Spaces:
Running
Running
File size: 39,302 Bytes
cd35cc5 916081e cd35cc5 65dee7e cd35cc5 65dee7e 916081e 65dee7e 916081e 65dee7e cd35cc5 65dee7e 916081e cd35cc5 916081e cd35cc5 65dee7e 916081e 65dee7e cd35cc5 65dee7e 916081e cd35cc5 65dee7e cd35cc5 65dee7e 916081e cd35cc5 916081e cd35cc5 65dee7e cd35cc5 65dee7e cd35cc5 916081e 65dee7e cd35cc5 916081e 65dee7e cd35cc5 65dee7e cd35cc5 65dee7e 916081e 65dee7e 916081e cd35cc5 916081e 65dee7e cd35cc5 65dee7e cd35cc5 65dee7e 916081e cd35cc5 916081e 65dee7e cd35cc5 65dee7e cd35cc5 65dee7e cd35cc5 65dee7e cd35cc5 65dee7e 916081e 65dee7e 916081e 65dee7e cd35cc5 751ed9e cd35cc5 751ed9e 0f46d9e 751ed9e 0f46d9e 751ed9e 0f46d9e cd35cc5 65dee7e cd35cc5 916081e 65dee7e cd35cc5 65dee7e cd35cc5 663d76d cd35cc5 663d76d cd35cc5 65dee7e 916081e 65dee7e cd35cc5 65dee7e cd35cc5 65dee7e cd35cc5 ed505fe cd35cc5 663d76d cd35cc5 663d76d cd35cc5 663d76d cd35cc5 663d76d cd35cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 |
"""
Pip - Your Emotional AI Companion
A Gradio app with MCP server for emotional support and creative expression.
"""
import gradio as gr
import asyncio
import base64
import os
import uuid
import tempfile
import httpx
from typing import Optional
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Enable nested event loops for Gradio + asyncio compatibility
import nest_asyncio
nest_asyncio.apply()
from pip_character import get_pip_svg, get_all_states_preview, PipState
from pip_brain import PipBrain, get_brain, PipResponse
from pip_voice import PipVoice, PipEars
# =============================================================================
# GLOBAL STATE
# =============================================================================
brain = get_brain()
voice = PipVoice()
ears = PipEars()
# Gallery storage - stores (image_path, caption) tuples
gallery_images: list[tuple[str, str]] = []
# =============================================================================
# CORE FUNCTIONS
# =============================================================================
async def process_message(
message: str,
history: list,
session_id: str,
mode: str,
generate_voice: bool
) -> tuple:
"""
Process a user message and return Pip's response.
NOTE: No longer generates images automatically - use Visualize button.
Returns:
(updated_history, pip_svg, audio_data, status)
"""
if not message.strip():
return history, get_pip_svg("neutral"), None, "Please say something!"
# Set mode
brain.set_mode(session_id, mode.lower() if mode != "Auto" else "auto")
# Initialize history
history = history or []
# Add user message immediately
history.append({"role": "user", "content": message})
# Process through brain
response = await brain.process(
user_input=message,
session_id=session_id,
generate_voice=generate_voice
)
# Add Pip's response (with acknowledgment context)
full_response = response.response_text
history.append({"role": "assistant", "content": full_response})
# Prepare audio - save to temp file for Gradio
audio_data = None
if response.audio and response.audio.audio_bytes:
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f:
f.write(response.audio.audio_bytes)
audio_data = f.name
# Get Pip SVG for current state
pip_svg = get_pip_svg(response.pip_state)
# Status with emotions
emotions = response.emotion_state.get('primary_emotions', ['neutral'])
action = response.action.get('action', 'reflect')
status = f"π {', '.join(emotions)} | π― {action}"
return history, pip_svg, audio_data, status
async def visualize_mood(session_id: str) -> tuple:
"""
Generate an image based on current conversation context.
Called when user clicks "Visualize" button.
