Spaces:
Running
Running
File size: 25,474 Bytes
12e6fed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
#!/usr/bin/env python3
"""
Tunnel Crack Detection - Hugging Face Spaces App
A Streamlit-based web interface for tunnel crack detection using YOLOv12-DINO.
Deployed on Hugging Face Spaces for easy access and sharing.
"""
import streamlit as st
import cv2
import numpy as np
import pandas as pd
from pathlib import Path
import tempfile
import os
import sys
from typing import Dict, List, Tuple
import time
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go
import requests
from io import BytesIO
# Add the current directory to the Python path
current_dir = Path(__file__).parent
sys.path.insert(0, str(current_dir))
try:
from inference import YOLOInference
except ImportError as e:
st.error(f"Error importing inference module: {e}")
st.stop()
# Page configuration
st.set_page_config(
page_title="π Tunnel Crack Detection",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
font-size: 3rem;
color: #1e88e5;
text-align: center;
margin-bottom: 2rem;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}
.sub-header {
text-align: center;
color: #666;
margin-bottom: 3rem;
font-size: 1.2rem;
}
.metric-card {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
padding: 1.5rem;
border-radius: 1rem;
margin: 0.5rem 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.detection-box {
border: 2px solid #1e88e5;
border-radius: 1rem;
padding: 1.5rem;
margin: 1rem 0;
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.success-box {
border: 2px solid #4caf50;
border-radius: 1rem;
padding: 1.5rem;
margin: 1rem 0;
background: linear-gradient(135deg, #f1f8e9 0%, #dcedc8 100%);
box-shadow: 0 4px 8px rgba(76, 175, 80, 0.2);
}
.error-box {
border: 2px solid #f44336;
border-radius: 1rem;
padding: 1.5rem;
margin: 1rem 0;
background: linear-gradient(135deg, #ffebee 0%, #ffcdd2 100%);
box-shadow: 0 4px 8px rgba(244, 67, 54, 0.2);
}
.warning-box {
border: 2px solid #ff9800;
border-radius: 1rem;
padding: 1.5rem;
margin: 1rem 0;
background: linear-gradient(135deg, #fff3e0 0%, #ffe0b2 100%);
box-shadow: 0 4px 8px rgba(255, 152, 0, 0.2);
}
.info-box {
border: 2px solid #2196f3;
border-radius: 1rem;
padding: 1.5rem;
margin: 1rem 0;
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
box-shadow: 0 4px 8px rgba(33, 150, 243, 0.2);
}
.stButton > button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border: none;
border-radius: 0.5rem;
padding: 0.5rem 2rem;
font-weight: bold;
transition: all 0.3s ease;
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.2);
}
.sidebar .stSelectbox > div > div {
background-color: #f8f9fa;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'model_loaded' not in st.session_state:
st.session_state.model_loaded = False
if 'model_instance' not in st.session_state:
st.session_state.model_instance = None
if 'detection_history' not in st.session_state:
st.session_state.detection_history = []
# Model download URL (you'll need to replace this with actual model URL or use HF Hub)
MODEL_URL = "https://huggingface.co/spaces/YOUR_USERNAME/tunnel-crack-detection/resolve/main/segment_defect.pt"
@st.cache_resource
def download_model():
"""Download model from Hugging Face Hub or URL."""
model_path = "segment_defect.pt"
if not os.path.exists(model_path):
st.info("π Downloading model weights... This may take a few minutes.")
try:
# Try to download from URL (you may need to adjust this)
# For HF Spaces, you might want to use huggingface_hub library
response = requests.get(MODEL_URL, stream=True)
response.raise_for_status()
with open(model_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
st.success("β
Model downloaded successfully!")
except Exception as e:
st.error(f"β Failed to download model: {e}")
return None
return model_path
def load_model(weights_path: str, device: str = "cpu") -> Tuple[bool, str]:
"""Load the YOLO model with specified weights."""
try:
if not Path(weights_path).exists():
return False, f"β Model file not found: {weights_path}"
with st.spinner("π Loading tunnel crack detection model..."):
st.session_state.model_instance = YOLOInference(
weights=weights_path,
conf=0.25,
iou=0.7,
imgsz=640,
device=device,
verbose=True
)
st.session_state.model_loaded = True
# Get model information
model_info = f"β
Model loaded successfully\n"
model_info += f"π Task: {st.session_state.model_instance.model.task}\n"
if hasattr(st.session_state.model_instance.model.model, 'names'):
class_names = list(st.session_state.model_instance.model.model.names.values())
model_info += f"π·οΈ Classes ({len(class_names)}): {', '.join(class_names)}"
return True, model_info
except Exception as e:
return False, f"β Error loading model: {str(e)}"
def perform_detection(
image: np.ndarray,
conf_threshold: float,
iou_threshold: float,
image_size: int
) -> Tuple[np.ndarray, Dict, str]:
"""Perform crack detection using the loaded model."""
