File size: 20,818 Bytes
12e6fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#!/usr/bin/env python3
"""
Tunnel Crack Detection Streamlit App

A Streamlit-based web interface for tunnel crack detection using YOLOv12-DINO.
Upload images and get real-time crack detection results with interactive controls.
"""

import streamlit as st
import cv2
import numpy as np
import pandas as pd
from pathlib import Path
import tempfile
import os
import sys
from typing import Dict, List, Tuple
import time
from PIL import Image
import plotly.express as px
import plotly.graph_objects as go

# Add the current directory to the Python path
current_dir = Path(__file__).parent
sys.path.insert(0, str(current_dir))

try:
    from inference import YOLOInference
except ImportError as e:
    st.error(f"Error importing inference module: {e}")
    st.stop()

# Page configuration
st.set_page_config(
    page_title="Tunnel Crack Detection",
    page_icon="πŸ”",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Configure large file uploads
import streamlit.web.bootstrap
try:
    # Set large upload size (5GB in MB)
    if hasattr(st, '_config'):
        st._config.set_option('server.maxUploadSize', 5000)
    else:
        # For newer Streamlit versions
        from streamlit import config
        config.set_option('server.maxUploadSize', 5000)
        config.set_option('server.maxMessageSize', 5000)
except Exception:
    pass

# Set environment variable for large files (5GB in MB)
os.environ['STREAMLIT_SERVER_MAX_UPLOAD_SIZE'] = '5000'

# Custom CSS for better styling
st.markdown("""
<style>
    .main-header {
        font-size: 3rem;
        color: #1e88e5;
        text-align: center;
        margin-bottom: 2rem;
    }
    .metric-card {
        background-color: #f0f2f6;
        padding: 1rem;
        border-radius: 0.5rem;
        margin: 0.5rem 0;
    }
    .detection-box {
        border: 2px solid #1e88e5;
        border-radius: 0.5rem;
        padding: 1rem;
        margin: 1rem 0;
        background-color: #f8f9fa;
    }
    .success-box {
        border: 2px solid #4caf50;
        border-radius: 0.5rem;
        padding: 1rem;
        margin: 1rem 0;
        background-color: #f1f8e9;
    }
    .error-box {
        border: 2px solid #f44336;
        border-radius: 0.5rem;
        padding: 1rem;
        margin: 1rem 0;
        background-color: #ffebee;
    }
    .warning-box {
        border: 2px solid #ff9800;
        border-radius: 0.5rem;
        padding: 1rem;
        margin: 1rem 0;
        background-color: #fff3e0;
    }
</style>
""", unsafe_allow_html=True)

# Initialize session state
if 'model_loaded' not in st.session_state:
    st.session_state.model_loaded = False
if 'model_instance' not in st.session_state:
    st.session_state.model_instance = None
if 'detection_history' not in st.session_state:
    st.session_state.detection_history = []

# Default model weight path
DEFAULT_WEIGHTS_PATH = "/Users/sompoteyouwai/env/model_weight/segment_defect.pt"

def load_model(weights_path: str, device: str = "cpu") -> Tuple[bool, str]:
    """Load the YOLO model with specified weights."""
    try:
        if not Path(weights_path).exists():
            return False, f"❌ Model file not found: {weights_path}"
        
        with st.spinner("Loading tunnel crack detection model..."):
            st.session_state.model_instance = YOLOInference(
                weights=weights_path,
                conf=0.25,
                iou=0.7,
                imgsz=640,
                device=device,
                verbose=True
            )
        
        st.session_state.model_loaded = True
        
        # Get model information
        model_info = f"βœ… Model loaded successfully\n"
        model_info += f"πŸ“‹ Task: {st.session_state.model_instance.model.task}\n"
        
        if hasattr(st.session_state.model_instance.model.model, 'names'):
            class_names = list(st.session_state.model_instance.model.model.names.values())
            model_info += f"🏷️ Classes ({len(class_names)}): {', '.join(class_names)}"
            
        return True, model_info
        
    except Exception as e:
        return False, f"❌ Error loading model: {str(e)}"

def perform_detection(
    image: np.ndarray,
    conf_threshold: float,
    iou_threshold: float,
    image_size: int
) -> Tuple[np.ndarray, Dict, str]:
    """Perform crack detection using the loaded model."""
    
    if st.session_state.model_instance is None:
        return None, {}, "❌ No model loaded"
    
    try:
        # Update model parameters
        st.session_state.model_instance.conf = conf_threshold
        st.session_state.model_instance.iou = iou_threshold
        st.session_state.model_instance.imgsz = image_size
        