Returns:
(image_data, explanation, pip_svg, status)
"""
global gallery_images
try:
# Generate image using full conversation context
image, explanation = await brain.visualize_current_mood(session_id)
if image and image.image_data:
# Save image to temp file
if image.is_url:
img_response = httpx.get(image.image_data, timeout=30)
if img_response.status_code == 200:
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as f:
f.write(img_response.content)
image_data = f.name
else:
return None, "", get_pip_svg("confused"), "Couldn't download image"
else:
img_bytes = base64.b64decode(image.image_data)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as f:
f.write(img_bytes)
image_data = f.name
# Save to gallery
import datetime
timestamp = datetime.datetime.now().strftime("%I:%M %p")
short_explanation = explanation[:50] + "..." if len(explanation) > 50 else explanation
caption = f"Visualization β’ {timestamp}"
gallery_images.append((image_data, caption))
print(f"Added to gallery: {caption}")
return image_data, explanation, get_pip_svg("happy"), f"β¨ Created with {image.provider}!"
else:
return None, "", get_pip_svg("confused"), "Couldn't generate image. Try again?"
except Exception as e:
print(f"Visualize error: {e}")
import traceback
traceback.print_exc()
return None, "", get_pip_svg("confused"), f"Error: {str(e)[:50]}"
def visualize_mood_sync(session_id):
"""Synchronous wrapper for visualize_mood."""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(visualize_mood(session_id))
def process_message_sync(message, history, session_id, mode, generate_voice):
"""Synchronous wrapper for async process_message."""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Returns: (history, pip_svg, audio_data, status) - NO image
return loop.run_until_complete(process_message(message, history, session_id, mode, generate_voice))
async def process_voice_input(audio_data, history, session_id, mode):
"""
Process voice input - transcribe and respond.
"""
if audio_data is None:
return history, get_pip_svg("neutral"), None, None, "No audio received"
try:
# Transcribe audio
sample_rate, audio_array = audio_data
# Convert to bytes for Whisper
import io
import soundfile as sf
import numpy as np
# Handle different audio formats
if len(audio_array.shape) > 1:
# Stereo to mono
audio_array = audio_array.mean(axis=1)
# Normalize audio to float32
if audio_array.dtype == np.int16:
audio_array = audio_array.astype(np.float32) / 32768.0
elif audio_array.dtype == np.int32:
audio_array = audio_array.astype(np.float32) / 2147483648.0
elif audio_array.dtype != np.float32:
audio_array = audio_array.astype(np.float32)
# Ensure values are in valid range
audio_array = np.clip(audio_array, -1.0, 1.0)
# Write to bytes buffer as WAV
buffer = io.BytesIO()
sf.write(buffer, audio_array, sample_rate, format='WAV', subtype='PCM_16')
buffer.seek(0) # Reset buffer position to start
audio_bytes = buffer.getvalue()
print(f"Voice input: {len(audio_bytes)} bytes, sample rate: {sample_rate}")
# Transcribe
transcription = await ears.listen_bytes(audio_bytes)
if not transcription:
return history, get_pip_svg("confused"), None, "Couldn't understand audio. Try speaking clearly."
print(f"Transcription: {transcription}")
# Process the transcribed text (no image - returns: history, pip_svg, audio, status)
return await process_message(transcription, history, session_id, mode, True)
except Exception as e:
print(f"Voice processing error: {e}")
import traceback
traceback.print_exc()
return history, get_pip_svg("confused"), None, f"Voice processing error: {str(e)[:100]}"
def process_voice_sync(audio_data, history, session_id, mode):
"""Synchronous wrapper for voice processing."""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(process_voice_input(audio_data, history, session_id, mode))
def create_session_id():
"""Generate a new session ID."""
return str(uuid.uuid4())[:8]
async def create_memory(session_id: str, history: list) -> tuple:
"""
Create a memory artifact from the conversation.
Returns: (summary_text, image_data, explanation, audio_data, pip_svg, status)
"""
global gallery_images
if not history:
return "No conversation to summarize yet!", None, "", None, get_pip_svg("neutral"), "Start a conversation first!"
try:
# Get memory summary from brain
result = await brain.summarize_conversation(session_id, generate_voice=True)
# Create explanation from the analysis
analysis = result.get("analysis", {})
emotions = result.get("emotions_journey", ["reflection"])
explanation = ""
if analysis:
visual_metaphor = analysis.get("visual_metaphor", "")
if visual_metaphor:
explanation = f"This captures your journey: {visual_metaphor[:100]}..."
else:
explanation = f"A visual embrace of your {', '.join(emotions[:2])} today."
else:
explanation = f"A memory of our conversation, holding your {emotions[0] if emotions else 'feelings'}."
