Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,234 +10,282 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
| 10 |
from langchain_community.vectorstores import Chroma
|
| 11 |
import torch
|
| 12 |
|
| 13 |
-
# ----------------
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
|
|
|
|
| 16 |
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY", os.environ.get("GROQ_API_KEY"))
|
| 17 |
GROQ_MODEL = "llama-3.1-8b-instant"
|
| 18 |
|
|
|
|
| 19 |
client = None
|
| 20 |
if GROQ_API_KEY:
|
| 21 |
try:
|
| 22 |
client = Groq(api_key=GROQ_API_KEY)
|
|
|
|
| 23 |
except Exception as e:
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
# ----------------
|
| 27 |
st.set_page_config(page_title="PDF Assistant", page_icon="π", layout="wide")
|
| 28 |
|
| 29 |
-
# ---------------- CSS ----------------
|
| 30 |
st.markdown("""
|
| 31 |
<style>
|
| 32 |
:root {
|
| 33 |
-
--primary
|
| 34 |
-
--
|
| 35 |
-
--
|
| 36 |
-
--text
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
/* FIX SIDEBAR */
|
| 40 |
-
section[data-testid="stSidebar"] {
|
| 41 |
-
position: fixed;
|
| 42 |
-
height: 100vh;
|
| 43 |
-
overflow-y: auto;
|
| 44 |
-
}
|
| 45 |
-
section[data-testid="stSidebar"] > div {
|
| 46 |
-
padding-top: 0.5rem !important;
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
/* MAIN OFFSET */
|
| 50 |
-
.main {
|
| 51 |
-
margin-left: 300px;
|
| 52 |
-
}
|
| 53 |
-
|
| 54 |
-
/* CHAT AREA */
|
| 55 |
-
.chat-area {
|
| 56 |
-
height: calc(100vh - 230px);
|
| 57 |
-
overflow-y: auto;
|
| 58 |
-
padding: 1rem 2rem;
|
| 59 |
}
|
| 60 |
|
| 61 |
.chat-user {
|
| 62 |
-
background
|
| 63 |
-
padding:
|
| 64 |
-
border-radius:
|
| 65 |
-
margin:
|
| 66 |
-
max-width:
|
|
|
|
|
|
|
| 67 |
}
|
| 68 |
-
|
| 69 |
.chat-bot {
|
| 70 |
-
background:var(--primary);
|
| 71 |
-
padding:
|
| 72 |
-
border-radius:
|
| 73 |
-
margin:
|
| 74 |
-
max-width:
|
| 75 |
-
|
|
|
|
| 76 |
}
|
| 77 |
|
| 78 |
.sources {
|
| 79 |
-
font-size:0.
|
| 80 |
-
opacity:0.7;
|
| 81 |
-
margin-top:
|
| 82 |
-
border-top:1px solid rgba(255,255,255,0.
|
| 83 |
-
padding-top:
|
| 84 |
}
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
bottom: 0;
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
}
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
}
|
| 99 |
</style>
|
| 100 |
""", unsafe_allow_html=True)
|
| 101 |
|
| 102 |
-
# ---------------- STATE ----------------
|
| 103 |
if "chat" not in st.session_state:
|
| 104 |
st.session_state.chat = []
|
|
|
|
| 105 |
if "vectorstore" not in st.session_state:
|
| 106 |
st.session_state.vectorstore = None
|
|
|
|
| 107 |
if "retriever" not in st.session_state:
|
| 108 |
st.session_state.retriever = None
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
| 111 |
if "uploader_key" not in st.session_state:
|
| 112 |
st.session_state.uploader_key = 0
|
| 113 |
|
| 114 |
# ---------------- FUNCTIONS ----------------
|
| 115 |
-
def
|
| 116 |
st.session_state.chat = []
|
|
|
|
|
|
|
| 117 |
st.session_state.vectorstore = None
|
| 118 |
st.session_state.retriever = None
|
| 119 |
-
st.session_state.
