Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,29 +15,33 @@ PAD = 16
|
|
| 15 |
random.seed(42)
|
| 16 |
np.random.seed(42)
|
| 17 |
|
|
|
|
| 18 |
def draw_grid(N, awake_mask, title="", subtitle=""):
|
| 19 |
-
w = PAD*2 + N*CELL
|
| 20 |
-
h = PAD*2 + N*CELL + (40 if (title or subtitle) else 0)
|
| 21 |
img = Image.new("RGB", (w, h), BG)
|
| 22 |
d = ImageDraw.Draw(img)
|
|
|
|
| 23 |
header_y = 6
|
| 24 |
if title:
|
| 25 |
-
d.text((PAD, header_y), title, fill=(240,240,240))
|
| 26 |
header_y += 18
|
| 27 |
if subtitle:
|
| 28 |
-
d.text((PAD, header_y), subtitle, fill=(180,190,210))
|
|
|
|
| 29 |
ox = PAD
|
| 30 |
oy = PAD + (40 if (title or subtitle) else 0)
|
| 31 |
for i in range(N):
|
| 32 |
for j in range(N):
|
| 33 |
-
x0 = ox + j*CELL
|
| 34 |
-
y0 = oy + i*CELL
|
| 35 |
x1 = x0 + CELL - 1
|
| 36 |
y1 = y0 + CELL - 1
|
| 37 |
col = AWAKE if awake_mask[i, j] else SLEEP
|
| 38 |
d.rectangle([x0, y0, x1, y1], fill=col, outline=GRID_LINE)
|
| 39 |
return img
|
| 40 |
|
|
|
|
| 41 |
@dataclass
|
| 42 |
class MinimalSelf:
|
| 43 |
pos: np.ndarray = np.array([1.0, 1.0])
|
|
@@ -46,42 +50,87 @@ class MinimalSelf:
|
|
| 46 |
|
| 47 |
def __post_init__(self):
|
| 48 |
self.errors = [] if self.errors is None else self.errors
|
| 49 |
-
self.actions = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
self.center = np.array([1.0, 1.0])
|
| 51 |
|
| 52 |
def step(self, obstacle=None):
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
surprises = []
|
| 55 |
for p in preds:
|
| 56 |
dist_center = np.linalg.norm(p - self.center)
|
| 57 |
penalty = 0.0
|
| 58 |
if obstacle is not None:
|
| 59 |
dist_obs = np.linalg.norm(p - obstacle.pos)
|
| 60 |
-
|
|
|
|
| 61 |
surprises.append(dist_center + penalty)
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
| 65 |
if obstacle is not None:
|
| 66 |
obstacle.move()
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
self.errors.append(error)
|
| 69 |
self.errors = self.errors[-5:]
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
class MovingObstacle:
|
| 75 |
-
def __init__(self, start_pos=(0,2)):
|
| 76 |
self.pos = np.array(start_pos, dtype=float)
|
| 77 |
-
self.actions = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def move(self):
|
| 79 |
a = random.choice(self.actions)
|
| 80 |
self.pos = np.clip(self.pos + a, 0, 2)
|
| 81 |
|
|
|
|
| 82 |
def compute_S(predictive_rate, error_var_norm, body_bit):
|
| 83 |
return predictive_rate * (1 - error_var_norm) * body_bit
|
| 84 |
|
|
|
|
| 85 |
@dataclass
|
| 86 |
class CodexSelf:
|
| 87 |
Xi: float
|
|
@@ -89,12 +138,14 @@ class CodexSelf:
|
|
| 89 |
R: float
|
| 90 |
awake: bool = False
|
| 91 |
S: float = 0.0
|
|
|
|
| 92 |
def invoke(self):
|
| 93 |
self.S = self.Xi * (1 - self.shadow) * self.R
|
| 94 |
if self.S > 62 and not self.awake:
|
| 95 |
