Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,276 Bytes
bfd60b5 95e2d44 6dfb0b7 95e2d44 6dfb0b7 bfd60b5 6dfb0b7 95e2d44 6dfb0b7 95e2d44 6dfb0b7 2e613c7 6dfb0b7 2e613c7 95e2d44 bfd60b5 2e613c7 95e2d44 524d875 95e2d44 524d875 2e613c7 95e2d44 6dfb0b7 95e2d44 4d44787 2e613c7 4d44787 2e613c7 95e2d44 2e613c7 6dfb0b7 2e613c7 4d44787 f2fb2f9 6dfb0b7 4d44787 6dfb0b7 2e613c7 6dfb0b7 95e2d44 6dfb0b7 bfd60b5 6dfb0b7 95e2d44 6dfb0b7 bfd60b5 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 bfd60b5 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 95e2d44 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 6dfb0b7 95e2d44 2e613c7 6dfb0b7 2e613c7 95e2d44 6dfb0b7 95e2d44 6dfb0b7 95e2d44 bfd60b5 95e2d44 bfd60b5 95e2d44 6dfb0b7 2e613c7 6dfb0b7 95e2d44 bfd60b5 6dfb0b7 2e613c7 6dfb0b7 95e2d44 6dfb0b7 95e2d44 2e613c7 95e2d44 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 2e613c7 6dfb0b7 95e2d44 6dfb0b7 95e2d44 6dfb0b7 95e2d44 6dfb0b7 2e613c7 95e2d44 2e613c7 95e2d44 6dfb0b7 95e2d44 6dfb0b7 bfd60b5 2e613c7 6dfb0b7 2e613c7 4cf56ba 6dfb0b7 befc765 6dfb0b7 befc765 6dfb0b7 2e613c7 6dfb0b7 befc765 6dfb0b7 57d5222 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
import os
import sys
import re
import json
import random
import logging
import warnings
from dataclasses import dataclass
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
import spaces
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from transformers import AutoModelForCausalLM, AutoTokenizer
# ------------------------- 可选依赖:Prompt Enhancer 模板 -------------------------
# 你的原工程里如果有 pe.py,会自动使用;没有也不会报错(enhance 默认关闭)
try:
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from pe import prompt_template # type: ignore
except Exception:
prompt_template = (
"You are a helpful prompt engineer. Expand the user prompt into a richer, detailed prompt. "
"Return JSON with key revised_prompt."
)
# ------------------------- Z-Image 相关(依赖你环境中 diffusers 的实现) -------------------------
from diffusers import ZImagePipeline
from diffusers.models.transformers.transformer_z_image import ZImageTransformer2DModel
# ==================== Environment Variables ==================================
MODEL_PATH = os.environ.get("MODEL_PATH", "Tongyi-MAI/Z-Image-Turbo")
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "true").lower() == "true"
ENABLE_WARMUP = os.environ.get("ENABLE_WARMUP", "true").lower() == "true"
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "flash_3")
DASHSCOPE_API_KEY = os.environ.get("DASHSCOPE_API_KEY")
HF_TOKEN = os.environ.get("HF_TOKEN")
# =============================================================================
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
logging.getLogger("transformers").setLevel(logging.ERROR)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.bfloat16 if DEVICE == "cuda" else torch.float32
RES_CHOICES = {
"1024": [
"1024x1024 ( 1:1 )",
"1152x896 ( 9:7 )",
"896x1152 ( 7:9 )",
"1152x864 ( 4:3 )",
"864x1152 ( 3:4 )",
"1248x832 ( 3:2 )",
"832x1248 ( 2:3 )",
"1280x720 ( 16:9 )",
"720x1280 ( 9:16 )",
"1344x576 ( 21:9 )",
"576x1344 ( 9:21 )",
],
"1280": [
"1280x1280 ( 1:1 )",
"1440x1120 ( 9:7 )",
"1120x1440 ( 7:9 )",
