Spaces:
Running
Running
| struct whisper_params { | |
| int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); | |
| int32_t n_processors = 1; | |
| int32_t offset_t_ms = 0; | |
| int32_t offset_n = 0; | |
| int32_t duration_ms = 0; | |
| int32_t max_context = -1; | |
| int32_t max_len = 0; | |
| int32_t best_of = 5; | |
| int32_t beam_size = -1; | |
| int32_t audio_ctx = 0; | |
| float word_thold = 0.01f; | |
| float entropy_thold = 2.4f; | |
| float logprob_thold = -1.0f; | |
| bool translate = false; | |
| bool diarize = false; | |
| bool output_txt = false; | |
| bool output_vtt = false; | |
| bool output_srt = false; | |
| bool output_wts = false; | |
| bool output_csv = false; | |
| bool print_special = false; | |
| bool print_colors = false; | |
| bool print_progress = false; | |
| bool no_timestamps = false; | |
| bool no_prints = false; | |
| bool detect_language= false; | |
| bool use_gpu = true; | |
| bool flash_attn = false; | |
| bool comma_in_time = true; | |
| std::string language = "en"; | |
| std::string prompt; | |
| std::string model = "../../ggml-large.bin"; | |
| std::vector<std::string> fname_inp = {}; | |
| std::vector<std::string> fname_out = {}; | |
| std::vector<float> pcmf32 = {}; // mono-channel F32 PCM | |
| // Voice Activity Detection (VAD) parameters | |
| bool vad = false; | |
| std::string vad_model = ""; | |
| float vad_threshold = 0.5f; | |
| int vad_min_speech_duration_ms = 250; | |
| int vad_min_silence_duration_ms = 100; | |
| float vad_max_speech_duration_s = FLT_MAX; | |
| int vad_speech_pad_ms = 30; | |
| float vad_samples_overlap = 0.1f; | |
| }; | |
| struct whisper_print_user_data { | |
| const whisper_params * params; | |
| const std::vector<std::vector<float>> * pcmf32s; | |
| }; | |
| void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * state, int n_new, void * user_data) { | |
| const auto & params = *((whisper_print_user_data *) user_data)->params; | |
| const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s; | |
| const int n_segments = whisper_full_n_segments(ctx); | |
| std::string speaker = ""; | |
| int64_t t0; | |
| int64_t t1; | |
| // print the last n_new segments | |
| const int s0 = n_segments - n_new; | |
| if (s0 == 0) { | |
| printf("\n"); | |
| } | |
| for (int i = s0; i < n_segments; i++) { | |
| if (!params.no_timestamps || params.diarize) { | |
| t0 = whisper_full_get_segment_t0(ctx, i); | |
| t1 = whisper_full_get_segment_t1(ctx, i); | |
| } | |
| if (!params.no_timestamps && !params.no_prints) { | |
| printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str()); | |
| } | |
| if (params.diarize && pcmf32s.size() == 2) { | |
| const int64_t n_samples = pcmf32s[0].size(); | |
| const int64_t is0 = timestamp_to_sample(t0, n_samples, WHISPER_SAMPLE_RATE); | |
| const int64_t is1 = timestamp_to_sample(t1, n_samples, WHISPER_SAMPLE_RATE); | |
| double energy0 = 0.0f; | |
| double energy1 = 0.0f; | |
| for (int64_t j = is0; j < is1; j++) { | |
| energy0 += fabs(pcmf32s[0][j]); | |
| energy1 += fabs(pcmf32s[1][j]); | |
| } | |
| if (energy0 > 1.1*energy1) { | |
| speaker = "(speaker 0)"; | |
| } else if (energy1 > 1.1*energy0) { | |
| speaker = "(speaker 1)"; | |
| } else { | |
| speaker = "(speaker ?)"; | |
| } | |
| //printf("is0 = %lld, is1 = %lld, energy0 = %f, energy1 = %f, %s\n", is0, is1, energy0, energy1, speaker.c_str()); | |
| } | |
| // colorful print bug | |
| // | |
| if (!params.no_prints) { | |
| const char * text = whisper_full_get_segment_text(ctx, i); | |
| printf("%s%s", speaker.c_str(), text); | |
| } | |
| // with timestamps or speakers: each segment on new line | |
| if ((!params.no_timestamps || params.diarize) && !params.no_prints) { | |
| printf("\n"); | |
| } | |
| fflush(stdout); | |
| } | |
| } | |
| void cb_log_disable(enum ggml_log_level, const char *, void *) {} | |
| struct whisper_result { | |
| std::vector<std::vector<std::string>> segments; | |
