from fastapi import FastAPI, UploadFile, File, Form, HTTPException from fastapi.middleware.cors import CORSMiddleware from fastapi.staticfiles import StaticFiles from pydantic import BaseModel import uuid import os from datetime import datetime from config import config from database import db from ai_model import ai_models import uvicorn import json app = FastAPI( title="MobileDoc API", description="Mobile Doctor Backend MVP", version="1.0.0" ) # ---------------- Middleware ---------------- app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # ---------------- File Handling ---------------- os.makedirs(config.UPLOAD_DIR, exist_ok=True) app.mount("/uploads", StaticFiles(directory=config.UPLOAD_DIR), name="uploads") # ---------------- Pydantic Models ---------------- class UserProfile(BaseModel): username: str email: str age: int gender: str allergies: str = "" conditions: str = "" class LoginRequest(BaseModel): username: str class SymptomsRequest(BaseModel): user_id: str symptoms: str class AnalysisResponse(BaseModel): success: bool data: dict message: str = "" # ---------------- Routes ---------------- @app.get("/") async def root(): return {"status": "AI Health Diagnostics API Running", "timestamp": datetime.now().isoformat()} # ---------- Create User Profile ---------- @app.post("/create-profile", response_model=AnalysisResponse) async def create_profile(profile: UserProfile): try: user_id = str(uuid.uuid4()) user_data = { "id": user_id, "username": profile.username.strip(), "email": profile.email.strip(), "age": profile.age, "gender": profile.gender, "allergies": profile.allergies, "conditions": profile.conditions } db.create_user(user_data) return AnalysisResponse( success=True, data={"user_id": user_id}, message="Profile created successfully" ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # ---------- Check User Profile ---------- @app.post("/check-profile", response_model=AnalysisResponse) async def check_profile(request: LoginRequest): username = request.username.strip() try: response = db.client.table("users").select("*").eq("username", username).execute() users = response.data or [] if not users: raise HTTPException(status_code=404, detail="User not found") user = users[0] return AnalysisResponse( success=True, data={"user_id": user["id"], "username": user["username"]}, message="Profile found" ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # ---------- Symptom Check ---------- @app.post("/symptom-check", response_model=AnalysisResponse) async def symptom_check(request: SymptomsRequest): try: # Fetch user from Supabase user_response = db.client.table("users").select("*").eq("id", request.user_id).execute() users = user_response.data or [] if not users: raise HTTPException(status_code=404, detail="User not found") user_profile = users[0] # Run AI analysis analysis_result = ai_models.analyze_symptoms(request.symptoms, user_profile) # Log analysis db.log_symptom_analysis({ "id": str(uuid.uuid4()), "user_id": request.user_id, "symptoms": request.symptoms, "result": json.dumps(analysis_result) }) return AnalysisResponse( success=True, data=analysis_result, message="Symptoms analyzed successfully" ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # ---------- Image Analysis ---------- @app.post("/analyze-image", response_model=AnalysisResponse) async def analyze_image( user_id: str = Form(...), image_type: str = Form("skin"), file: UploadFile = File(...) ): try: allowed_types = ["image/jpeg", "image/png", "image/jpg"] if file.content_type not in allowed_types: raise HTTPException(status_code=400, detail="Invalid image format") image_data = await file.read() if len(image_data) > config.MAX_IMAGE_SIZE: raise HTTPException(status_code=400, detail="Image too large") analysis_result = ai_models.analyze_image(image_data, image_type) filename = f"{uuid.uuid4()}_{file.filename}" file_path = os.path.join(config.UPLOAD_DIR, filename) with open(file_path, "wb") as f: f.write(image_data) db.log_image_analysis({ "id": str(uuid.uuid4()), "user_id": user_id, "filename": filename, "result": json.dumps(analysis_result), "confidence": analysis_result.get("confidence", 0.0) }) return AnalysisResponse( success=True, data=analysis_result, message="Image analyzed successfully" ) except Exception as e: print("🔥 SERVER ERROR:", repr(e)) raise HTTPException(status_code=500, detail=str(e)) # ---------- User History ---------- @app.get("/user-history/{user_id}", response_model=AnalysisResponse) async def get_user_history(user_id: str): try: symptoms = db.client.table("symptoms_history").select("*").eq("user_id", user_id).order("created_at", desc=True).limit(10).execute() images = db.client.table("image_analysis").select("*").eq("user_id", user_id).order("created_at", desc=True).limit(10).execute() return AnalysisResponse( success=True, data={ "symptom_checks": symptoms.data or [], "image_analyses": images.data or [] }, message="History retrieved successfully" ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # ---------- Run Server ---------- if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)