"1472x1104 ( 4:3 )",
"1104x1472 ( 3:4 )",
"1536x1024 ( 3:2 )",
"1024x1536 ( 2:3 )",
"1536x864 ( 16:9 )",
"864x1536 ( 9:16 )",
"1680x720 ( 21:9 )",
"720x1680 ( 9:21 )",
],
"1536": [
"1536x1536 ( 1:1 )",
"1728x1344 ( 9:7 )",
"1344x1728 ( 7:9 )",
"1728x1296 ( 4:3 )",
"1296x1728 ( 3:4 )",
"1872x1248 ( 3:2 )",
"1248x1872 ( 2:3 )",
"2048x1152 ( 16:9 )",
"1152x2048 ( 9:16 )",
"2016x864 ( 21:9 )",
"864x2016 ( 9:21 )",
],
}
RESOLUTION_SET = []
for _k, v in RES_CHOICES.items():
RESOLUTION_SET.extend(v)
EXAMPLE_PROMPTS = [
["一位男士和他的贵宾犬穿着配套的服装参加狗狗秀,室内灯光,背景中有观众。"],
["极具氛围感的暗调人像,一位优雅的中国美女在黑暗的房间里。一束强光通过遮光板,在她的脸上投射出一个清晰的闪电形状的光影,正好照亮一只眼睛。高对比度,明暗交界清晰,神秘感,莱卡相机色调。"],
]
# ------------------------- HF token 兼容参数 -------------------------
def _hf_token_kwargs(token: str | None):
"""
transformers / diffusers 的 from_pretrained 近年来从 use_auth_token 迁移到 token。
这里做一个兼容:优先传 token,不支持则回退 use_auth_token。
"""
if not token:
return {}
return {"token": token, "use_auth_token": token}
def get_resolution(resolution: str):
match = re.search(r"(\d+)\s*[×x]\s*(\d+)", resolution)
if match:
return int(match.group(1)), int(match.group(2))
return 1024, 1024
def _make_blocked_image(width=1024, height=1024, text="Blocked by Safety Checker"):
img = Image.new("RGB", (width, height), (20, 20, 20))
draw = ImageDraw.Draw(img)
try:
font = ImageFont.load_default()
except Exception:
font = None
draw.rectangle([0, 0, width, 90], fill=(160, 0, 0))
draw.text((20, 30), text, fill=(255, 255, 255), font=font)
return img
def _load_nsfw_placeholder(width=1024, height=1024):
"""
命中 NSFW 时优先加载工作目录的 nsfw.png;
不存在就生成一张占位图,避免文件缺失导致再次报错。
"""
if os.path.exists("nsfw.png"):
try:
return Image.open("nsfw.png").convert("RGB")
except Exception:
pass
return _make_blocked_image(width, height, "NSFW blocked")
def load_models(model_path: str, enable_compile=False, attention_backend="native"):
print(f"[Init] Loading models from: {model_path}")
print(f"[Init] DEVICE={DEVICE}, DTYPE={DTYPE}, ENABLE_COMPILE={enable_compile}, ATTENTION_BACKEND={attention_backend}")
# 远端 repo-id(不存在的本地路径) vs 本地目录
is_local_dir = os.path.exists(model_path)
token_kwargs = _hf_token_kwargs(HF_TOKEN) if not is_local_dir else {}
# 1) VAE
if not is_local_dir:
vae = AutoencoderKL.from_pretrained(
model_path,
subfolder="vae",
torch_dtype=DTYPE if DEVICE == "cuda" else torch.float32,
**token_kwargs,
)
else:
vae = AutoencoderKL.from_pretrained(
os.path.join(model_path, "vae"),
torch_dtype=DTYPE if DEVICE == "cuda" else torch.float32,
)
# 2) Text Encoder + Tokenizer
if not is_local_dir:
text_encoder = AutoModelForCausalLM.from_pretrained(
model_path,
subfolder="text_encoder",
torch_dtype=DTYPE if DEVICE == "cuda" else torch.float32,
**token_kwargs,
).eval()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
subfolder="tokenizer",
**token_kwargs,
)
else:
text_encoder = AutoModelForCausalLM.from_pretrained(
os.path.join(model_path, "text_encoder"),
torch_dtype=DTYPE if DEVICE == "cuda" else torch.float32,
).eval()
tokenizer = AutoTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))
tokenizer.padding_side = "left"
# compile 优化(仅 CUDA 才建议打开)
if enable_compile and DEVICE == "cuda":
print("[Init] Enabling torch.compile optimizations...")