# Prepare image - save to temp file
image_data = None
if result.get("image") and result["image"].image_data:
try:
if result["image"].is_url:
img_response = httpx.get(result["image"].image_data, timeout=30)
if img_response.status_code == 200:
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as f:
f.write(img_response.content)
image_data = f.name
else:
img_bytes = base64.b64decode(result["image"].image_data)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as f:
f.write(img_bytes)
image_data = f.name
except Exception as e:
print(f"Error processing memory image: {e}")
image_data = None
# Save to gallery if we have an image
if image_data:
import datetime
timestamp = datetime.datetime.now().strftime("%I:%M %p")
caption = f"Memory β’ {timestamp} β’ {', '.join(emotions[:2])}"
gallery_images.append((image_data, caption))
print(f"Added to gallery: {caption}")
# Prepare audio
audio_data = None
if result.get("audio") and result["audio"].audio_bytes:
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f:
f.write(result["audio"].audio_bytes)
audio_data = f.name
emotions_str = ", ".join(result.get("emotions_journey", ["reflection"]))
status = f"β¨ Memory created! Emotions: {emotions_str}"
# Return: summary, image, explanation, audio, pip_svg, status
return result.get("summary", ""), image_data, explanation, audio_data, get_pip_svg("happy"), status
except Exception as e:
print(f"Error creating memory: {e}")
import traceback
traceback.print_exc()
return "Something went wrong creating your memory.", None, "", None, get_pip_svg("concerned"), f"Error: {str(e)[:50]}"
def create_memory_sync(session_id, history):
"""Synchronous wrapper for create_memory."""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(create_memory(session_id, history))
def clear_conversation(session_id):
"""Clear conversation history."""
brain.clear_history(session_id)
# Returns: chatbot, pip_svg, mood_image, image_explanation, audio_output, memory_summary visibility, status
return [], get_pip_svg("neutral"), None, gr.update(visible=False), None, gr.update(visible=False), "Ready to listen..."
def update_pip_state(state: str):
"""Update Pip's visual state."""
return get_pip_svg(state)
def get_gallery_images():
"""Get all images in the gallery."""
global gallery_images
if not gallery_images:
return []
# Return list of (image_path, caption) for Gradio Gallery
return [(img, cap) for img, cap in gallery_images if img]
def refresh_gallery():
"""Refresh the gallery display."""
return get_gallery_images()
# =============================================================================
# MCP TOOLS (Exposed via Gradio MCP Server)
# =============================================================================
def chat_with_pip(message: str, session_id: str = "mcp_default") -> dict:
"""
Talk to Pip about how you're feeling.
Pip is an emotional companion who understands your feelings
and responds with warmth, images, and optional voice.
Args:
message: What you want to tell Pip
session_id: Optional session ID for conversation continuity
Returns:
Pip's response including text and generated image
"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
response = loop.run_until_complete(brain.process(
user_input=message,
session_id=session_id,
generate_voice=False
))
return {
"response": response.response_text,
"emotions_detected": response.emotion_state.get("primary_emotions", []),
"action": response.action.get("action", "reflect"),
"pip_state": response.pip_state,
"image_generated": response.image is not None,
"image_prompt": response.image_prompt
}
def generate_mood_artifact(emotion: str, context: str) -> dict:
"""
Generate a visual artifact that captures an emotional state.
Creates an image that represents or responds to the given emotion and context.
Args:
emotion: The primary emotion (happy, sad, anxious, excited, etc.)
context: Additional context about the emotional state
Returns:
Generated image and metadata
"""
from pip_artist import PipArtist
from pip_prompts import PROMPT_ENHANCER_PROMPT
from services.sambanova_client import SambanovaClient
async def _generate():
sambanova = SambanovaClient()
artist = PipArtist()
emotion_state = {
"primary_emotions": [emotion],
"intensity": 7
}
# Generate image prompt
image_prompt = await sambanova.enhance_prompt(
context, emotion_state, "alchemist", PROMPT_ENHANCER_PROMPT
)
# Generate image
image = await artist.generate_for_mood(image_prompt, "warm", "reflect")
return {
"prompt_used": image_prompt,
"provider": image.provider if image else "none",
"image_generated": image.image_data is not None if image else False
}
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(_generate())
def get_pip_gallery(session_id: str = "mcp_default") -> list:
"""
Get the conversation history with Pip.
Returns the emotional journey of your conversation.