|
| 120 |
st.session_state.uploader_key += 1
|
| 121 |
gc.collect()
|
| 122 |
if torch.cuda.is_available():
|
| 123 |
torch.cuda.empty_cache()
|
| 124 |
-
st.success("Memory cleared")
|
| 125 |
-
|
| 126 |
-
def process_pdf(uploaded):
|
| 127 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 128 |
-
tmp.write(uploaded.getvalue())
|
| 129 |
-
path = tmp.name
|
| 130 |
-
|
| 131 |
-
loader = PyPDFLoader(path)
|
| 132 |
-
docs = loader.load()
|
| 133 |
-
|
| 134 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=50)
|
| 135 |
-
chunks = splitter.split_documents(docs)
|
| 136 |
-
|
| 137 |
-
embeddings = HuggingFaceEmbeddings(
|
| 138 |
-
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 139 |
-
model_kwargs={"device":"cpu"},
|
| 140 |
-
encode_kwargs={"normalize_embeddings":True}
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
st.session_state.vectorstore = Chroma.from_documents(chunks, embeddings)
|
| 144 |
-
st.session_state.retriever = st.session_state.vectorstore.as_retriever(k=3)
|
| 145 |
-
|
| 146 |
-
os.unlink(path)
|
| 147 |
-
return len(chunks)
|
| 148 |
|
| 149 |
-
def
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
"I cannot find this in the PDF."
|
| 156 |
|
| 157 |
-
CONTEXT
|
| 158 |
-
{
|
|
|
|
| 159 |
|
| 160 |
-
QUESTION:
|
| 161 |
-
|
|
|
|
| 162 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
{"role":"user","content":prompt}
|
| 169 |
-
],
|
| 170 |
-
temperature=0.0
|
| 171 |
-
)
|
| 172 |
-
return r.choices[0].message.content.strip(), len(docs)
|
| 173 |
-
|
| 174 |
-
# ================= SIDEBAR =================
|
| 175 |
with st.sidebar:
|
| 176 |
-
st.
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
st.subheader("Upload PDF")
|
| 184 |
-
uploaded = st.file_uploader(
|
| 185 |
-
"PDF",
|
| 186 |
-
type=["pdf"],
|
| 187 |
-
key=st.session_state.uploader_key,
|
| 188 |
-
label_visibility="collapsed"
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
if uploaded and uploaded.name != st.session_state.pdf:
|
| 192 |
-
st.session_state.chat = []
|
| 193 |
-
with st.spinner("Processing PDF..."):
|
| 194 |
-
chunks = process_pdf(uploaded)
|
| 195 |
-
st.session_state.pdf = uploaded.name
|
| 196 |
-
st.success(f"PDF processed ({chunks} chunks)")
|
| 197 |
-
st.rerun()
|
| 198 |
-
|
| 199 |
-
st.subheader("Controls")
|
| 200 |
-
st.button("π§Ή Clear Memory", on_click=clear_all, use_container_width=True)
|
| 201 |
-
|
| 202 |
-
st.subheader("Status")
|
| 203 |
-
if st.session_state.pdf:
|
| 204 |
-
st.success(f"Active PDF:\n`{st.session_state.pdf}`")
|
| 205 |
else:
|
| 206 |
-
st.
|
| 207 |
|
| 208 |
-
#
|
| 209 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
-
if
|
| 212 |
-
st.
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
else:
|
| 218 |
-
st.
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
# ================= INPUT =================
|
| 223 |
-
st.markdown('<div class="input-bar"><div class="input-box">', unsafe_allow_html=True)
|
| 224 |
-
|
| 225 |
-
with st.form("chat", clear_on_submit=True):
|
| 226 |
-
q = st.text_input(
|
| 227 |
-
"Ask",
|
| 228 |
-
disabled=st.session_state.pdf is None,
|
| 229 |
-
placeholder="Ask anything about your documentβ¦",
|
| 230 |
-
label_visibility="collapsed"
|
| 231 |
-
)
|
| 232 |
-
send = st.form_submit_button("Send")
|
| 233 |
-
|
| 234 |
-
st.markdown('</div></div>', unsafe_allow_html=True)
|
| 235 |
|
| 236 |
-
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
with st.spinner("Thinking..."):
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from langchain_community.vectorstores import Chroma
|
| 11 |
import torch
|
| 12 |
|
| 13 |
+
# ---------------- CONFIGURATION ----------------
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
|
| 16 |
+
# Load API key from Hugging Face secrets
|
| 17 |
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY", os.environ.get("GROQ_API_KEY"))
|
| 18 |
GROQ_MODEL = "llama-3.1-8b-instant"
|
| 19 |
|
| 20 |
+
# Initialize Groq client
|
| 21 |
client = None
|
| 22 |
if GROQ_API_KEY:
|
| 23 |
try:
|
| 24 |
client = Groq(api_key=GROQ_API_KEY)
|
| 25 |
+
st.success("β
Groq client initialized successfully.")