| std::string language; | |
| }; | |
| class ProgressWorker : public Napi::AsyncWorker { | |
| public: | |
| ProgressWorker(Napi::Function& callback, whisper_params params, Napi::Function progress_callback, Napi::Env env) | |
| : Napi::AsyncWorker(callback), params(params), env(env) { | |
| // Create thread-safe function | |
| if (!progress_callback.IsEmpty()) { | |
| tsfn = Napi::ThreadSafeFunction::New( | |
| env, | |
| progress_callback, | |
| "Progress Callback", | |
| 0, | |
| 1 | |
| ); | |
| } | |
| } | |
| ~ProgressWorker() { | |
| if (tsfn) { | |
| // Make sure to release the thread-safe function on destruction | |
| tsfn.Release(); | |
| } | |
| } | |
| void Execute() override { | |
| // Use custom run function with progress callback support | |
| run_with_progress(params, result); | |
| } | |
| void OnOK() override { | |
| Napi::HandleScope scope(Env()); | |
| if (params.detect_language) { | |
| Napi::Object resultObj = Napi::Object::New(Env()); | |
| resultObj.Set("language", Napi::String::New(Env(), result.language)); | |
| Callback().Call({Env().Null(), resultObj}); | |
| } | |
| Napi::Object returnObj = Napi::Object::New(Env()); | |
| if (!result.language.empty()) { | |
| returnObj.Set("language", Napi::String::New(Env(), result.language)); | |
| } | |
| Napi::Array transcriptionArray = Napi::Array::New(Env(), result.segments.size()); | |
| for (uint64_t i = 0; i < result.segments.size(); ++i) { | |
| Napi::Object tmp = Napi::Array::New(Env(), 3); | |
| for (uint64_t j = 0; j < 3; ++j) { | |
| tmp[j] = Napi::String::New(Env(), result.segments[i][j]); | |
| } | |
| transcriptionArray[i] = tmp; | |
| } | |
| returnObj.Set("transcription", transcriptionArray); | |
| Callback().Call({Env().Null(), returnObj}); | |
| } | |
| // Progress callback function - using thread-safe function | |
| void OnProgress(int progress) { | |
| if (tsfn) { | |
| // Use thread-safe function to call JavaScript callback | |
| auto callback = [progress](Napi::Env env, Napi::Function jsCallback) { | |
| jsCallback.Call({Napi::Number::New(env, progress)}); | |
| }; | |
| tsfn.BlockingCall(callback); | |
| } | |
| } | |
| private: | |
| whisper_params params; | |
| whisper_result result; | |
| Napi::Env env; | |
| Napi::ThreadSafeFunction tsfn; | |
| // Custom run function with progress callback support | |
| int run_with_progress(whisper_params ¶ms, whisper_result & result) { | |
| if (params.no_prints) { | |
| whisper_log_set(cb_log_disable, NULL); | |
| } | |
| if (params.fname_inp.empty() && params.pcmf32.empty()) { | |
| fprintf(stderr, "error: no input files or audio buffer specified\n"); | |
| return 2; | |
| } | |
| if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) { | |
| fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); | |
| exit(0); | |
| } | |
| // whisper init | |
| struct whisper_context_params cparams = whisper_context_default_params(); | |
| cparams.use_gpu = params.use_gpu; | |
| cparams.flash_attn = params.flash_attn; | |
| struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams); | |
| if (ctx == nullptr) { | |
| fprintf(stderr, "error: failed to initialize whisper context\n"); | |
| return 3; | |
| } | |
| // If params.pcmf32 provides, set params.fname_inp as "buffer" | |
| if (!params.pcmf32.empty()) { | |
| fprintf(stderr, "info: using audio buffer as input\n"); | |
| params.fname_inp.clear(); | |
| params.fname_inp.emplace_back("buffer"); | |
| } | |
| for (int f = 0; f < (int) params.fname_inp.size(); ++f) { | |
| const auto fname_inp = params.fname_inp[f]; | |
| const auto fname_out = f < (int)params.fname_out.size() && !params.fname_out[f].empty() ? params.fname_out[f] : params.fname_inp[f]; | |
| std::vector<float> pcmf32; // mono-channel F32 PCM | |
| std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM | |
| // If params.pcmf32 is empty, read input audio file | |