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
torch._inductor.config.max_autotune_gemm = True
torch._inductor.config.max_autotune_gemm_backends = "TRITON,ATEN"
torch._inductor.config.triton.cudagraphs = False
pipe = ZImagePipeline(scheduler=None, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=None)
# 3) Transformer
if not is_local_dir:
transformer = ZImageTransformer2DModel.from_pretrained(
model_path,
subfolder="transformer",
**token_kwargs,
)
else:
transformer = ZImageTransformer2DModel.from_pretrained(os.path.join(model_path, "transformer"))
transformer = transformer.to(DEVICE, DTYPE)
pipe.transformer = transformer
# attention backend 可能在不同环境不支持,做容错
try:
pipe.transformer.set_attention_backend(attention_backend)
except Exception as e:
print(f"[Init] set_attention_backend('{attention_backend}') failed, fallback to 'native'. Error: {e}")
try:
pipe.transformer.set_attention_backend("native")
except Exception as e2:
print(f"[Init] fallback set_attention_backend('native') failed: {e2}")
if enable_compile and DEVICE == "cuda":
try:
print("[Init] Compiling transformer...")
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune-no-cudagraphs", fullgraph=False)
except Exception as e:
print(f"[Init] torch.compile failed, continue without compile. Error: {e}")
pipe = pipe.to(DEVICE, DTYPE)
# 4) Safety Checker(用于生成后过滤)
try:
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
try:
from transformers import CLIPImageProcessor as _CLIPProcessor
except Exception:
# 老版本兼容
from transformers import CLIPFeatureExtractor as _CLIPProcessor # type: ignore
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = _CLIPProcessor.from_pretrained(safety_model_id, **_hf_token_kwargs(HF_TOKEN))
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
safety_model_id,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
**_hf_token_kwargs(HF_TOKEN),
).to(DEVICE)
pipe.safety_feature_extractor = safety_feature_extractor
pipe.safety_checker = safety_checker
print("[Init] Safety checker loaded.")
except Exception as e:
print(f"[Init] Safety checker init failed. NSFW filtering will be skipped. Error: {e}")
pipe.safety_feature_extractor = None
pipe.safety_checker = None
return pipe
def generate_image(
pipe,
prompt: str,
resolution="1024x1024",
seed=42,
guidance_scale=5.0,
num_inference_steps=50,
shift=3.0,
max_sequence_length=512,
progress=gr.Progress(track_tqdm=True),
):
width, height = get_resolution(resolution)
if DEVICE == "cuda":
generator = torch.Generator(device="cuda").manual_seed(int(seed))
else:
generator = torch.Generator().manual_seed(int(seed))
scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=float(shift))
pipe.scheduler = scheduler
out = pipe(
prompt=prompt,
height=int(height),
width=int(width),
guidance_scale=float(guidance_scale),
num_inference_steps=int(num_inference_steps),
generator=generator,
max_sequence_length=int(max_sequence_length),
)
image = out.images[0]
return image
def warmup_model(pipe, resolutions):
print("[Warmup] Starting warmup phase...")
dummy_prompt = "warmup"
for res_str in resolutions:
print(f"[Warmup] Resolution: {res_str}")
try:
for i in range(2):
generate_image(
pipe,
prompt=dummy_prompt,
resolution=res_str.split(" ")[0],
num_inference_steps=6,
guidance_scale=0.0,
seed=42 + i,
)
except Exception as e:
print(f"[Warmup] Failed for {res_str}: {e}")
print("[Warmup] Completed.")
# ==================== Prompt Expander(保留但默认不启用) ====================
@dataclass
class PromptOutput:
status: bool
prompt: str
seed: int
system_prompt: str
message: str
class PromptExpander:
def __init__(self, backend="api", **kwargs):
self.backend = backend
def decide_system_prompt(self, template_name=None):
return prompt_template
class APIPromptExpander(PromptExpander):
def __init__(self, api_config=None, **kwargs):
super().__init__(backend="api", **kwargs)
self.api_config = api_config or {}
self.client = self._init_api_client()
def _init_api_client(self):
try:
from openai import OpenAI
api_key = self.api_config.get("api_key") or DASHSCOPE_API_KEY
base_url = self.api_config.get("base_url", "https://dashscope.aliyuncs.com/compatible-mode/v1")
if not api_key:
print("[PE] Warning: DASHSCOPE_API_KEY not found. Prompt enhance unavailable.")