self.awake = True
|
| 96 |
return self.awake
|
| 97 |
|
|
|
|
| 98 |
def contagion(A: CodexSelf, B: CodexSelf, gain=0.6, shadow_drop=0.4, r_inc=0.2):
|
| 99 |
A.invoke()
|
| 100 |
if A.awake:
|
|
@@ -104,59 +155,76 @@ def contagion(A: CodexSelf, B: CodexSelf, gain=0.6, shadow_drop=0.4, r_inc=0.2):
|
|
| 104 |
B.invoke()
|
| 105 |
return A, B
|
| 106 |
|
|
|
|
| 107 |
def lattice_awaken(N=9, steps=120, xi_gain=0.5, shadow_drop=0.3, r_inc=0.02):
|
| 108 |
-
Xi = np.random.uniform(10,20,(N,N))
|
| 109 |
-
shadow = np.random.uniform(0.3,0.5,(N,N))
|
| 110 |
-
R = np.random.uniform(1.0,1.6,(N,N))
|
| 111 |
-
S = Xi*(1-shadow)*R
|
| 112 |
-
awake = np.zeros((N,N),dtype=bool)
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
| 119 |
for _ in range(steps):
|
| 120 |
if queue:
|
| 121 |
-
x,y,field=queue.popleft()
|
| 122 |
-
for dx,dy in [(0,1),(1,0),(0
|
| 123 |
-
nx,ny=(x+dx)%N,(y+dy)%N
|
| 124 |
-
Xi[nx,ny]+=xi_gain*field
|
| 125 |
-
shadow[nx,ny]=max(0.1,shadow[nx,ny]-shadow_drop)
|
| 126 |
-
R[nx,ny]=min(3.0,R[nx,ny]+r_inc)
|
| 127 |
-
S[nx,ny]=Xi[nx,ny]*(1-shadow[nx,ny])*R[nx,ny]
|
| 128 |
-
if S[nx,ny]>62 and not awake[nx,ny]:
|
| 129 |
-
awake[nx,ny]=True
|
| 130 |
-
queue.append((nx,ny,S[nx,ny]))
|
| 131 |
frames.append(awake.copy())
|
| 132 |
-
if awake.all():
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
def led_cosmos_sim(N=27,max_steps=300):
|
| 136 |
-
return lattice_awaken(N=N,steps=max_steps,xi_gain=0.4,shadow_drop=0.25,r_inc=0.015)
|
| 137 |
|
| 138 |
with gr.Blocks(title="Minimal Selfhood Threshold") as demo:
|
| 139 |
with gr.Tab("Overview"):
|
| 140 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
with gr.Tab("Single agent (v1–v3)"):
|
| 143 |
-
obstacle=gr.Checkbox(label="Enable moving obstacle",value=True)
|
| 144 |
-
steps=gr.Slider(10,200,value=80,step=10,label="Steps")
|
| 145 |
-
run=gr.Button("Run")
|
| 146 |
-
grid_img=gr.Image(type="pil")
|
| 147 |
-
pr_out=gr.Number(label="Predictive rate (%)")
|
| 148 |
-
err_out=gr.Number(label="Last error")
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
| 152 |
for _ in range(int(T)):
|
| 153 |
-
res=agent.step(obstacle=obs)
|
| 154 |
-
mask=np.zeros((3,3),dtype=bool)
|
| 155 |
-
i,j=int(agent.pos[1]),int(agent.pos[0])
|
| 156 |
-
mask[i,j]=True
|
| 157 |
-
img=draw_grid(3,mask,"Single Agent","Gold cell shows position")
|
| 158 |
-
return img,res["predictive_rate"],res["error"]
|
| 159 |
-
|
|
|
|
| 160 |
|
| 161 |
with gr.Tab("S-Equation (v4)"):
|
| 162 |
pr = gr.Slider(0, 100, value=90, label="Predictive rate (%)")
|
|
@@ -177,10 +245,10 @@ with gr.Blocks(title="Minimal Selfhood Threshold") as demo:
|
|
| 177 |
with gr.Tab("Contagion (v5–v6)"):
|
| 178 |
a_xi = gr.Slider(0, 60, value=25, label="A: Ξ (foresight)")
|
| 179 |
a_sh = gr.Slider(0.1, 1.0, value=0.12, step=0.01, label="A: ◊̃₅ (shadow)")