        # Save image to temporary file
        with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmp_file:
            # Convert RGB to BGR for OpenCV
            image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
            cv2.imwrite(tmp_file.name, image_bgr)
            tmp_path = tmp_file.name
        
        start_time = time.time()
        
        try:
            # Use the exact same method as inference.py
            results = st.session_state.model_instance.predict_single(
                source=tmp_path,
                save=False,
                show=False,
                save_txt=False,
                save_conf=False,
                save_crop=False,
                output_dir=None
            )
            
            inference_time = time.time() - start_time
            
            if not results:
                return image, {}, "❌ No results returned from model"
            
            result = results[0]
            
            # Get annotated image
            annotated_img = result.plot()
            annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
            
            # Process detection results
            detection_data = process_detection_results(result, inference_time)
            
            # Generate summary text
            summary_text = generate_detection_summary(result, detection_data, inference_time)
            
            return annotated_img, detection_data, summary_text
            
        finally:
            # Clean up temporary file
            if os.path.exists(tmp_path):
                os.unlink(tmp_path)
                
    except Exception as e:
        return None, {}, f"❌ Error during detection: {str(e)}"

def process_detection_results(result, inference_time: float) -> Dict:
    """Process detection results into structured data."""
    
    if result.boxes is None or len(result.boxes) == 0:
        return {
            'total_detections': 0,
            'class_counts': {},
            'detections': [],
            'inference_time': inference_time
        }
    
    detections = result.boxes
    
    # Get class names
    if hasattr(st.session_state.model_instance.model.model, 'names'):
        class_names = st.session_state.model_instance.model.model.names
    else:
        class_names = getattr(result, 'names', {i: f"Class_{i}" for i in range(100)})
    
    # Process each detection
    detection_list = []
    class_counts = {}
    
    for i, (box, conf, cls) in enumerate(zip(detections.xyxy, detections.conf, detections.cls)):
        cls_id = int(cls)
        cls_name = class_names.get(cls_id, f"Class_{cls_id}")
        confidence = float(conf)
        
        x1, y1, x2, y2 = box.tolist()
        
        detection_list.append({
            'id': i + 1,
            'class': cls_name,
            'confidence': confidence,
            'x1': int(x1),
            'y1': int(y1),
            'x2': int(x2),
            'y2': int(y2),
            'width': int(x2 - x1),
            'height': int(y2 - y1),
            'area': int((x2 - x1) * (y2 - y1))
        })
        
        class_counts[cls_name] = class_counts.get(cls_name, 0) + 1
    
    return {
        'total_detections': len(detection_list),
        'class_counts': class_counts,
        'detections': detection_list,
        'inference_time': inference_time
    }

def generate_detection_summary(result, detection_data: Dict, inference_time: float) -> str:
    """Generate detection summary text."""
    
    total_detections = detection_data['total_detections']
    
    if total_detections == 0:
        return "πŸ” No cracks or defects detected in the image."
    
    summary = f"βœ… **Detection Results:**\n\n"
    summary += f"πŸ“Š **Images processed:** 1\n"
    summary += f"πŸ“Š **Total detections:** {total_detections}\n"
    summary += f"⏱️ **Inference time:** {inference_time:.3f}s\n\n"
    
    summary += "πŸ“‹ **Detections by class:**\n"
    for cls_name, count in sorted(detection_data['class_counts'].items()):
        summary += f"   β€’ {cls_name}: {count}\n"
    
    return summary

def create_detection_chart(detection_data: Dict):
    """Create interactive charts for detection results."""
    
    if detection_data['total_detections'] == 0:
        st.info("No detections to visualize")
        return
    
    # Class distribution pie chart
    class_counts = detection_data['class_counts']
    
    fig_pie = px.pie(
        values=list(class_counts.values()),
        names=list(class_counts.keys()),
        title="Detection Distribution by Class",
        color_discrete_sequence=px.colors.qualitative.Set3
    )
    fig_pie.update_layout(height=400)
    
    st.plotly_chart(fig_pie, use_container_width=True)
    
    # Confidence distribution
    confidences = [det['confidence'] for det in detection_data['detections']]
    classes = [det['class'] for det in detection_data['detections']]
    
    fig_conf = px.box(
        x=classes,
        y=confidences,
        title="Confidence Distribution by Class",
        color=classes
    )
    fig_conf.update_layout(height=400)
    fig_conf.update_xaxes(title="Class")
    fig_conf.update_yaxes(title="Confidence Score")
    
    st.plotly_chart(fig_conf, use_container_width=True)

def create_detection_table(detection_data: Dict):
    """Create detailed detection table."""
    