return None
return OpenAI(api_key=api_key, base_url=base_url)
except ImportError:
print("[PE] Please install openai: pip install openai")
return None
except Exception as e:
print(f"[PE] Failed to initialize API client: {e}")
return None
def __call__(self, prompt, system_prompt=None, seed=-1, **kwargs):
return self.extend(prompt, system_prompt, seed, **kwargs)
def extend(self, prompt, system_prompt=None, seed=-1, **kwargs):
if self.client is None:
return PromptOutput(False, "", seed, system_prompt or "", "API client not initialized")
if system_prompt is None:
system_prompt = self.decide_system_prompt()
if "{prompt}" in system_prompt:
system_prompt = system_prompt.format(prompt=prompt)
prompt = " "
try:
model = self.api_config.get("model", "qwen3-max-preview")
response = self.client.chat.completions.create(
model=model,
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}],
temperature=0.7,
top_p=0.8,
)
content = response.choices[0].message.content or ""
# 尝试从 ```json 块中解析 revised_prompt
expanded_prompt = content
json_start = content.find("```json")
if json_start != -1:
json_end = content.find("```", json_start + 7)
if json_end != -1:
json_str = content[json_start + 7 : json_end].strip()
try:
data = json.loads(json_str)
expanded_prompt = data.get("revised_prompt", content)
except Exception:
expanded_prompt = content
return PromptOutput(True, expanded_prompt, seed, system_prompt, content)
except Exception as e:
return PromptOutput(False, "", seed, system_prompt, str(e))
def create_prompt_expander(backend="api", **kwargs):
if backend == "api":
return APIPromptExpander(**kwargs)
raise ValueError("Only 'api' backend is supported.")
pipe = None
prompt_expander = None
def init_app():
global pipe, prompt_expander
try:
pipe = load_models(MODEL_PATH, enable_compile=ENABLE_COMPILE, attention_backend=ATTENTION_BACKEND)
print("[Init] Model loaded.")
if ENABLE_WARMUP and pipe is not None:
all_res = []
for cat in RES_CHOICES.values():
all_res.extend(cat)
warmup_model(pipe, all_res)
except Exception as e:
print(f"[Init] Error loading model: {e}")
pipe = None
try:
prompt_expander = create_prompt_expander(backend="api", api_config={"model": "qwen3-max-preview"})
print("[Init] Prompt expander ready (disabled by default).")
except Exception as e:
print(f"[Init] Error initializing prompt expander: {e}")
prompt_expander = None
def prompt_enhance(prompt, enable_enhance: bool):
if not enable_enhance or not prompt_expander:
return prompt, "Enhancement disabled or unavailable."
if not prompt.strip():
return "", "Please enter a prompt."
try:
result = prompt_expander(prompt)
if result.status:
return result.prompt, result.message
return prompt, f"Enhancement failed: {result.message}"
except Exception as e:
return prompt, f"Error: {str(e)}"
def try_enable_aoti(pipe):
"""
AoTI(ZeroGPU 加速)可用则启用;不可用则跳过,不影响主流程。
"""
if pipe is None:
return
try:
# 优先按你原代码的结构尝试:pipe.transformer.layers
if hasattr(pipe, "transformer") and pipe.transformer is not None:
target = None
if hasattr(pipe.transformer, "layers"):
target = pipe.transformer.layers
if hasattr(target, "_repeated_blocks"):
target._repeated_blocks = ["ZImageTransformerBlock"]
else:
# 兜底:直接对 transformer 设置
target = pipe.transformer
if hasattr(target, "_repeated_blocks"):
target._repeated_blocks = ["ZImageTransformerBlock"]
if target is not None:
spaces.aoti_blocks_load(target, "zerogpu-aoti/Z-Image", variant="fa3")
print("[Init] AoTI blocks loaded.")
except Exception as e:
print(f"[Init] AoTI not enabled (safe to ignore). Error: {e}")
@spaces.GPU
def generate(
prompt,
resolution="1024x1024 ( 1:1 )",
seed=42,
steps=9,
shift=3.0,
random_seed=True,
gallery_images=None,
enhance=False, # 默认不启用
progress=gr.Progress(track_tqdm=True),
):
if random_seed:
new_seed = random.randint(1, 1000000)
else:
new_seed = int(seed) if int(seed) != -1 else random.randint(1, 1000000)
if pipe is None:
raise gr.Error("Model not loaded. Please check logs.")