if st.session_state.model_instance is None:
return None, {}, "β No model loaded"
try:
# Update model parameters
st.session_state.model_instance.conf = conf_threshold
st.session_state.model_instance.iou = iou_threshold
st.session_state.model_instance.imgsz = image_size
# Save image to temporary file
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmp_file:
# Convert RGB to BGR for OpenCV
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imwrite(tmp_file.name, image_bgr)
tmp_path = tmp_file.name
start_time = time.time()
try:
# Use the exact same method as inference.py
results = st.session_state.model_instance.predict_single(
source=tmp_path,
save=False,
show=False,
save_txt=False,
save_conf=False,
save_crop=False,
output_dir=None
)
inference_time = time.time() - start_time
if not results:
return image, {}, "β No results returned from model"
result = results[0]
# Get annotated image
annotated_img = result.plot()
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
# Process detection results
detection_data = process_detection_results(result, inference_time)
# Generate summary text
summary_text = generate_detection_summary(result, detection_data, inference_time)
return annotated_img, detection_data, summary_text
finally:
# Clean up temporary file
if os.path.exists(tmp_path):
os.unlink(tmp_path)
except Exception as e:
return None, {}, f"β Error during detection: {str(e)}"
def process_detection_results(result, inference_time: float) -> Dict:
"""Process detection results into structured data."""
if result.boxes is None or len(result.boxes) == 0:
return {
'total_detections': 0,
'class_counts': {},
'detections': [],
'inference_time': inference_time
}
detections = result.boxes
# Get class names
if hasattr(st.session_state.model_instance.model.model, 'names'):
class_names = st.session_state.model_instance.model.model.names
else:
class_names = getattr(result, 'names', {i: f"Class_{i}" for i in range(100)})
# Process each detection
detection_list = []
class_counts = {}
for i, (box, conf, cls) in enumerate(zip(detections.xyxy, detections.conf, detections.cls)):
cls_id = int(cls)
cls_name = class_names.get(cls_id, f"Class_{cls_id}")
confidence = float(conf)
x1, y1, x2, y2 = box.tolist()
detection_list.append({
'id': i + 1,
'class': cls_name,
'confidence': confidence,
'x1': int(x1),
'y1': int(y1),
'x2': int(x2),
'y2': int(y2),
'width': int(x2 - x1),
'height': int(y2 - y1),
'area': int((x2 - x1) * (y2 - y1))
})
class_counts[cls_name] = class_counts.get(cls_name, 0) + 1
return {
'total_detections': len(detection_list),
'class_counts': class_counts,
'detections': detection_list,
'inference_time': inference_time
}
def generate_detection_summary(result, detection_data: Dict, inference_time: float) -> str:
"""Generate detection summary text."""
total_detections = detection_data['total_detections']
if total_detections == 0:
return "π No cracks or defects detected in the image."
summary = f"β
**Detection Results:**\n\n"
summary += f"π **Images processed:** 1\n"
summary += f"π **Total detections:** {total_detections}\n"
summary += f"β±οΈ **Inference time:** {inference_time:.3f}s\n\n"
summary += "π **Detections by class:**\n"
for cls_name, count in sorted(detection_data['class_counts'].items()):
summary += f" β’ {cls_name}: {count}\n"
return summary
def create_detection_chart(detection_data: Dict):
"""Create interactive charts for detection results."""
if detection_data['total_detections'] == 0:
st.info("π No detections to visualize")
return
col1, col2 = st.columns(2)
with col1:
# Class distribution pie chart
class_counts = detection_data['class_counts']
fig_pie = px.pie(
values=list(class_counts.values()),
names=list(class_counts.keys()),
title="π₯§ Detection Distribution by Class",
color_discrete_sequence=px.colors.qualitative.Set3
)
fig_pie.update_layout(height=400)
st.plotly_chart(fig_pie, use_container_width=True)
with col2:
# Confidence distribution
confidences = [det['confidence'] for det in detection_data['detections']]
classes = [det['class'] for det in detection_data['detections']]
fig_conf = px.box(
x=classes,
y=confidences,
title="π Confidence Distribution by Class",
color=classes
)
fig_conf.update_layout(height=400)
fig_conf.update_xaxes(title="Class")
fig_conf.update_yaxes(title="Confidence Score")
st.plotly_chart(fig_conf, use_container_width=True)
def create_detection_table(detection_data: Dict):
"""Create detailed detection table."""