    if detection_data['total_detections'] == 0:
        st.info("No detections to display")
        return
    
    # Convert to DataFrame
    df = pd.DataFrame(detection_data['detections'])
    
    # Format confidence as percentage
    df['confidence_pct'] = df['confidence'].apply(lambda x: f"{x:.1%}")
    
    # Reorder columns for better display
    display_columns = ['id', 'class', 'confidence_pct', 'x1', 'y1', 'x2', 'y2', 'width', 'height', 'area']
    df_display = df[display_columns].copy()
    
    # Rename columns for better readability
    df_display.columns = ['ID', 'Class', 'Confidence', 'X1', 'Y1', 'X2', 'Y2', 'Width', 'Height', 'Area']
    
    st.dataframe(df_display, use_container_width=True)
    
    # Download button for results
    csv = df_display.to_csv(index=False)
    st.download_button(
        label="πŸ“₯ Download Detection Results (CSV)",
        data=csv,
        file_name=f"crack_detection_results_{int(time.time())}.csv",
        mime="text/csv"
    )

def main():
    """Main Streamlit application."""
    
    # Header
    st.markdown('<h1 class="main-header">πŸ” Tunnel Crack Detection</h1>', unsafe_allow_html=True)
    st.markdown("**AI-powered crack and defect detection for tunnel infrastructure using YOLOv12-DINO**")
    
    # Sidebar for model configuration
    with st.sidebar:
        st.header("πŸ› οΈ Model Configuration")
        
        # Model loading section
        st.subheader("πŸ“ Load Model")
        
        # Check if default model exists
        default_exists = Path(DEFAULT_WEIGHTS_PATH).exists()
        
        if default_exists:
            st.success(f"βœ… Default model found: `segment_defect.pt`")
            if st.button("πŸš€ Load Default Model", type="primary"):
                device = st.selectbox(
                    "Device",
                    options=["cpu", "cuda", "mps"],
                    index=0,
                    help="Select computation device",
                    key="device_default"
                )
                success, message = load_model(DEFAULT_WEIGHTS_PATH, device)
                if success:
                    st.success(message)
                else:
                    st.error(message)
        else:
            st.markdown(f'<div class="warning-box">⚠️ Default model not found at:<br><code>{DEFAULT_WEIGHTS_PATH}</code></div>', 
                       unsafe_allow_html=True)
        
        st.markdown("---")
        
        # Alternative model upload
        st.info("πŸ’‘ **Alternative:** Upload a custom model (up to 5GB)")
        uploaded_file = st.file_uploader(
            "Upload Model Weights (.pt file)",
            type=['pt'],
            help="Upload your trained YOLOv12-DINO model weights",
            label_visibility="visible"
        )
        
        device = st.selectbox(
            "Device",
            options=["cpu", "cuda", "mps"],
            index=0,
            help="Select computation device",
            key="device_upload"
        )
        
        if uploaded_file is not None:
            # Show file info
            file_size_mb = uploaded_file.size / (1024 * 1024)
            st.success(f"πŸ“ File uploaded: {uploaded_file.name} ({file_size_mb:.1f} MB)")
            
            if st.button("πŸ”„ Load Uploaded Model", type="secondary"):
                # Show progress for large file processing
                progress_bar = st.progress(0)
                status_text = st.empty()
                
                try:
                    # Save uploaded file temporarily with progress indication
                    status_text.text("πŸ’Ύ Saving uploaded file...")
                    progress_bar.progress(25)
                    
                    with tempfile.NamedTemporaryFile(delete=False, suffix='.pt') as tmp_file:
                        tmp_file.write(uploaded_file.read())
                        tmp_path = tmp_file.name
                    
                    progress_bar.progress(50)
                    status_text.text("πŸš€ Loading model...")
                    
                    success, message = load_model(tmp_path, device)
                    
                    progress_bar.progress(100)
                    status_text.text("βœ… Model loading complete!")
                    
                    if success:
                        st.success(message)
                    else:
                        st.error(message)
                        
                    # Clean up progress indicators
                    time.sleep(1)
                    progress_bar.empty()
                    status_text.empty()
                    
                except Exception as e:
                    st.error(f"❌ Error processing file: {str(e)}")
                    progress_bar.empty()
                    status_text.empty()
        