|
| 26 |
except Exception as e:
|
| 27 |
+
st.error(f"β Failed to initialize Groq client: {e}")
|
| 28 |
+
client = None
|
| 29 |
+
else:
|
| 30 |
+
st.warning("β οΈ GROQ_API_KEY not found. Please add it to Hugging Face secrets.")
|
| 31 |
|
| 32 |
+
# ---------------- STREAMLIT UI SETUP ----------------
|
| 33 |
st.set_page_config(page_title="PDF Assistant", page_icon="π", layout="wide")
|
| 34 |
|
| 35 |
+
# ---------------- CSS (Your exact UI) ----------------
|
| 36 |
st.markdown("""
|
| 37 |
<style>
|
| 38 |
:root {
|
| 39 |
+
--primary-color: #1e3a8a;
|
| 40 |
+
--background-color: #0e1117;
|
| 41 |
+
--secondary-background-color: #1a1d29;
|
| 42 |
+
--text-color: #f0f2f6;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
}
|
| 44 |
|
| 45 |
.chat-user {
|
| 46 |
+
background: #2d3748;
|
| 47 |
+
padding: 12px;
|
| 48 |
+
border-radius: 10px 10px 2px 10px;
|
| 49 |
+
margin: 6px 0 6px auto;
|
| 50 |
+
max-width: 85%;
|
| 51 |
+
text-align: right;
|
| 52 |
+
color: var(--text-color);
|
| 53 |
}
|
|
|
|
| 54 |
.chat-bot {
|
| 55 |
+
background: var(--primary-color);
|
| 56 |
+
padding: 12px;
|
| 57 |
+
border-radius: 10px 10px 10px 2px;
|
| 58 |
+
margin: 6px auto 6px 0;
|
| 59 |
+
max-width: 85%;
|
| 60 |
+
text-align: left;
|
| 61 |
+
color: #ffffff;
|
| 62 |
}
|
| 63 |
|
| 64 |
.sources {
|
| 65 |
+
font-size: 0.8em;
|
| 66 |
+
opacity: 0.7;
|
| 67 |
+
margin-top: 10px;
|
| 68 |
+
border-top: 1px solid rgba(255, 255, 255, 0.1);
|
| 69 |
+
padding-top: 5px;
|
| 70 |
}
|
| 71 |
|
| 72 |
+
.footer {
|
| 73 |
+
position: fixed;
|
| 74 |
+
left: 0;
|
| 75 |
bottom: 0;
|
| 76 |
+
width: 100%;
|
| 77 |
+
background-color: var(--secondary-background-color);
|
| 78 |
+
color: var(--text-color);
|
| 79 |
+
text-align: center;
|
| 80 |
+
padding: 10px;
|
| 81 |
+
font-size: 0.85em;
|
| 82 |
+
border-top: 1px solid rgba(255, 255, 255, 0.1);
|
| 83 |
}
|
| 84 |
+
.footer a {
|
| 85 |
+
color: var(--primary-color);
|
| 86 |
+
text-decoration: none;
|
| 87 |
+
font-weight: bold;
|
| 88 |
+
}
|
| 89 |
+
.footer a:hover {
|
| 90 |
+
text-decoration: underline;
|
| 91 |
}
|
| 92 |
</style>
|
| 93 |
""", unsafe_allow_html=True)
|
| 94 |
|
| 95 |
+
# ---------------- SESSION STATE ----------------
|
| 96 |
if "chat" not in st.session_state:
|
| 97 |
st.session_state.chat = []
|
| 98 |
+
|
| 99 |
if "vectorstore" not in st.session_state:
|
| 100 |
st.session_state.vectorstore = None
|
| 101 |
+
|
| 102 |
if "retriever" not in st.session_state:
|
| 103 |
st.session_state.retriever = None
|
| 104 |
+
|
| 105 |
+
if "uploaded_file_name" not in st.session_state:
|
| 106 |
+
st.session_state.uploaded_file_name = None
|
| 107 |
+
|
| 108 |
if "uploader_key" not in st.session_state:
|
| 109 |
st.session_state.uploader_key = 0
|
| 110 |
|
| 111 |
# ---------------- FUNCTIONS ----------------
|
| 112 |
+
def clear_chat_history():
|
| 113 |
st.session_state.chat = []
|
| 114 |
+
|
| 115 |
+
def clear_memory():
|
| 116 |
st.session_state.vectorstore = None
|
| 117 |
st.session_state.retriever = None
|
| 118 |
+
st.session_state.uploaded_file_name = None
|
| 119 |
st.session_state.uploader_key += 1
|
| 120 |
gc.collect()
|
| 121 |
if torch.cuda.is_available():
|
| 122 |
torch.cuda.empty_cache()
|
| 123 |
+
st.success("Memory cleared. Please upload a new PDF.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
def process_pdf(uploaded_file):
|
| 126 |
+
"""Process uploaded PDF and create vectorstore."""