if detection_data['total_detections'] == 0:
st.info("π No detections to display")
return
# Convert to DataFrame
df = pd.DataFrame(detection_data['detections'])
# Format confidence as percentage
df['confidence_pct'] = df['confidence'].apply(lambda x: f"{x:.1%}")
# Reorder columns for better display
display_columns = ['id', 'class', 'confidence_pct', 'x1', 'y1', 'x2', 'y2', 'width', 'height', 'area']
df_display = df[display_columns].copy()
# Rename columns for better readability
df_display.columns = ['ID', 'Class', 'Confidence', 'X1', 'Y1', 'X2', 'Y2', 'Width', 'Height', 'Area']
st.dataframe(df_display, use_container_width=True, height=300)
# Download button for results
csv = df_display.to_csv(index=False)
st.download_button(
label="π₯ Download Detection Results (CSV)",
data=csv,
file_name=f"crack_detection_results_{int(time.time())}.csv",
mime="text/csv",
use_container_width=True
)
def main():
"""Main Streamlit application."""
# Header
st.markdown('<h1 class="main-header">π Tunnel Crack Detection</h1>', unsafe_allow_html=True)
st.markdown('<p class="sub-header">AI-powered crack and defect detection for tunnel infrastructure using YOLOv12-DINO</p>', unsafe_allow_html=True)
# Info about the model
st.markdown("""
<div class="info-box">
<h4>π€ About This Model</h4>
<p>This application uses YOLOv12-DINO, a state-of-the-art deep learning model that combines:</p>
<ul>
<li><strong>YOLOv12</strong>: Latest version of the YOLO object detection architecture</li>
<li><strong>DINOv3</strong>: Vision Transformer backbone for enhanced feature extraction</li>
<li><strong>Specialized Training</strong>: Fine-tuned specifically for tunnel crack and defect detection</li>
</ul>
<p><em>Perfect for infrastructure monitoring and maintenance applications!</em></p>
</div>
""", unsafe_allow_html=True)
# Auto-load model on startup
if not st.session_state.model_loaded:
with st.spinner("π Initializing model..."):
# For HF Spaces, you might want to have the model pre-loaded or use a different approach
# model_path = download_model()
# if model_path:
# success, message = load_model(model_path, "cpu")
# if success:
# st.success("π Model ready for inference!")
pass
# Sidebar for configuration
with st.sidebar:
st.header("π οΈ Configuration")
# Model loading section
st.subheader("π Model")
if not st.session_state.model_loaded:
st.markdown('<div class="warning-box">β οΈ Upload a model to get started</div>', unsafe_allow_html=True)
uploaded_file = st.file_uploader(
"Upload Model Weights (.pt file)",
type=['pt'],
help="Upload your trained YOLOv12-DINO model weights",
label_visibility="visible"
)
if uploaded_file is not None:
# Show file info
file_size_mb = uploaded_file.size / (1024 * 1024)
st.success(f"π File uploaded: {uploaded_file.name} ({file_size_mb:.1f} MB)")
if st.button("π Load Model", type="primary"):
# Show progress for file processing
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Save uploaded file temporarily
status_text.text("πΎ Processing uploaded file...")
progress_bar.progress(25)
with tempfile.NamedTemporaryFile(delete=False, suffix='.pt') as tmp_file:
tmp_file.write(uploaded_file.read())
tmp_path = tmp_file.name
progress_bar.progress(50)
status_text.text("π Loading model...")
success, message = load_model(tmp_path, "cpu")
progress_bar.progress(100)
status_text.text("β
Model loading complete!")