| if (params.pcmf32.empty()) { | |
| if (!::read_audio_data(fname_inp, pcmf32, pcmf32s, params.diarize)) { | |
| fprintf(stderr, "error: failed to read audio file '%s'\n", fname_inp.c_str()); | |
| continue; | |
| } | |
| } else { | |
| pcmf32 = params.pcmf32; | |
| } | |
| // Print system info | |
| if (!params.no_prints) { | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", | |
| params.n_threads*params.n_processors, std::thread::hardware_concurrency(), whisper_print_system_info()); | |
| } | |
| // Print processing info | |
| if (!params.no_prints) { | |
| fprintf(stderr, "\n"); | |
| if (!whisper_is_multilingual(ctx)) { | |
| if (params.language != "en" || params.translate) { | |
| params.language = "en"; | |
| params.translate = false; | |
| fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); | |
| } | |
| } | |
| fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d, audio_ctx = %d ...\n", | |
| __func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, | |
| params.n_threads, params.n_processors, | |
| params.language.c_str(), | |
| params.translate ? "translate" : "transcribe", | |
| params.no_timestamps ? 0 : 1, | |
| params.audio_ctx); | |
| fprintf(stderr, "\n"); | |
| } | |
| // Run inference | |
| { | |
| whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); | |
| wparams.strategy = params.beam_size > 1 ? WHISPER_SAMPLING_BEAM_SEARCH : WHISPER_SAMPLING_GREEDY; | |
| wparams.print_realtime = false; | |
| wparams.print_progress = params.print_progress; | |
| wparams.print_timestamps = !params.no_timestamps; | |
| wparams.print_special = params.print_special; | |
| wparams.translate = params.translate; | |
| wparams.language = params.detect_language ? "auto" : params.language.c_str(); | |
| wparams.detect_language = params.detect_language; | |
| wparams.n_threads = params.n_threads; | |
| wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx; | |
| wparams.offset_ms = params.offset_t_ms; | |
| wparams.duration_ms = params.duration_ms; | |
| wparams.token_timestamps = params.output_wts || params.max_len > 0; | |
| wparams.thold_pt = params.word_thold; | |
| wparams.entropy_thold = params.entropy_thold; | |
| wparams.logprob_thold = params.logprob_thold; | |
| wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len; | |
| wparams.audio_ctx = params.audio_ctx; | |
| wparams.greedy.best_of = params.best_of; | |
| wparams.beam_search.beam_size = params.beam_size; | |
| wparams.initial_prompt = params.prompt.c_str(); | |
| wparams.no_timestamps = params.no_timestamps; | |
| whisper_print_user_data user_data = { ¶ms, &pcmf32s }; | |
| // This callback is called for each new segment | |
| if (!wparams.print_realtime) { | |
| wparams.new_segment_callback = whisper_print_segment_callback; | |
| wparams.new_segment_callback_user_data = &user_data; | |
| } | |
| // Set progress callback | |
| wparams.progress_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, int progress, void * user_data) { | |
| ProgressWorker* worker = static_cast<ProgressWorker*>(user_data); | |
| worker->OnProgress(progress); | |
| }; | |
| wparams.progress_callback_user_data = this; | |
| // Set VAD parameters | |
| wparams.vad = params.vad; | |
| wparams.vad_model_path = params.vad_model.c_str(); | |
| wparams.vad_params.threshold = params.vad_threshold; | |
| wparams.vad_params.min_speech_duration_ms = params.vad_min_speech_duration_ms; | |
| wparams.vad_params.min_silence_duration_ms = params.vad_min_silence_duration_ms; | |
| wparams.vad_params.max_speech_duration_s = params.vad_max_speech_duration_s; | |
| wparams.vad_params.speech_pad_ms = params.vad_speech_pad_ms; | |
| wparams.vad_params.samples_overlap = params.vad_samples_overlap; | |
| if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) { | |
| fprintf(stderr, "failed to process audio\n"); | |
| return 10; | |
| } | |
| } | |
| } | |
| if (params.detect_language || params.language == "auto") { | |