Args:
session_id: Session to retrieve history for
Returns:
List of conversation messages
"""
return brain.get_history(session_id)
def set_pip_mode(mode: str, session_id: str = "mcp_default") -> str:
"""
Set Pip's interaction mode.
Modes:
- auto: Pip decides the best mode based on context
- alchemist: Transforms emotions into magical artifacts
- artist: Creates day summaries as art
- dream: Visualizes thoughts in surreal imagery
- night: Calming companion for late-night moments
Args:
mode: One of auto, alchemist, artist, dream, night
session_id: Session to set mode for
Returns:
Confirmation message
"""
valid_modes = ["auto", "alchemist", "artist", "dream", "night"]
mode_lower = mode.lower()
if mode_lower not in valid_modes:
return f"Invalid mode. Choose from: {', '.join(valid_modes)}"
brain.set_mode(session_id, mode_lower)
return f"Pip is now in {mode} mode"
# =============================================================================
# GRADIO UI
# =============================================================================
# Custom CSS for styling
CUSTOM_CSS = """
/* Force Dark Theme Defaults */
body, .gradio-container {
background-color: #1a1a2e !important;
color: #e0e0e0 !important;
}
/* Pip avatar container */
.pip-container {
display: flex;
justify-content: center;
align-items: center;
min-height: 200px;
max-height: 250px;
background: linear-gradient(135deg, #1e2a4a 0%, #16213e 100%);
border-radius: 20px;
box-shadow: 0 4px 20px rgba(0,0,0,0.3);
margin-bottom: 12px;
transition: transform 0.3s ease;
padding: 16px;
border: 1px solid rgba(255,255,255,0.05);
}
.pip-container:hover {
transform: translateY(-2px);
box-shadow: 0 6px 24px rgba(108, 92, 231, 0.15);
}
.pip-container svg {
max-width: 180px;
max-height: 180px;
filter: drop-shadow(0 0 10px rgba(108, 92, 231, 0.3));
}
/* Chat container */
.chatbot-container {
border-radius: 20px !important;
box-shadow: 0 4px 20px rgba(0,0,0,0.2) !important;
border: 1px solid rgba(255,255,255,0.08) !important;
background: #16213e !important;
}
/* Mood image */
.mood-image {
border-radius: 16px !important;
box-shadow: 0 4px 16px rgba(0,0,0,0.2) !important;
overflow: hidden;
transition: transform 0.3s ease;
border: 1px solid rgba(255,255,255,0.05);
background-color: #16213e;
}
.mood-image:hover {
transform: scale(1.01);
}
/* Image explanation */
.image-explanation {
text-align: center;
font-style: italic;
color: #b0b0b0;
font-size: 0.9em;
padding: 10px 14px;
margin-top: 8px;
background: linear-gradient(135deg, rgba(108, 92, 231, 0.12) 0%, rgba(168, 230, 207, 0.12) 100%);
border-radius: 10px;
border-left: 3px solid #6c5ce7;
}
/* Status bar */
.status-bar {
font-size: 0.85em;
color: #b0b0b0;
padding: 10px 14px;
background: #1e2a4a;
border-radius: 12px;
border: 1px solid #2d3a5a;
box-shadow: 0 2px 6px rgba(0,0,0,0.1);
}
/* Voice Toggle */
.voice-toggle {
background: rgba(108, 92, 231, 0.1);
padding: 8px 12px;
border-radius: 10px;
border: 1px solid rgba(108, 92, 231, 0.2);
margin-bottom: 10px;
}
/* Header */
.header-title {
text-align: center;
margin-bottom: 4px;
font-size: 2.2em !important;
font-weight: 800 !important;
background: linear-gradient(135deg, #6c5ce7, #a8e6cf);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-shadow: 0 0 30px rgba(108, 92, 231, 0.3);
}
.header-subtitle {
text-align: center;
color: #888;
font-size: 1.1em;
margin-top: 0;
margin-bottom: 20px;
font-weight: 300;
}
/* Buttons */
button.primary {
background: linear-gradient(135deg, #6c5ce7 0%, #a8e6cf 100%) !important;
border: none !important;
color: white !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
button.primary:hover {
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(108, 92, 231, 0.3) !important;
}
/* Footer */
.footer {
text-align: center;
margin-top: 40px;
color: #555;
font-size: 0.8em;
}
"""
# Build the Gradio app
demo = gr.Blocks()
with demo:
# Inject CSS and force dark mode
gr.HTML(f"""
<style>{CUSTOM_CSS}</style>
<script>
// Force dark theme
document.body.classList.add('dark');
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {{
url.searchParams.set('__theme', 'dark');
window.location.replace(url);
}}
</script>
""")
# Session state
session_id = gr.State(create_session_id)
# Header
gr.Markdown("# π«§ Pip", elem_classes=["header-title"])
gr.Markdown("*Your emotional AI companion*", elem_classes=["header-subtitle"])
with gr.Tabs():
# =================================================================
# MAIN CHAT TAB
# =================================================================
with gr.Tab("Chat with Pip"):
with gr.Row(equal_height=True):
# Left column - Pip and Controls (40%)
with gr.Column(scale=2, min_width=350):
# Pip Avatar
pip_display = gr.HTML(
get_pip_svg("neutral"),
label="Pip",
elem_classes=["pip-container"]
)
# Status
status_display = gr.Textbox(
value="Ready to listen...",
label="Current Vibe",
interactive=False,
elem_classes=["status-bar"],
show_label=True
)