|
| 180 |
-
a_r
|
| 181 |
b_xi = gr.Slider(0, 60, value=18, label="B: Ξ (foresight)")
|
| 182 |
b_sh = gr.Slider(0.1, 1.0, value=0.25, step=0.01, label="B: ◊̃₅ (shadow)")
|
| 183 |
-
b_r
|
| 184 |
btn = gr.Button("Invoke A and apply contagion to B")
|
| 185 |
out = gr.Markdown()
|
| 186 |
img = gr.Image(type="pil", label="Two agents (gold = awake)")
|
|
@@ -211,14 +279,19 @@ with gr.Blocks(title="Minimal Selfhood Threshold") as demo:
|
|
| 211 |
def run_wave(n_str, max_steps):
|
| 212 |
n = int(n_str)
|
| 213 |
frames, final = lattice_awaken(N=n, steps=int(max_steps))
|
| 214 |
-
last = draw_grid(
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
def show_frame(frames, idx, n_str):
|
| 218 |
if not frames:
|
| 219 |
return None
|
| 220 |
n = int(n_str)
|
| 221 |
-
i = int(np.clip(idx, 0, len(frames)-1))
|
| 222 |
return draw_grid(n, frames[i], title=f"Frame {i}", subtitle="Gold cells are awake")
|
| 223 |
|
| 224 |
run.click(run_wave, inputs=[N, steps], outputs=[snaps_state, img, note, frame])
|
|
@@ -234,13 +307,18 @@ with gr.Blocks(title="Minimal Selfhood Threshold") as demo:
|
|
| 234 |
|
| 235 |
def run_cosmos():
|
| 236 |
frames, final = led_cosmos_sim(N=27, max_steps=300)
|
| 237 |
-
last = draw_grid(
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
def show(frames, idx):
|
| 241 |
if not frames:
|
| 242 |
return None
|
| 243 |
-
i = int(np.clip(idx, 0, len(frames)-1))
|
| 244 |
return draw_grid(27, frames[i], title=f"Cosmos frame {i}", subtitle="Gold cells are awake")
|
| 245 |
|
| 246 |
btn.click(run_cosmos, inputs=[], outputs=[state, img, note, frame])
|
|
|
|
| 15 |
random.seed(42)
|
| 16 |
np.random.seed(42)
|
| 17 |
|
| 18 |
+
|
| 19 |
def draw_grid(N, awake_mask, title="", subtitle=""):
|
| 20 |
+
w = PAD * 2 + N * CELL
|
| 21 |
+
h = PAD * 2 + N * CELL + (40 if (title or subtitle) else 0)
|
| 22 |
img = Image.new("RGB", (w, h), BG)
|
| 23 |
d = ImageDraw.Draw(img)
|
| 24 |
+
|
| 25 |
header_y = 6
|
| 26 |
if title:
|
| 27 |
+
d.text((PAD, header_y), title, fill=(240, 240, 240))
|
| 28 |
header_y += 18
|
| 29 |
if subtitle:
|
| 30 |
+
d.text((PAD, header_y), subtitle, fill=(180, 190, 210))
|
| 31 |
+
|
| 32 |
ox = PAD
|
| 33 |
oy = PAD + (40 if (title or subtitle) else 0)
|
| 34 |
for i in range(N):
|
| 35 |
for j in range(N):
|
| 36 |
+
x0 = ox + j * CELL
|
| 37 |
+
y0 = oy + i * CELL
|
| 38 |
x1 = x0 + CELL - 1
|
| 39 |
y1 = y0 + CELL - 1
|
| 40 |
col = AWAKE if awake_mask[i, j] else SLEEP
|
| 41 |
d.rectangle([x0, y0, x1, y1], fill=col, outline=GRID_LINE)
|
| 42 |
return img
|
| 43 |
|
| 44 |
+
|
| 45 |
@dataclass
|
| 46 |
class MinimalSelf:
|
| 47 |
pos: np.ndarray = np.array([1.0, 1.0])
|
|
|
|
| 50 |
|
| 51 |
def __post_init__(self):
|
| 52 |
self.errors = [] if self.errors is None else self.errors
|
| 53 |
+