|
| 127 |
+
try:
|
| 128 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
| 129 |
+
tmp.write(uploaded_file.getvalue())
|
| 130 |
+
path = tmp.name
|
| 131 |
+
|
| 132 |
+
# Load PDF
|
| 133 |
+
loader = PyPDFLoader(path)
|
| 134 |
+
docs = loader.load()
|
| 135 |
+
|
| 136 |
+
# Split into chunks
|
| 137 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 138 |
+
chunk_size=800,
|
| 139 |
+
chunk_overlap=50
|
| 140 |
+
)
|
| 141 |
+
chunks = splitter.split_documents(docs)
|
| 142 |
+
|
| 143 |
+
# Create embeddings
|
| 144 |
+
embeddings = HuggingFaceEmbeddings(
|
| 145 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 146 |
+
model_kwargs={"device": "cpu"},
|
| 147 |
+
encode_kwargs={"normalize_embeddings": True}
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Create vectorstore
|
| 151 |
+
vectorstore = Chroma.from_documents(chunks, embeddings)
|
| 152 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 153 |
+
|
| 154 |
+
# Store in session state
|
| 155 |
+
st.session_state.vectorstore = vectorstore
|
| 156 |
+
st.session_state.retriever = retriever
|
| 157 |
+
|
| 158 |
+
# Cleanup
|
| 159 |
+
if os.path.exists(path):
|
| 160 |
+
os.unlink(path)
|
| 161 |
+
|
| 162 |
+
return len(chunks)
|
| 163 |
+
|
| 164 |
+
except Exception as e:
|
| 165 |
+
st.error(f"Error processing PDF: {str(e)}")
|
| 166 |
+
return None
|
| 167 |
+
|
| 168 |
+
def ask_question(question):
|
| 169 |
+
"""Retrieve and generate answer for the question."""
|
| 170 |
+
if not client:
|
| 171 |
+
return None, 0, "Groq client is not initialized. Check API key setup."
|
| 172 |
+
|
| 173 |
+
if not st.session_state.retriever:
|
| 174 |
+
return None, 0, "Upload PDF first to initialize the knowledge base."
|
| 175 |
+
|
| 176 |
+
try:
|
| 177 |
+
# Retrieve relevant chunks
|
| 178 |
+
docs = st.session_state.retriever.invoke(question)
|
| 179 |
+
context = "\n\n".join(d.page_content for d in docs)
|
| 180 |
+
|
| 181 |
+
# Build prompt
|
| 182 |
+
prompt = f"""
|
| 183 |
+
You are a strict RAG Q&A assistant.
|
| 184 |
+
Use ONLY the context provided. If the answer is not found, reply:
|
| 185 |
"I cannot find this in the PDF."
|
| 186 |
|
| 187 |
+
---------------- CONTEXT ----------------
|
| 188 |
+
{context}
|
| 189 |
+
-----------------------------------------
|
| 190 |
|
| 191 |
+
QUESTION: {question}
|
| 192 |
+
|
| 193 |
+
FINAL ANSWER:
|
| 194 |
"""
|
| 195 |
+
|
| 196 |
+
# Call Groq API
|
| 197 |
+
response = client.chat.completions.create(
|
| 198 |
+
model=GROQ_MODEL,
|
| 199 |
+
messages=[
|
| 200 |
+
{"role": "system",
|
| 201 |
+
"content": "Use only the PDF content. If answer not found, say: 'I cannot find this in the PDF.'"},
|
| 202 |
+
{"role": "user", "content": prompt}
|
| 203 |
+
],
|
| 204 |
+
temperature=0.0
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
answer = response.choices[0].message.content.strip()
|
| 208 |
+
return answer, len(docs), None
|
| 209 |
+
|
| 210 |
+
except APIError as e:
|
| 211 |
+
return None, 0, f"Groq API Error: {str(e)}"
|
| 212 |
+
except Exception as e:
|
| 213 |
+
return None, 0, f"General error: {str(e)}"
|
| 214 |
|
| 215 |
+
# ---------------- UI COMPONENTS ----------------
|
| 216 |
+
st.title("π PDF Assistant")
|
| 217 |
+
|
| 218 |
+
# Sidebar Controls
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
with st.sidebar:
|
| 220 |
+
st.header("Controls")
|
| 221 |
+
st.button("ποΈ Clear Chat History", on_click=clear_chat_history, use_container_width=True)
|
| 222 |
+
st.button("π₯ Clear PDF Memory", on_click=clear_memory, use_container_width=True)
|
| 223 |
+
|
| 224 |
+
st.markdown("---")
|
| 225 |
+
if st.session_state.uploaded_file_name:
|
| 226 |
+
st.success(f"β
**Active PDF:**\n `{st.session_state.uploaded_file_name}`")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
else:
|
| 228 |
+
st.warning("β¬οΈ Upload a PDF to start chatting!")