# Voice Toggle (Visible now!)
voice_toggle = gr.Checkbox(
value=False,
label="π£οΈ Enable Voice Response",
info="Pip will speak back to you",
elem_classes=["voice-toggle"]
)
# Mood Image (moved up - more prominent)
mood_image = gr.Image(
label="Pip's Visualization",
type="filepath",
elem_classes=["mood-image"],
show_label=True,
interactive=False,
height=250
)
# Image Explanation - Why this image?
image_explanation = gr.Markdown(
value="",
visible=False,
elem_classes=["image-explanation"]
)
# Controls Group (moved below image)
with gr.Accordion("βοΈ Advanced Settings", open=False):
mode_selector = gr.Radio(
["Auto", "Alchemist", "Artist", "Dream", "Night"],
value="Auto",
label="Interaction Mode",
info="How should Pip visualize your feelings?"
)
# Audio Output
audio_output = gr.Audio(
label="Pip's Voice",
autoplay=True,
visible=False
)
# Right column - Conversation (60%)
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Conversation",
height=450,
elem_classes=["chatbot-container"],
avatar_images=(None, "https://api.dicebear.com/7.x/bottts/svg?seed=Pip&backgroundColor=transparent")
)
with gr.Group():
with gr.Row():
msg_input = gr.Textbox(
placeholder="How are you feeling today?",
label="Your Message",
scale=8,
lines=1,
max_lines=4,
autofocus=True
)
send_btn = gr.Button("Send", variant="primary", scale=1, min_width=100)
with gr.Row():
audio_input = gr.Audio(
label="Voice Input",
sources=["microphone"],
type="numpy",
show_label=False,
container=False
)
voice_send_btn = gr.Button("π€ Send Voice", variant="secondary")
# Action Buttons - Three rows for different actions
with gr.Row():
visualize_btn = gr.Button("π¨ Visualize", variant="secondary", scale=1)
memory_btn = gr.Button("β¨ Create Memory", variant="primary", scale=2)
clear_btn = gr.Button("ποΈ Clear", variant="stop", scale=1)
# Memory Summary
memory_summary = gr.Textbox(
label="β¨ Memory Summary",
visible=False,
lines=3,
interactive=False,
elem_classes=["status-bar"]
)
# Event handlers
# Send message - NO image generated (returns: history, pip_svg, audio, status)
send_btn.click(
fn=process_message_sync,
inputs=[msg_input, chatbot, session_id, mode_selector, voice_toggle],
outputs=[chatbot, pip_display, audio_output, status_display]
).then(
fn=lambda: "",
outputs=[msg_input]
)
msg_input.submit(
fn=process_message_sync,
inputs=[msg_input, chatbot, session_id, mode_selector, voice_toggle],
outputs=[chatbot, pip_display, audio_output, status_display]
).then(
fn=lambda: "",
outputs=[msg_input]
)
# Voice input - also no auto image
voice_send_btn.click(
fn=process_voice_sync,
inputs=[audio_input, chatbot, session_id, mode_selector],
outputs=[chatbot, pip_display, audio_output, status_display]
)
# Clear conversation - use the function defined earlier
clear_btn.click(
fn=clear_conversation,
inputs=[session_id],
outputs=[chatbot, pip_display, mood_image, image_explanation, audio_output, memory_summary, status_display]
)
# Visualize button - generates image based on conversation context
def visualize_wrapper(session_id):
image, explanation, pip_svg, status = visualize_mood_sync(session_id)
print(f"[DEBUG] Visualize - explanation: '{explanation}' (len={len(explanation) if explanation else 0})")
# Show explanation as markdown
if explanation and len(explanation.strip()) > 0:
formatted_explanation = f'*"{explanation}"*'
print(f"[DEBUG] Formatted: {formatted_explanation}")
return image, gr.update(value=formatted_explanation, visible=True), pip_svg, status
print("[DEBUG] No explanation - hiding")
return image, gr.update(value="", visible=False), pip_svg, status
visualize_btn.click(
fn=visualize_wrapper,
inputs=[session_id],
outputs=[mood_image, image_explanation, pip_display, status_display]
)