| result.language = whisper_lang_str(whisper_full_lang_id(ctx)); | |
| } | |
| const int n_segments = whisper_full_n_segments(ctx); | |
| result.segments.resize(n_segments); | |
| for (int i = 0; i < n_segments; ++i) { | |
| const char * text = whisper_full_get_segment_text(ctx, i); | |
| const int64_t t0 = whisper_full_get_segment_t0(ctx, i); | |
| const int64_t t1 = whisper_full_get_segment_t1(ctx, i); | |
| result.segments[i].emplace_back(to_timestamp(t0, params.comma_in_time)); | |
| result.segments[i].emplace_back(to_timestamp(t1, params.comma_in_time)); | |
| result.segments[i].emplace_back(text); | |
| } | |
| whisper_print_timings(ctx); | |
| whisper_free(ctx); | |
| return 0; | |
| } | |
| }; | |
| Napi::Value whisper(const Napi::CallbackInfo& info) { | |
| Napi::Env env = info.Env(); | |
| if (info.Length() <= 0 || !info[0].IsObject()) { | |
| Napi::TypeError::New(env, "object expected").ThrowAsJavaScriptException(); | |
| } | |
| whisper_params params; | |
| Napi::Object whisper_params = info[0].As<Napi::Object>(); | |
| std::string language = whisper_params.Get("language").As<Napi::String>(); | |
| std::string model = whisper_params.Get("model").As<Napi::String>(); | |
| std::string input = whisper_params.Get("fname_inp").As<Napi::String>(); | |
| bool use_gpu = true; | |
| if (whisper_params.Has("use_gpu") && whisper_params.Get("use_gpu").IsBoolean()) { | |
| use_gpu = whisper_params.Get("use_gpu").As<Napi::Boolean>(); | |
| } | |
| bool flash_attn = false; | |
| if (whisper_params.Has("flash_attn") && whisper_params.Get("flash_attn").IsBoolean()) { | |
| flash_attn = whisper_params.Get("flash_attn").As<Napi::Boolean>(); | |
| } | |
| bool no_prints = false; | |
| if (whisper_params.Has("no_prints") && whisper_params.Get("no_prints").IsBoolean()) { | |
| no_prints = whisper_params.Get("no_prints").As<Napi::Boolean>(); | |
| } | |
| bool no_timestamps = false; | |
| if (whisper_params.Has("no_timestamps") && whisper_params.Get("no_timestamps").IsBoolean()) { | |
| no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>(); | |
| } | |
| bool detect_language = false; | |
| if (whisper_params.Has("detect_language") && whisper_params.Get("detect_language").IsBoolean()) { | |
| detect_language = whisper_params.Get("detect_language").As<Napi::Boolean>(); | |
| } | |
| int32_t audio_ctx = 0; | |
| if (whisper_params.Has("audio_ctx") && whisper_params.Get("audio_ctx").IsNumber()) { | |
| audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>(); | |
| } | |
| bool comma_in_time = true; | |
| if (whisper_params.Has("comma_in_time") && whisper_params.Get("comma_in_time").IsBoolean()) { | |
| comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>(); | |
| } | |
| int32_t max_len = 0; | |
| if (whisper_params.Has("max_len") && whisper_params.Get("max_len").IsNumber()) { | |
| max_len = whisper_params.Get("max_len").As<Napi::Number>(); | |
| } | |
| // Add support for max_context | |
| int32_t max_context = -1; | |
| if (whisper_params.Has("max_context") && whisper_params.Get("max_context").IsNumber()) { | |
| max_context = whisper_params.Get("max_context").As<Napi::Number>(); | |
| } | |
| // support prompt | |
| std::string prompt = ""; | |
| if (whisper_params.Has("prompt") && whisper_params.Get("prompt").IsString()) { | |
| prompt = whisper_params.Get("prompt").As<Napi::String>(); | |
| } | |
| // Add support for print_progress | |
| bool print_progress = false; | |
| if (whisper_params.Has("print_progress") && whisper_params.Get("print_progress").IsBoolean()) { | |
| print_progress = whisper_params.Get("print_progress").As<Napi::Boolean>(); | |
| } | |
| // Add support for progress_callback | |
| Napi::Function progress_callback; | |
| if (whisper_params.Has("progress_callback") && whisper_params.Get("progress_callback").IsFunction()) { | |
| progress_callback = whisper_params.Get("progress_callback").As<Napi::Function>(); | |