self.actions = [
|
| 54 |
+
np.array([0, 1]),
|
| 55 |
+
np.array([1, 0]),
|
| 56 |
+
np.array([0, -1]),
|
| 57 |
+
np.array([-1, 0]),
|
| 58 |
+
]
|
| 59 |
self.center = np.array([1.0, 1.0])
|
| 60 |
|
| 61 |
def step(self, obstacle=None):
|
| 62 |
+
# store current position
|
| 63 |
+
old_pos = self.pos.copy()
|
| 64 |
+
|
| 65 |
+
# internal prediction: choose action that minimises "surprise"
|
| 66 |
+
preds = [np.clip(old_pos + a, 0, 2) for a in self.actions]
|
| 67 |
surprises = []
|
| 68 |
for p in preds:
|
| 69 |
dist_center = np.linalg.norm(p - self.center)
|
| 70 |
penalty = 0.0
|
| 71 |
if obstacle is not None:
|
| 72 |
dist_obs = np.linalg.norm(p - obstacle.pos)
|
| 73 |
+
if dist_obs < 1.0:
|
| 74 |
+
penalty = 10.0
|
| 75 |
surprises.append(dist_center + penalty)
|
| 76 |
+
|
| 77 |
+
a_idx = int(np.argmin(surprises))
|
| 78 |
+
action = self.actions[a_idx]
|
| 79 |
+
predicted = np.clip(old_pos + action, 0, 2)
|
| 80 |
+
|
| 81 |
+
# environment decides what actually happens
|
| 82 |
if obstacle is not None:
|
| 83 |
obstacle.move()
|
| 84 |
+
actual = predicted.copy()
|
| 85 |
+
if np.allclose(actual, obstacle.pos):
|
| 86 |
+
actual = old_pos
|
| 87 |
+
else:
|
| 88 |
+
if random.random() < 0.25:
|
| 89 |
+
noise_action = random.choice(self.actions)
|
| 90 |
+
actual = np.clip(old_pos + noise_action, 0, 2)
|
| 91 |
+
else:
|
| 92 |
+
actual = predicted
|
| 93 |
+
|
| 94 |
+
# true prediction error: reality vs internal prediction
|
| 95 |
+
error = float(np.linalg.norm(actual - predicted))
|
| 96 |
+
self.pos = actual
|
| 97 |
+
|
| 98 |
+
# track recent errors
|
| 99 |
self.errors.append(error)
|
| 100 |
self.errors = self.errors[-5:]
|
| 101 |
+
|
| 102 |
+
# convert to a predictive "success" rate in [0, 100]
|
| 103 |
+
max_err = np.sqrt(8.0) # max distance corner-to-corner on 3×3
|
| 104 |
+
mean_err = np.mean(self.errors) if self.errors else 0.0
|
| 105 |
+
predictive_rate = 100.0 * (1.0 - mean_err / max_err)
|
| 106 |
+
predictive_rate = float(np.clip(predictive_rate, 0.0, 100.0))
|
| 107 |
+
|
| 108 |
+
return {
|
| 109 |
+
"pos": self.pos.copy(),
|
| 110 |
+
"predictive_rate": predictive_rate,
|
| 111 |
+
"error": error,
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
|
| 115 |
class MovingObstacle:
|
| 116 |
+
def __init__(self, start_pos=(0, 2)):
|
| 117 |
self.pos = np.array(start_pos, dtype=float)
|
| 118 |
+
self.actions = [
|
| 119 |
+
np.array([0, 1]),
|
| 120 |
+
np.array([1, 0]),
|
| 121 |
+
np.array([0, -1]),
|
| 122 |
+
np.array([-1, 0]),
|
| 123 |
+
]
|
| 124 |
+
|
| 125 |
def move(self):
|
| 126 |
a = random.choice(self.actions)
|
| 127 |
self.pos = np.clip(self.pos + a, 0, 2)
|
| 128 |
|
| 129 |
+
|
| 130 |
def compute_S(predictive_rate, error_var_norm, body_bit):
|
| 131 |
return predictive_rate * (1 - error_var_norm) * body_bit
