""" Async video processor with WebSocket support for real-time updates """ import asyncio import json import time from typing import Dict, Optional from fastapi import WebSocket, WebSocketDisconnect from fastapi.responses import StreamingResponse import cv2 import numpy as np from video_processor import VideoProcessor from model_manager import model_manager import tempfile import os from pathlib import Path class AsyncVideoProcessor: def __init__(self): self.active_connections: Dict[str, WebSocket] = {} self.processing_jobs: Dict[str, Dict] = {} # Wait for models to be ready before creating processor if not model_manager.wait_for_models(timeout=30): print("Warning: Models not ready, using fallback mode") self.processor = VideoProcessor( processing_resolution=(1280, 720), upscale_factor=1.5, enable_depth_caching=True, chunk_duration=10, max_workers=4 ) async def connect(self, websocket: WebSocket, job_id: str): """Connect a WebSocket for real-time updates""" await websocket.accept() self.active_connections[job_id] = websocket def disconnect(self, job_id: str): """Disconnect a WebSocket""" if job_id in self.active_connections: del self.active_connections[job_id] async def send_progress(self, job_id: str, progress: float, message: str): """Send progress update to connected client""" if job_id in self.active_connections: try: await self.active_connections[job_id].send_text( json.dumps({ "type": "progress", "progress": progress, "message": message, "timestamp": time.time() }) ) except: self.disconnect(job_id) async def send_error(self, job_id: str, error: str): """Send error message to connected client""" if job_id in self.active_connections: try: await self.active_connections[job_id].send_text( json.dumps({ "type": "error", "error": error, "timestamp": time.time() }) ) except: self.disconnect(job_id) async def send_completion(self, job_id: str, result: Dict): """Send completion message to connected client""" if job_id in self.active_connections: try: await self.active_connections[job_id].send_text( json.dumps({ "type": "complete", "result": result, "timestamp": time.time() }) ) except: self.disconnect(job_id) async def process_video_async(self, input_path: str, output_path: str, job_id: str): """Process video asynchronously with real-time updates""" try: # Update job status self.processing_jobs[job_id] = { "status": "processing", "start_time": time.time(), "input_path": input_path, "output_path": output_path } await self.send_progress(0.0, "Starting video processing...") # Process video with progress callback def progress_callback(progress: float, desc: str = ""): asyncio.create_task(self.send_progress(job_id, progress, desc)) result = self.processor.process_video( input_path, output_path, progress_callback=progress_callback ) if result['success']: self.processing_jobs[job_id]["status"] = "completed" self.processing_jobs[job_id]["end_time"] = time.time() await self.send_completion(job_id, result) else: self.processing_jobs[job_id]["status"] = "failed" await self.send_error(job_id, result.get('error', 'Unknown error')) except Exception as e: self.processing_jobs[job_id]["status"] = "failed" await self.send_error(job_id, str(e)) finally: # Clean up after 5 minutes asyncio.create_task(self._cleanup_job(job_id, 300)) async def _cleanup_job(self, job_id: str, delay: int): """Clean up job data after delay""" await asyncio.sleep(delay) if job_id in self.processing_jobs: del self.processing_jobs[job_id] self.disconnect(job_id) def get_job_status(self, job_id: str) -> Optional[Dict]: """Get current job status""" return self.processing_jobs.get(job_id) def generate_thumbnail(self, video_path: str, timestamp: float = 0.0) -> str: """Generate thumbnail for video preview""" try: import moviepy.editor as mp video = mp.VideoFileClip(video_path) frame = video.get_frame(timestamp) video.close() # Convert to PIL Image and save from PIL import Image pil_image = Image.fromarray(frame) # Create thumbnails directory thumb_dir = Path("thumbnails") thumb_dir.mkdir(exist_ok=True) # Generate thumbnail filename video_name = Path(video_path).stem thumb_path = thumb_dir / f"{video_name}_thumb.jpg" # Resize and save pil_image.thumbnail((320, 180), Image.Resampling.LANCZOS) pil_image.save(thumb_path, "JPEG", quality=85) return str(thumb_path) except Exception as e: print(f"Error generating thumbnail: {e}") return None def get_video_info(self, video_path: str) -> Dict: """Get video metadata""" try: import moviepy.editor as mp video = mp.VideoFileClip(video_path) info = { "duration": video.duration, "fps": video.fps, "size": video.size, "width": video.w, "height": video.h, "file_size": os.path.getsize(video_path) } video.close() return info except Exception as e: return {"error": str(e)} # Global instance async_processor = AsyncVideoProcessor()