        # Detection parameters
        st.subheader("βš™οΈ Detection Parameters")
        
        conf_threshold = st.slider(
            "Confidence Threshold",
            min_value=0.01,
            max_value=1.0,
            value=0.25,
            step=0.01,
            help="Minimum confidence for detection"
        )
        
        iou_threshold = st.slider(
            "IoU Threshold",
            min_value=0.01,
            max_value=1.0,
            value=0.7,
            step=0.01,
            help="IoU threshold for Non-Maximum Suppression"
        )
        
        image_size = st.selectbox(
            "Image Size",
            options=[320, 416, 512, 640, 832, 1024, 1280],
            index=3,
            help="Input image size for model"
        )
        
        # Model status
        if st.session_state.model_loaded:
            st.markdown('<div class="success-box">βœ… Model loaded and ready</div>', unsafe_allow_html=True)
        else:
            st.markdown('<div class="warning-box">⚠️ Please load a model first</div>', unsafe_allow_html=True)
    
    # Main content area
    col1, col2 = st.columns([1, 1])
    
    with col1:
        st.header("πŸ–ΌοΈ Input Image")
        
        # Image upload
        image_file = st.file_uploader(
            "Upload Image",
            type=['jpg', 'jpeg', 'png', 'bmp'],
            help="Upload a tunnel image for crack detection"
        )
        
        if image_file is not None:
            # Load and display image
            try:
                image = Image.open(image_file)
                image_np = np.array(image)
                
                # Display image
                st.image(image, caption="Input Image", width=None)
                
                # Image info
                st.info(f"πŸ“Š Image size: {image.width} Γ— {image.height} pixels")
                
            except Exception as e:
                st.error(f"❌ Error loading image: {str(e)}")
                return
            
            # Detection button
            if st.button("πŸ” Detect Cracks", type="primary", disabled=not st.session_state.model_loaded):
                if st.session_state.model_loaded:
                    with st.spinner("Analyzing image for cracks and defects..."):
                        annotated_img, detection_data, summary_text = perform_detection(
                            image_np, conf_threshold, iou_threshold, image_size
                        )
                        
                        # Store results in session state
                        st.session_state.last_detection = {
                            'annotated_img': annotated_img,
                            'detection_data': detection_data,
                            'summary_text': summary_text,
                            'timestamp': time.time()
                        }
                        
                        # Add to history
                        st.session_state.detection_history.append({
                            'filename': image_file.name,
                            'detections': detection_data['total_detections'],
                            'timestamp': time.time()
                        })
                else:
                    st.error("❌ Please load a model first")
    
    with col2:
        st.header("🎯 Detection Results")
        
        if 'last_detection' in st.session_state:
            detection_result = st.session_state.last_detection
            
            # Display annotated image
            if detection_result['annotated_img'] is not None:
                try:
                    st.image(
                        detection_result['annotated_img'],
                        caption="Crack Detection Results",
                        width=None
                    )
                except Exception as e:
                    st.error(f"Error displaying result image: {str(e)}")
            
            # Display summary
            st.markdown(f'<div class="detection-box">{detection_result["summary_text"]}</div>', 
                       unsafe_allow_html=True)
            
        else:
            st.info("πŸ” Upload an image and click 'Detect Cracks' to see results")
    
    # Additional tabs for detailed analysis
    if 'last_detection' in st.session_state and st.session_state.last_detection['detection_data']['total_detections'] > 0:
        
        st.header("πŸ“Š Detailed Analysis")
        
        tab1, tab2, tab3 = st.tabs(["πŸ“ˆ Charts", "πŸ“‹ Detection Table", "πŸ“œ History"])
        
        with tab1:
            create_detection_chart(st.session_state.last_detection['detection_data'])
        
        with tab2:
            create_detection_table(st.session_state.last_detection['detection_data'])
        
        with tab3:
            if st.session_state.detection_history:
                history_df = pd.DataFrame(st.session_state.detection_history)
                history_df['timestamp'] = pd.to_datetime(history_df['timestamp'], unit='s')
                history_df.columns = ['Filename', 'Detections', 'Timestamp']
                
                st.dataframe(history_df, use_container_width=True)
                
                # Clear history button
                if st.button("πŸ—‘οΈ Clear History"):
                    st.session_state.detection_history = []
                    st.rerun()
            else:
                st.info("No detection history yet")
    
    # Footer
    st.markdown("---")
    st.markdown(
        """
        <div style='text-align: center; color: #666; padding: 1rem;'>
            πŸ” <strong>Tunnel Crack Detection System</strong> | 
            Powered by <strong>Streamlit</strong> + <strong>YOLOv12-DINO</strong>
        </div>
        """,
        unsafe_allow_html=True
    )

if __name__ == "__main__":
    main()