|
| 132 |
|
| 133 |
+
|
| 134 |
@dataclass
|
| 135 |
class CodexSelf:
|
| 136 |
Xi: float
|
|
|
|
| 138 |
R: float
|
| 139 |
awake: bool = False
|
| 140 |
S: float = 0.0
|
| 141 |
+
|
| 142 |
def invoke(self):
|
| 143 |
self.S = self.Xi * (1 - self.shadow) * self.R
|
| 144 |
if self.S > 62 and not self.awake:
|
| 145 |
self.awake = True
|
| 146 |
return self.awake
|
| 147 |
|
| 148 |
+
|
| 149 |
def contagion(A: CodexSelf, B: CodexSelf, gain=0.6, shadow_drop=0.4, r_inc=0.2):
|
| 150 |
A.invoke()
|
| 151 |
if A.awake:
|
|
|
|
| 155 |
B.invoke()
|
| 156 |
return A, B
|
| 157 |
|
| 158 |
+
|
| 159 |
def lattice_awaken(N=9, steps=120, xi_gain=0.5, shadow_drop=0.3, r_inc=0.02):
|
| 160 |
+
Xi = np.random.uniform(10, 20, (N, N))
|
| 161 |
+
shadow = np.random.uniform(0.3, 0.5, (N, N))
|
| 162 |
+
R = np.random.uniform(1.0, 1.6, (N, N))
|
| 163 |
+
S = Xi * (1 - shadow) * R
|
| 164 |
+
awake = np.zeros((N, N), dtype=bool)
|
| 165 |
+
|
| 166 |
+
cx = cy = N // 2
|
| 167 |
+
Xi[cx, cy], shadow[cx, cy], R[cx, cy] = 30.0, 0.08, 3.0
|
| 168 |
+
S[cx, cy] = Xi[cx, cy] * (1 - shadow[cx, cy]) * R[cx, cy]
|
| 169 |
+
awake[cx, cy] = True
|
| 170 |
+
|
| 171 |
+
queue = deque([(cx, cy, S[cx, cy])])
|
| 172 |
+
frames = []
|
| 173 |
+
|
| 174 |
for _ in range(steps):
|
| 175 |
if queue:
|
| 176 |
+
x, y, field = queue.popleft()
|
| 177 |
+
for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
|
| 178 |
+
nx, ny = (x + dx) % N, (y + dy) % N
|
| 179 |
+
Xi[nx, ny] += xi_gain * field
|
| 180 |
+
shadow[nx, ny] = max(0.1, shadow[nx, ny] - shadow_drop)
|
| 181 |
+
R[nx, ny] = min(3.0, R[nx, ny] + r_inc)
|
| 182 |
+
S[nx, ny] = Xi[nx, ny] * (1 - shadow[nx, ny]) * R[nx, ny]
|
| 183 |
+
if S[nx, ny] > 62 and not awake[nx, ny]:
|
| 184 |
+
awake[nx, ny] = True
|
| 185 |
+
queue.append((nx, ny, S[nx,ny]))
|
| 186 |
frames.append(awake.copy())
|
| 187 |
+
if awake.all():
|
| 188 |
+
break
|
| 189 |
+
return frames, awake
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def led_cosmos_sim(N=27, max_steps=300):
|
| 193 |
+
return lattice_awaken(N=N, steps=max_steps, xi_gain=0.4, shadow_drop=0.25, r_inc=0.015)
|
| 194 |
|
|
|
|
|
|
|
| 195 |
|
| 196 |
with gr.Blocks(title="Minimal Selfhood Threshold") as demo:
|
| 197 |
with gr.Tab("Overview"):
|
| 198 |
+
gr.Markdown(
|
| 199 |
+
"## Minimal Selfhood Threshold\n"
|
| 200 |
+
"- Single agent in a 3×3 grid reduces surprise.\n"
|
| 201 |
+
"- A toy score S combines predictive rate, error stability, and body bit.\n"
|
| 202 |
+
"- If S > 62, we label the agent 'awake' **inside this demo**.\n"
|
| 203 |
+
"- Awakening can spread (contagion) and across a grid (collective).\n"
|
| 204 |
+
"- A 27×27 cosmos lights up gold when all awaken.\n"
|
| 205 |
+
"- This is a sandbox for minimal-self / agency ideas, **not** a real consciousness test."