final_prompt = prompt or ""
if enhance:
# 你原注释说 DISABLED,这里仍保留能力但默认关闭
final_prompt, _msg = prompt_enhance(final_prompt, True)
print(f"[PE] Enhanced prompt: {final_prompt}")
# 解析 "1024x1024 ( 1:1 )" -> "1024x1024"
try:
resolution_str = str(resolution).split(" ")[0]
except Exception:
resolution_str = "1024x1024"
width, height = get_resolution(resolution_str)
# 生成
image = generate_image(
pipe=pipe,
prompt=final_prompt,
resolution=resolution_str,
seed=new_seed,
guidance_scale=0.0,
num_inference_steps=int(steps) + 1,
shift=float(shift),
)
# 生成后 NSFW 安全检查(已去掉 prompt_check)
try:
if getattr(pipe, "safety_feature_extractor", None) is not None and getattr(pipe, "safety_checker", None) is not None:
# CLIP 输入
clip_inputs = pipe.safety_feature_extractor([image], return_tensors="pt")
clip_input = clip_inputs.pixel_values.to(DEVICE)
# SafetyChecker 需要 numpy 格式图片(batch, H, W, C),float32 0-1
import numpy as np
img_np = np.array(image).astype("float32") / 255.0
img_np = img_np[None, ...]
checked_images, has_nsfw = pipe.safety_checker(images=img_np, clip_input=clip_input)
# has_nsfw 一般是 list[bool]
if isinstance(has_nsfw, (list, tuple)) and len(has_nsfw) > 0 and bool(has_nsfw[0]):
image = _load_nsfw_placeholder(width, height)
except Exception as e:
# Safety checker 失败不应阻塞主流程
print(f"[Safety] Check failed (ignored): {e}")
if gallery_images is None:
gallery_images = []
gallery_images = [image] + list(gallery_images)
return gallery_images, str(new_seed), int(new_seed)
# ------------------------- 启动初始化 -------------------------
init_app()
try_enable_aoti(pipe)
# ==================== Gradio UI ====================
with gr.Blocks(title="Z-Image Demo") as demo:
gr.Markdown(
"""<div align="center">
# Z-Image Generation Demo
*An Efficient Image Generation Foundation Model with Single-Stream Diffusion Transformer*
</div>"""
)
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt here...")
with gr.Row():
choices = [int(k) for k in RES_CHOICES.keys()]
res_cat = gr.Dropdown(value=1024, choices=choices, label="Resolution Category")
initial_res_choices = RES_CHOICES["1024"]
resolution = gr.Dropdown(
value=initial_res_choices[0],
choices=RESOLUTION_SET,
label="Width x Height (Ratio)",
)
with gr.Row():
seed = gr.Number(label="Seed", value=42, precision=0)
random_seed = gr.Checkbox(label="Random Seed", value=True)
with gr.Row():
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=8, step=1, interactive=False)
shift = gr.Slider(label="Time Shift", minimum=1.0, maximum=10.0, value=3.0, step=0.1)
# 注意:enhance 默认不开启(你原本也标注 DISABLED)
# enhance = gr.Checkbox(label="Enhance Prompt (DashScope)", value=False)
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("### 📝 Example Prompts")
gr.Examples(examples=EXAMPLE_PROMPTS, inputs=prompt_input, label=None)
with gr.Column(scale=1):
output_gallery = gr.Gallery(
label="Generated Images",
columns=2,
rows=2,
height=600,
object_fit="contain",
format="png",
interactive=False,
)
used_seed = gr.Textbox(label="Seed Used", interactive=False)
def update_res_choices(_res_cat):
if str(_res_cat) in RES_CHOICES:
res_choices = RES_CHOICES[str(_res_cat)]
else:
res_choices = RES_CHOICES["1024"]
return gr.update(value=res_choices[0], choices=res_choices)
res_cat.change(update_res_choices, inputs=res_cat, outputs=resolution)
generate_btn.click(
generate,
inputs=[prompt_input, resolution, seed, steps, shift, random_seed, output_gallery],
outputs=[output_gallery, used_seed, seed],
)
css = """
.fillable{max-width: 1230px !important}
"""
if __name__ == "__main__":
# Gradio 新版本支持 mcp_server;若你环境版本较旧报错,把 mcp_server=True 去掉即可
demo.launch(css=css, mcp_server=True)
|