Spaces:
Sleeping
Sleeping
creating app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
import numpy as np
|
| 4 |
+
from typing import List, Union
|
| 5 |
+
import spaces # ZeroGPU decorator
|
| 6 |
+
|
| 7 |
+
# Load model once at startup
|
| 8 |
+
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 9 |
+
model = SentenceTransformer(MODEL_NAME)
|
| 10 |
+
|
| 11 |
+
@spaces.GPU(duration=60) # ZeroGPU: allocate GPU for 60 seconds
|
| 12 |
+
def generate_embeddings(texts: Union[str, List[str]]) -> List[List[float]]:
|
| 13 |
+
"""
|
| 14 |
+
Generate embeddings for text(s)
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
texts: Single string or list of strings
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
List of embedding vectors (384 dimensions)
|
| 21 |
+
"""
|
| 22 |
+
# Handle single string
|
| 23 |
+
if isinstance(texts, str):
|
| 24 |
+
texts = [texts]
|
| 25 |
+
|
| 26 |
+
# Generate embeddings
|
| 27 |
+
embeddings = model.encode(
|
| 28 |
+
texts,
|
| 29 |
+
convert_to_numpy=True,
|
| 30 |
+
normalize_embeddings=True, # Normalize for cosine similarity
|
| 31 |
+
show_progress_bar=False
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Convert to list for JSON serialization
|
| 35 |
+
return embeddings.tolist()
|
| 36 |
+
|
| 37 |
+
def batch_generate(texts_input: str) -> str:
|
| 38 |
+
"""
|
| 39 |
+
Gradio interface for batch embedding generation
|
| 40 |
+
Expects newline-separated texts
|
| 41 |
+
"""
|
| 42 |
+
if not texts_input.strip():
|
| 43 |
+
return "Error: Please provide at least one text"
|
| 44 |
+
|
| 45 |
+
texts = [t.strip() for t in texts_input.split('\n') if t.strip()]
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
embeddings = generate_embeddings(texts)
|
| 49 |
+
|
| 50 |
+
result = f"Generated {len(embeddings)} embeddings\n"
|
| 51 |
+
result += f"Dimensions: {len(embeddings[0])}\n\n"
|
| 52 |
+
result += "First embedding preview:\n"
|
| 53 |
+
result += str(embeddings[0][:10]) + "...\n"
|
| 54 |
+
|
| 55 |
+
return result
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"Error: {str(e)}"
|
| 58 |
+
|
| 59 |
+
# Create Gradio interface
|
| 60 |
+
with gr.Blocks(title="FairFate Embeddings API") as demo:
|
| 61 |
+
gr.Markdown("""
|
| 62 |
+
# FairFate Embeddings API
|
| 63 |
+
|
| 64 |
+
Generate semantic embeddings using sentence-transformers/all-MiniLM-L6-v2
|
| 65 |
+
- **Dimensions:** 384
|
| 66 |
+
- **Max Tokens:** 256
|
| 67 |
+
- **Normalized:** Yes (ready for cosine similarity)
|
| 68 |
+
|
| 69 |
+
## API Usage
|
| 70 |
+
|
| 71 |
+
**Endpoint:** `https://your-username-fairfate-embeddings.hf.space/api/predict`
|
| 72 |
+
|
| 73 |
+
**Request:**
|
| 74 |
+
```json
|
| 75 |
+
{
|
| 76 |
+
"data": ["Your text here", "Another text"]
|
| 77 |
+
}
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
**Response:**
|
| 81 |
+
```json
|
| 82 |
+
{
|
| 83 |
+
"data": [[[0.123, -0.456, ...]], [[0.789, -0.012, ...]]]
|
| 84 |
+
}
|
| 85 |
+
```
|
| 86 |
+
""")
|
| 87 |
+
|
| 88 |
+
with gr.Tab("Test Embeddings"):
|
| 89 |
+
input_text = gr.Textbox(
|
| 90 |
+
label="Input Texts (one per line)",
|
| 91 |
+
placeholder="Enter texts, one per line:\nDungeons and Dragons adventure\nSci-fi space opera campaign",
|
| 92 |
+
lines=5
|
| 93 |
+
)
|
| 94 |
+
output_text = gr.Textbox(label="Results", lines=10)
|
| 95 |
+
submit_btn = gr.Button("Generate Embeddings")
|
| 96 |
+
submit_btn.click(batch_generate, inputs=input_text, outputs=output_text)
|
| 97 |
+
|
| 98 |
+
with gr.Tab("API Documentation"):
|
| 99 |
+
gr.Markdown("""
|
| 100 |
+
### Python Example
|
| 101 |
+
```python
|
| 102 |
+
import requests
|
| 103 |
+
|
| 104 |
+
response = requests.post(
|
| 105 |
+
"https://your-username-fairfate-embeddings.hf.space/api/predict",
|
| 106 |
+
json={"data": ["Your text here"]}
|
| 107 |
+
)
|
| 108 |
+
embeddings = response.json()["data"][0]
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
### JavaScript/TypeScript Example
|
| 112 |
+
```typescript
|
| 113 |
+
const response = await fetch(
|
| 114 |
+
'https://your-username-fairfate-embeddings.hf.space/api/predict',
|
| 115 |
+
{
|
| 116 |
+
method: 'POST',
|
| 117 |
+
headers: { 'Content-Type': 'application/json' },
|
| 118 |
+
body: JSON.stringify({ data: ["Your text here"] })
|
| 119 |
+
}
|
| 120 |
+
);
|
| 121 |
+
const result = await response.json();
|
| 122 |
+
const embeddings = result.data[0];
|
| 123 |
+
```
|
| 124 |
+
""")
|
| 125 |
+
# Launch with API enabled
|
| 126 |
+
demo.launch()
|