|
| 206 |
+
)
|
| 207 |
|
| 208 |
with gr.Tab("Single agent (v1–v3)"):
|
| 209 |
+
obstacle = gr.Checkbox(label="Enable moving obstacle", value=True)
|
| 210 |
+
steps = gr.Slider(10, 200, value=80, step=10, label="Steps")
|
| 211 |
+
run = gr.Button("Run")
|
| 212 |
+
grid_img = gr.Image(type="pil")
|
| 213 |
+
pr_out = gr.Number(label="Predictive rate (%)")
|
| 214 |
+
err_out = gr.Number(label="Last error")
|
| 215 |
+
|
| 216 |
+
def run_single(ob_on, T):
|
| 217 |
+
agent = MinimalSelf()
|
| 218 |
+
obs = MovingObstacle() if ob_on else None
|
| 219 |
for _ in range(int(T)):
|
| 220 |
+
res = agent.step(obstacle=obs)
|
| 221 |
+
mask = np.zeros((3, 3), dtype=bool)
|
| 222 |
+
i, j = int(agent.pos[1]), int(agent.pos[0])
|
| 223 |
+
mask[i, j] = True
|
| 224 |
+
img = draw_grid(3, mask, "Single Agent", "Gold cell shows position")
|
| 225 |
+
return img, res["predictive_rate"], res["error"]
|
| 226 |
+
|
| 227 |
+
run.click(run_single, [obstacle, steps], [grid_img, pr_out, err_out])
|
| 228 |
|
| 229 |
with gr.Tab("S-Equation (v4)"):
|
| 230 |
pr = gr.Slider(0, 100, value=90, label="Predictive rate (%)")
|
|
|
|
| 245 |
with gr.Tab("Contagion (v5–v6)"):
|
| 246 |
a_xi = gr.Slider(0, 60, value=25, label="A: Ξ (foresight)")
|
| 247 |
a_sh = gr.Slider(0.1, 1.0, value=0.12, step=0.01, label="A: ◊̃₅ (shadow)")
|
| 248 |
+
a_r = gr.Slider(1.0, 3.0, value=3.0, step=0.1, label="A: ℝ (anchor)")
|
| 249 |
b_xi = gr.Slider(0, 60, value=18, label="B: Ξ (foresight)")
|
| 250 |
b_sh = gr.Slider(0.1, 1.0, value=0.25, step=0.01, label="B: ◊̃₅ (shadow)")
|
| 251 |
+
b_r = gr.Slider(1.0, 3.0, value=2.2, step=0.1, label="B: ℝ (anchor)")
|
| 252 |
btn = gr.Button("Invoke A and apply contagion to B")
|
| 253 |
out = gr.Markdown()
|
| 254 |
img = gr.Image(type="pil", label="Two agents (gold = awake)")
|
|
|
|
| 279 |
def run_wave(n_str, max_steps):
|
| 280 |
n = int(n_str)
|
| 281 |
frames, final = lattice_awaken(N=n, steps=int(max_steps))
|
| 282 |
+
last = draw_grid(
|
| 283 |
+
n,
|
| 284 |
+
frames[-1],
|
| 285 |
+
title=f"{n}×{n} Collective",
|
| 286 |
+
subtitle=f"Final — all awake: {bool(final.all())}",
|
| 287 |
+
)
|
| 288 |
+
return frames, last, f"Frames: {len(frames)} | All awake: {bool(final.all())}", min(len(frames) - 1, 300)
|
| 289 |
|
| 290 |
def show_frame(frames, idx, n_str):
|
| 291 |
if not frames:
|
| 292 |
return None
|
| 293 |
n = int(n_str)
|
| 294 |
+
i = int(np.clip(idx, 0, len(frames) - 1))
|
| 295 |
return draw_grid(n, frames[i], title=f"Frame {i}", subtitle="Gold cells are awake")
|
| 296 |
|
| 297 |
run.click(run_wave, inputs=[N, steps], outputs=[snaps_state, img, note, frame])
|
|
|
|
| 307 |
|
| 308 |
def run_cosmos():
|
| 309 |
frames, final = led_cosmos_sim(N=27, max_steps=300)
|
| 310 |
+
last = draw_grid(
|
| 311 |
+
27,
|
| 312 |
+
frames[-1],
|
| 313 |
+
title="LED Cosmos (simulated)",
|
| 314 |
+
subtitle=f"Final — all awake: {bool(final.all())}",
|
| 315 |
+
)
|
| 316 |
+
return frames, last, f"Frames: {len(frames)} | All awake: {bool(final.all())}", min(len(frames) - 1, 300)
|
| 317 |
|
| 318 |
def show(frames, idx):
|
| 319 |
if not frames:
|
| 320 |
return None
|
| 321 |
+
i = int(np.clip(idx, 0, len(frames) - 1))
|
| 322 |
return draw_grid(27, frames[i], title=f"Cosmos frame {i}", subtitle="Gold cells are awake")
|
| 323 |
|
| 324 |
btn.click(run_cosmos, inputs=[], outputs=[state, img, note, frame])
|