|
| 229 |
|
| 230 |
+
# File Upload
|
| 231 |
+
uploaded = st.file_uploader(
|
| 232 |
+
"Upload your PDF",
|
| 233 |
+
type=["pdf"],
|
| 234 |
+
key=st.session_state.uploader_key
|
| 235 |
+
)
|
| 236 |
|
| 237 |
+
if uploaded and uploaded.name != st.session_state.uploaded_file_name:
|
| 238 |
+
st.session_state.uploaded_file_name = None
|
| 239 |
+
st.session_state.chat = []
|
| 240 |
+
|
| 241 |
+
with st.spinner(f"Processing '{uploaded.name}'..."):
|
| 242 |
+
chunks_count = process_pdf(uploaded)
|
| 243 |
+
|
| 244 |
+
if chunks_count is not None:
|
| 245 |
+
st.success(f"β
PDF processed successfully! {chunks_count} chunks created.")
|
| 246 |
+
st.session_state.uploaded_file_name = uploaded.name
|
| 247 |
else:
|
| 248 |
+
st.error("β Failed to process PDF")
|
| 249 |
+
st.session_state.uploaded_file_name = None
|
| 250 |
+
|
| 251 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
+
# Chat Input
|
| 254 |
+
disabled_input = st.session_state.uploaded_file_name is None or client is None
|
| 255 |
+
question = st.text_input(
|
| 256 |
+
"Ask a question about the loaded PDF:",
|
| 257 |
+
key="question_input",
|
| 258 |
+
disabled=disabled_input
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
if st.button("Send", disabled=disabled_input) and question:
|
| 262 |
+
# Add user query to chat history
|
| 263 |
+
st.session_state.chat.append(("user", question))
|
| 264 |
+
|
| 265 |
+
# Get answer
|
| 266 |
with st.spinner("Thinking..."):
|
| 267 |
+
answer, sources, error = ask_question(question)
|
| 268 |
+
|
| 269 |
+
if answer:
|
| 270 |
+
bot_message = f"{answer}<div class='sources'>Context Chunks Used: {sources}</div>"
|
| 271 |
+
st.session_state.chat.append(("bot", bot_message))
|
| 272 |
+
else:
|
| 273 |
+
st.session_state.chat.append(("bot", f"π΄ **Error:** {error}"))
|
| 274 |
+
|
| 275 |
st.rerun()
|
| 276 |
+
|
| 277 |
+
# Display Chat History
|
| 278 |
+
st.markdown("## Chat History")
|
| 279 |
+
for role, msg in st.session_state.chat:
|
| 280 |
+
if role == "user":
|
| 281 |
+
st.markdown(f"<div class='chat-user'>{msg}</div>", unsafe_allow_html=True)
|
| 282 |
+
else:
|
| 283 |
+
st.markdown(f"<div class='chat-bot'>{msg}</div>", unsafe_allow_html=True)
|
| 284 |
+
|
| 285 |
+
# Footer
|
| 286 |
+
footer_html = """
|
| 287 |
+
<div class="footer">
|
| 288 |
+
Created by <a href="https://www.linkedin.com/in/abhishek-iitr/" target="_blank">Abhishek Saxena</a>
|
| 289 |
+
</div>
|
| 290 |
+
"""
|
| 291 |
+
st.markdown(footer_html, unsafe_allow_html=True)
|