# Memory button - creates summary with image + audio + explanation
def create_memory_wrapper(session_id, history):
# Returns: summary, image, explanation, audio, pip_svg, status
summary, image, explanation, audio, pip_svg, status = create_memory_sync(session_id, history)
print(f"[DEBUG] Memory - explanation: '{explanation}'")
# Format explanation as italic markdown
if explanation and len(explanation.strip()) > 0:
formatted_explanation = f'*"{explanation}"*'
explanation_update = gr.update(value=formatted_explanation, visible=True)
else:
explanation_update = gr.update(value="", visible=False)
return (
gr.update(value=summary, visible=True), # memory_summary
image, # mood_image
explanation_update, # image_explanation
audio, # audio_output
gr.update(visible=True if audio else False), # audio visibility
pip_svg, # pip_display
status # status_display
)
memory_btn.click(
fn=create_memory_wrapper,
inputs=[session_id, chatbot],
outputs=[memory_summary, mood_image, image_explanation, audio_output, audio_output, pip_display, status_display]
)
voice_toggle.change(
fn=lambda x: gr.update(visible=x),
inputs=[voice_toggle],
outputs=[audio_output]
)
# =================================================================
# GALLERY TAB
# =================================================================
with gr.Tab("Your Gallery") as gallery_tab:
gr.Markdown("### π¨ Your Emotional Artifacts")
gr.Markdown("*Every visualization and memory Pip creates is saved here*")
gallery_display = gr.Gallery(
label="Mood Artifacts",
columns=3,
height="auto",
object_fit="cover",
show_label=False
)
with gr.Row():
refresh_gallery_btn = gr.Button("π Refresh Gallery", variant="secondary")
gallery_count = gr.Markdown("*No images yet*")
def refresh_and_count():
images = get_gallery_images()
count_text = f"*{len(images)} artifact{'s' if len(images) != 1 else ''} in your gallery*"
return images, count_text
refresh_gallery_btn.click(
fn=refresh_and_count,
outputs=[gallery_display, gallery_count]
)
# Auto-refresh when tab is selected
gallery_tab.select(
fn=refresh_and_count,
outputs=[gallery_display, gallery_count]
)
# =================================================================
# PIP STATES PREVIEW
# =================================================================
with gr.Tab("Meet Pip"):
gr.Markdown("### Pip's Expressions")
gr.Markdown("*Pip has different expressions for different emotions*")
gr.HTML(get_all_states_preview())
# =================================================================
# MCP INTEGRATION TAB
# =================================================================
with gr.Tab("Connect Your AI"):
gr.Markdown("### Use Pip with Your AI Agent")
gr.Markdown("""
Pip is available as an MCP (Model Context Protocol) server.
Connect your AI agent to Pip and let them chat!
""")
gr.Markdown("#### For clients that support SSE (Cursor, Windsurf, Cline):")
gr.Code(
'''{
"mcpServers": {
"Pip": {
"url": "https://YOUR-SPACE.hf.space/gradio_api/mcp/"
}
}
}''',
language="json"
)
gr.Markdown("#### For clients that only support stdio (Claude Desktop):")
gr.Code(
'''{
"mcpServers": {
"Pip": {
"command": "npx",
"args": [
"mcp-remote",
"https://YOUR-SPACE.hf.space/gradio_api/mcp/sse",
"--transport",
"sse-only"
]
}
}
}''',
language="json"
)
gr.Markdown("#### Available MCP Tools:")
gr.Markdown("""
- **chat_with_pip**: Talk to Pip about how you're feeling
- **generate_mood_artifact**: Create visual art from emotions
- **get_pip_gallery**: View conversation history
- **set_pip_mode**: Change Pip's interaction mode
""")
# =================================================================
# SETTINGS TAB - User API Keys
# =================================================================
with gr.Tab("βοΈ Settings"):
gr.Markdown("### π Use Your Own API Keys")
gr.Markdown("""