if success:
st.success(message)
st.rerun()
else:
st.error(message)
# Clean up progress indicators
time.sleep(1)
progress_bar.empty()
status_text.empty()
except Exception as e:
st.error(f"β Error processing file: {str(e)}")
progress_bar.empty()
status_text.empty()
else:
st.markdown('<div class="success-box">β
Model loaded and ready!</div>', unsafe_allow_html=True)
# Detection parameters
st.subheader("βοΈ Detection Parameters")
conf_threshold = st.slider(
"Confidence Threshold",
min_value=0.01,
max_value=1.0,
value=0.25,
step=0.01,
help="Minimum confidence for detection"
)
iou_threshold = st.slider(
"IoU Threshold",
min_value=0.01,
max_value=1.0,
value=0.7,
step=0.01,
help="IoU threshold for Non-Maximum Suppression"
)
image_size = st.selectbox(
"Image Size",
options=[320, 416, 512, 640, 832, 1024],
index=3,
help="Input image size for model"
)
# Statistics
if st.session_state.detection_history:
st.subheader("π Session Stats")
total_detections = sum([h['detections'] for h in st.session_state.detection_history])
st.metric("Images Processed", len(st.session_state.detection_history))
st.metric("Total Detections", total_detections)
# Main content area
col1, col2 = st.columns([1, 1])
with col1:
st.header("πΌοΈ Input Image")
# Image upload
image_file = st.file_uploader(
"Upload Image for Analysis",
type=['jpg', 'jpeg', 'png', 'bmp'],
help="Upload a tunnel image for crack detection"
)
if image_file is not None:
# Load and display image
try:
image = Image.open(image_file)
image_np = np.array(image)
# Display image
st.image(image, caption="π· Input Image", use_column_width=True)
# Image info
st.info(f"π Image size: {image.width} Γ {image.height} pixels")
except Exception as e:
st.error(f"β Error loading image: {str(e)}")
return
# Detection button
detect_button = st.button(
"π Analyze for Cracks",
type="primary",
disabled=not st.session_state.model_loaded,
use_container_width=True
)
if detect_button:
if st.session_state.model_loaded:
with st.spinner("π Analyzing image for cracks and defects..."):
annotated_img, detection_data, summary_text = perform_detection(
image_np, conf_threshold, iou_threshold, image_size
)
# Store results in session state
st.session_state.last_detection = {
'annotated_img': annotated_img,
'detection_data': detection_data,
'summary_text': summary_text,
'timestamp': time.time()
}
# Add to history
st.session_state.detection_history.append({
'filename': image_file.name,
'detections': detection_data['total_detections'],
'timestamp': time.time()
})
st.rerun()
else:
st.error("β Please upload and load a model first")
else:
st.markdown("""
<div class="info-box">
<h4>π Get Started</h4>
<ol>
<li>Upload your YOLOv12-DINO model weights in the sidebar</li>
<li>Upload a tunnel image above</li>
<li>Click "Analyze for Cracks" to detect defects</li>
</ol>
</div>
""", unsafe_allow_html=True)
with col2:
st.header("π― Detection Results")
if 'last_detection' in st.session_state:
detection_result = st.session_state.last_detection
# Display annotated image
if detection_result['annotated_img'] is not None:
try:
st.image(
detection_result['annotated_img'],
caption="π― Detection Results",
use_column_width=True
)
except Exception as e:
st.error(f"Error displaying result image: {str(e)}")
# Display summary
st.markdown(f'<div class="detection-box">{detection_result["summary_text"]}</div>',
unsafe_allow_html=True)
else:
st.markdown("""
<div class="info-box">
<h4>π Results will appear here</h4>
<p>Upload an image and click 'Analyze for Cracks' to see detection results with:</p>
<ul>
<li>π― Annotated image with detected cracks</li>
<li>π Detection statistics and confidence scores</li>
<li>π Detailed analysis tables</li>
<li>π Interactive charts and visualizations</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Additional tabs for detailed analysis
if 'last_detection' in st.session_state and st.session_state.last_detection['detection_data']['total_detections'] > 0:
st.markdown("---")
st.header("π Detailed Analysis")
tab1, tab2, tab3 = st.tabs(["π Visualizations", "π Detection Table", "π Session History"])
with tab1:
create_detection_chart(st.session_state.last_detection['detection_data'])
with tab2:
create_detection_table(st.session_state.last_detection['detection_data'])
with tab3:
if st.session_state.detection_history:
st.subheader("π Analysis History")
history_df = pd.DataFrame(st.session_state.detection_history)
history_df['timestamp'] = pd.to_datetime(history_df['timestamp'], unit='s')
history_df.columns = ['Filename', 'Detections', 'Timestamp']
st.dataframe(history_df, use_container_width=True, height=300)
col1, col2 = st.columns(2)
with col1:
if st.button("ποΈ Clear History", use_container_width=True):
st.session_state.detection_history = []
st.rerun()
with col2:
if len(st.session_state.detection_history) > 0:
csv = history_df.to_csv(index=False)
st.download_button(
label="π₯ Download History",
data=csv,
file_name=f"detection_history_{int(time.time())}.csv",
mime="text/csv",
use_container_width=True
)
else:
st.info("π No analysis history yet. Start by uploading and analyzing images!")
# Footer
st.markdown("---")
st.markdown("""
<div style='text-align: center; color: #666; padding: 2rem;'>
<h4>π Tunnel Crack Detection System</h4>
<p>
Powered by <strong>YOLOv12-DINO</strong> β’ Built with <strong>Streamlit</strong> β’
Deployed on <strong>π€ Hugging Face Spaces</strong>
</p>
<p><em>Advanced AI for Infrastructure Monitoring and Maintenance</em></p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main()
|