddings.matmul(D[0]).tolist()
|
| 305 |
+
dim2 = embeddings.matmul(D[1]).tolist()
|
| 306 |
+
words = [tokenizer.decode([i]) for i in range(len(embeddings))]
|
| 307 |
+
scatter_chart = [
|
| 308 |
+
(_d1, _d2, _word)
|
| 309 |
+
for _d1, _d2, _word in zip(dim1, dim2, words)
|
| 310 |
+
if len(_word) > 2 and _word[0] == " " and
|
| 311 |
+
_word[1:].isalpha() and _word[1:].lower().islower()
|
| 312 |
+
]
|
| 313 |
+
scatter_chart = pd.DataFrame(
|
| 314 |
+
scatter_chart,
|
| 315 |
+
columns=["Dim1", "Dim2", "Word"]
|
| 316 |
+
)
|
| 317 |
+
st.scatter_chart(
|
| 318 |
+
scatter_chart, x="Dim1", y="Dim2",
|
| 319 |
+
color="Word",
|
| 320 |
+
# color=color,
|
| 321 |
+
height=1000, size=50,)
|
| 322 |
|
| 323 |
|
| 324 |
if __name__ == "__main__":
|