*Want to use your own API credits? Enter your keys below.*
**Privacy:** Keys are stored only in your browser session and never saved on our servers.
**Note:** If you don't provide keys, Pip will use the default (shared) keys when available.
""")
with gr.Group():
gr.Markdown("#### Primary LLM (Recommended)")
user_google_key = gr.Textbox(
label="Google API Key (Gemini)",
placeholder="AIza...",
type="password",
info="Get from: https://aistudio.google.com/apikey"
)
with gr.Group():
gr.Markdown("#### Fallback LLM")
user_anthropic_key = gr.Textbox(
label="Anthropic API Key (Claude)",
placeholder="sk-ant-...",
type="password",
info="Get from: https://console.anthropic.com/"
)
with gr.Group():
gr.Markdown("#### Image Generation")
user_openai_key = gr.Textbox(
label="OpenAI API Key (DALL-E)",
placeholder="sk-...",
type="password",
info="Get from: https://platform.openai.com/api-keys"
)
user_hf_token = gr.Textbox(
label="HuggingFace Token (Flux)",
placeholder="hf_...",
type="password",
info="Get from: https://huggingface.co/settings/tokens"
)
with gr.Group():
gr.Markdown("#### Voice")
user_elevenlabs_key = gr.Textbox(
label="ElevenLabs API Key",
placeholder="...",
type="password",
info="Get from: https://elevenlabs.io/app/settings/api-keys"
)
save_keys_btn = gr.Button("πΎ Save Keys & Restart Pip", variant="primary")
keys_status = gr.Markdown("*Keys not configured - using default*")
def save_user_keys(google_key, anthropic_key, openai_key, hf_token, elevenlabs_key, session_id):
"""Save user API keys and reinitialize brain."""
global brain
# Store keys in environment for this session
# (In production, you'd want proper session management)
if google_key:
os.environ["GOOGLE_API_KEY"] = google_key
if anthropic_key:
os.environ["ANTHROPIC_API_KEY"] = anthropic_key
if openai_key:
os.environ["OPENAI_API_KEY"] = openai_key
if hf_token:
os.environ["HUGGINGFACE_TOKEN"] = hf_token
if elevenlabs_key:
os.environ["ELEVENLABS_API_KEY"] = elevenlabs_key
# Reinitialize brain with new keys
from pip_brain import PipBrain, UserAPIKeys
user_keys = UserAPIKeys(
google_api_key=google_key if google_key else None,
anthropic_api_key=anthropic_key if anthropic_key else None,
openai_api_key=openai_key if openai_key else None,
huggingface_token=hf_token if hf_token else None,
elevenlabs_api_key=elevenlabs_key if elevenlabs_key else None
)
brain = PipBrain(user_keys=user_keys)
# Build status message
configured = []
if google_key:
configured.append("β
Google/Gemini")
if anthropic_key:
configured.append("β
Anthropic/Claude")
if openai_key:
configured.append("β
OpenAI/DALL-E")
if hf_token:
configured.append("β
HuggingFace/Flux")
if elevenlabs_key:
configured.append("β
ElevenLabs")
if configured:
status = f"**Keys saved!** {', '.join(configured)}\n\n*Pip has been reinitialized with your keys.*"
else:
status = "*No keys provided - using default configuration*"
return status
save_keys_btn.click(
fn=save_user_keys,
inputs=[user_google_key, user_anthropic_key, user_openai_key, user_hf_token, user_elevenlabs_key, session_id],
outputs=[keys_status]
)
# Footer
gr.Markdown("---")
gr.Markdown(
"*Built with π for MCP's 1st Birthday Hackathon | "
"Powered by Gemini, Anthropic, ElevenLabs, OpenAI, and HuggingFace*",
elem_classes=["footer"]
)
# =============================================================================
# LAUNCH
# =============================================================================
if __name__ == "__main__":
demo.launch(
mcp_server=True, # Enable MCP server
share=False,
server_name="0.0.0.0",
server_port=7860
)
|