Spaces:
Running
Running
| void llama_hparams::set_swa_pattern(uint32_t n_pattern, bool dense_first) { | |
| if (dense_first) { | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| swa_layers[il] = n_pattern == 0 || (il % n_pattern != 0); | |
| } | |
| } else { | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| swa_layers[il] = n_pattern == 0 || (il % n_pattern < (n_pattern - 1)); | |
| } | |
| } | |
| } | |
| bool llama_hparams::is_swa_any() const { | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| if (swa_layers[il]) { | |
| return true; | |
| } | |
| } | |
| return false; | |
| } | |
| uint32_t llama_hparams::n_head(uint32_t il) const { | |
| if (il < n_layer) { | |
| return n_head_arr[il]; | |
| } | |
| GGML_ABORT("fatal error"); | |
| } | |
| uint32_t llama_hparams::n_head_kv(uint32_t il) const { | |
| if (il < n_layer) { | |
| return n_head_kv_arr[il]; | |
| } | |
| GGML_ABORT("fatal error"); | |
| } | |
| uint32_t llama_hparams::n_ff(uint32_t il) const { | |
| if (il < n_layer) { | |
| return n_ff_arr[il]; | |
| } | |
| GGML_ABORT("fatal error"); | |
| } | |
| uint32_t llama_hparams::n_gqa(uint32_t il) const { | |
| const uint32_t n_head = this->n_head(il); | |
| const uint32_t n_head_kv = this->n_head_kv(il); | |
| if (n_head_kv == 0) { | |
| return 0; | |
| } | |
| return n_head/n_head_kv; | |
| } | |
| uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const { | |
| const uint32_t n_head_kv = this->n_head_kv(il); | |
| return n_embd_head_k * n_head_kv; | |
| } | |
| uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const { | |
| const uint32_t n_head_kv = this->n_head_kv(il); | |
| return n_embd_head_v * n_head_kv; | |
| } | |
| bool llama_hparams::is_n_embd_k_gqa_variable() const { | |
| const uint32_t val = n_embd_k_gqa(); | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| if (val != n_embd_k_gqa(il)) { | |
| return true; | |
| } | |
| } | |
| return false; | |
| } | |
| bool llama_hparams::is_n_embd_v_gqa_variable() const { | |
| const uint32_t val = n_embd_v_gqa(); | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| if (val != n_embd_v_gqa(il)) { | |
| return true; | |
| } | |
| } | |
| return false; | |
| } | |
| uint32_t llama_hparams::n_embd_k_gqa_max() const { | |
| uint32_t val = n_embd_k_gqa(); | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| val = std::max(val, n_embd_k_gqa(il)); | |
| } | |
| return val; | |
| } | |
| uint32_t llama_hparams::n_embd_v_gqa_max() const { | |
| uint32_t val = n_embd_v_gqa(); | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| val = std::max(val, n_embd_v_gqa(il)); | |
| } | |
| return val; | |
| } | |
| uint32_t llama_hparams::n_embd_r() const { | |
| if (wkv_head_size != 0) { | |
| // for RWKV models | |
| return token_shift_count * n_embd; | |
| } | |
| if (n_shortconv_l_cache != 0) { | |
| // for LFM2 models | |
| return n_embd * (n_shortconv_l_cache - 1); | |
| } | |
| // TODO: maybe support other convolution strides than 1 | |
| // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed | |
| // Corresponds to Mamba's conv_states size | |
| return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * (ssm_d_inner + 2*ssm_n_group*ssm_d_state); | |
| } | |
| uint32_t llama_hparams::n_embd_s() const { | |
| if (wkv_head_size != 0) { | |
| // corresponds to RWKV's wkv_states size | |
| return n_embd * wkv_head_size; | |
| } | |
| // corresponds to Mamba's ssm_states size | |
| return ssm_d_state * ssm_d_inner; | |
| } | |
| bool llama_hparams::is_recurrent(uint32_t il) const { | |
| return recurrent_layer_arr[il]; | |
| } | |
| uint32_t llama_hparams::n_pos_per_embd() const { | |
| return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1; | |
| } | |
| bool llama_hparams::is_swa(uint32_t il) const { | |
| if (il < n_layer) { | |
| return swa_layers[il]; | |
| } | |
| GGML_ABORT("fatal error"); | |
| } | |