| } | |
| // Add support for VAD parameters | |
| bool vad = false; | |
| if (whisper_params.Has("vad") && whisper_params.Get("vad").IsBoolean()) { | |
| vad = whisper_params.Get("vad").As<Napi::Boolean>(); | |
| } | |
| std::string vad_model = ""; | |
| if (whisper_params.Has("vad_model") && whisper_params.Get("vad_model").IsString()) { | |
| vad_model = whisper_params.Get("vad_model").As<Napi::String>(); | |
| } | |
| float vad_threshold = 0.5f; | |
| if (whisper_params.Has("vad_threshold") && whisper_params.Get("vad_threshold").IsNumber()) { | |
| vad_threshold = whisper_params.Get("vad_threshold").As<Napi::Number>(); | |
| } | |
| int vad_min_speech_duration_ms = 250; | |
| if (whisper_params.Has("vad_min_speech_duration_ms") && whisper_params.Get("vad_min_speech_duration_ms").IsNumber()) { | |
| vad_min_speech_duration_ms = whisper_params.Get("vad_min_speech_duration_ms").As<Napi::Number>(); | |
| } | |
| int vad_min_silence_duration_ms = 100; | |
| if (whisper_params.Has("vad_min_silence_duration_ms") && whisper_params.Get("vad_min_silence_duration_ms").IsNumber()) { | |
| vad_min_silence_duration_ms = whisper_params.Get("vad_min_silence_duration_ms").As<Napi::Number>(); | |
| } | |
| float vad_max_speech_duration_s = FLT_MAX; | |
| if (whisper_params.Has("vad_max_speech_duration_s") && whisper_params.Get("vad_max_speech_duration_s").IsNumber()) { | |
| vad_max_speech_duration_s = whisper_params.Get("vad_max_speech_duration_s").As<Napi::Number>(); | |
| } | |
| int vad_speech_pad_ms = 30; | |
| if (whisper_params.Has("vad_speech_pad_ms") && whisper_params.Get("vad_speech_pad_ms").IsNumber()) { | |
| vad_speech_pad_ms = whisper_params.Get("vad_speech_pad_ms").As<Napi::Number>(); | |
| } | |
| float vad_samples_overlap = 0.1f; | |
| if (whisper_params.Has("vad_samples_overlap") && whisper_params.Get("vad_samples_overlap").IsNumber()) { | |
| vad_samples_overlap = whisper_params.Get("vad_samples_overlap").As<Napi::Number>(); | |
| } | |
| Napi::Value pcmf32Value = whisper_params.Get("pcmf32"); | |
| std::vector<float> pcmf32_vec; | |
| if (pcmf32Value.IsTypedArray()) { | |
| Napi::Float32Array pcmf32 = pcmf32Value.As<Napi::Float32Array>(); | |
| size_t length = pcmf32.ElementLength(); | |
| pcmf32_vec.reserve(length); | |
| for (size_t i = 0; i < length; i++) { | |
| pcmf32_vec.push_back(pcmf32[i]); | |
| } | |
| } | |
| params.language = language; | |
| params.model = model; | |
| params.fname_inp.emplace_back(input); | |
| params.use_gpu = use_gpu; | |
| params.flash_attn = flash_attn; | |
| params.no_prints = no_prints; | |
| params.no_timestamps = no_timestamps; | |
| params.audio_ctx = audio_ctx; | |
| params.pcmf32 = pcmf32_vec; | |
| params.comma_in_time = comma_in_time; | |
| params.max_len = max_len; | |
| params.max_context = max_context; | |
| params.print_progress = print_progress; | |
| params.prompt = prompt; | |
| params.detect_language = detect_language; | |
| // Set VAD parameters | |
| params.vad = vad; | |
| params.vad_model = vad_model; | |
| params.vad_threshold = vad_threshold; | |
| params.vad_min_speech_duration_ms = vad_min_speech_duration_ms; | |
| params.vad_min_silence_duration_ms = vad_min_silence_duration_ms; | |
| params.vad_max_speech_duration_s = vad_max_speech_duration_s; | |
| params.vad_speech_pad_ms = vad_speech_pad_ms; | |
| params.vad_samples_overlap = vad_samples_overlap; | |
| Napi::Function callback = info[1].As<Napi::Function>(); | |
| // Create a new Worker class with progress callback support | |
| ProgressWorker* worker = new ProgressWorker(callback, params, progress_callback, env); | |
| worker->Queue(); | |
| return env.Undefined(); | |
| } | |
| Napi::Object Init(Napi::Env env, Napi::Object exports) { | |
| exports.Set( | |
| Napi::String::New(env, "whisper"), | |
| Napi::Function::New(env, whisper) | |
| ); | |
| return exports; | |
| } | |
| NODE_API_MODULE(whisper, Init); | |