Spaces:
Runtime error
Runtime error
Commit
ยท
76f797b
1
Parent(s):
8a3583d
add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
import codecs
|
| 5 |
+
import torch
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
from unetplusplus import NestedUNet
|
| 12 |
+
|
| 13 |
+
torch.manual_seed(0)
|
| 14 |
+
|
| 15 |
+
if torch.cuda.is_available():
|
| 16 |
+
torch.backends.cudnn.deterministic = True
|
| 17 |
+
|
| 18 |
+
# Device
|
| 19 |
+
DEVICE = "cpu"
|
| 20 |
+
print(DEVICE)
|
| 21 |
+
|
| 22 |
+
# Load color map
|
| 23 |
+
cmap = np.load('cmap.npy')
|
| 24 |
+
|
| 25 |
+
# Make directories
|
| 26 |
+
os.system("mkdir ./models")
|
| 27 |
+
|
| 28 |
+
# Get model weights
|
| 29 |
+
if not os.path.exists("./models/masksupnyu39.31d.pth"):
|
| 30 |
+
os.system("wget -O ./models/masksupnyu39.31d.pth https://github.com/hasibzunair/masksup-segmentation/releases/download/v0.1/masksupnyu39.31iou.pth")
|
| 31 |
+
|
| 32 |
+
# Load model
|
| 33 |
+
model = NestedUNet(num_classes=40)
|
| 34 |
+
checkpoint = torch.load("./models/masksupnyu39.31d.pth")
|
| 35 |
+
model.load_state_dict(checkpoint)
|
| 36 |
+
model = model.to(DEVICE)
|
| 37 |
+
model.eval()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Main inference function
|
| 41 |
+
def inference(img_path):
|
| 42 |
+
image = Image.open(img_path).convert("RGB")
|
| 43 |
+
transforms_image = transforms.Compose(
|
| 44 |
+
[
|
| 45 |
+
transforms.Resize((224, 224)),
|
| 46 |
+
transforms.CenterCrop((224, 224)),
|
| 47 |
+
transforms.ToTensor(),
|
| 48 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
| 49 |
+
]
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
image = transforms_image(image)
|
| 53 |
+
image = image[None, :]
|
| 54 |
+
# Predict
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
output = torch.sigmoid(model(image.to(DEVICE).float()))
|
| 57 |
+
output = torch.softmax(output, dim=1).argmax(dim=1)[0].float().cpu().numpy().astype(np.uint8)
|
| 58 |
+
pred = cmap[output]
|
| 59 |
+
return pred
|
| 60 |
+
|
| 61 |
+
# App
|
| 62 |
+
title = "Masked Supervised Learning for Semantic Segmentation"
|
| 63 |
+
description = codecs.open("description.html", "r", "utf-8").read()
|
| 64 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2210.00923' target='_blank'>Masked Supervised Learning for Semantic Segmentation</a> | <a href='https://github.com/hasibzunair/masksup-segmentation' target='_blank'>Github</a></p>"
|
| 65 |
+
|
| 66 |
+
gr.Interface(
|
| 67 |
+
inference,
|
| 68 |
+
gr.inputs.Image(type='file', label="Input Image"),
|
| 69 |
+
gr.outputs.Image(type="file", label="Predicted Output"),
|
| 70 |
+
examples=["./sample_images/a.png", "./sample_images/b.png",
|
| 71 |
+
"./sample_images/c.png", "./sample_images/d.png"],
|
| 72 |
+
title=title,
|
| 73 |
+
description=description,
|
| 74 |
+
article=article,
|
| 75 |
+
allow_flagging=False,
|
| 76 |
+
analytics_enabled=False,
|
| 77 |
+
).launch(debug=True, enable_queue=True)
|
nyu.ipynb
DELETED
|
@@ -1,165 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"import os\n",
|
| 10 |
-
"import numpy as np\n",
|
| 11 |
-
"import cv2\n",
|
| 12 |
-
"import codecs\n",
|
| 13 |
-
"import torch\n",
|
| 14 |
-
"import torchvision.transforms as transforms\n",
|
| 15 |
-
"import gradio as gr\n",
|
| 16 |
-
"\n",
|
| 17 |
-
"from PIL import Image\n",
|
| 18 |
-
"\n",
|
| 19 |
-
"from unetplusplus import NestedUNet\n",
|
| 20 |
-
"\n",
|
| 21 |
-
"torch.manual_seed(0)\n",
|
| 22 |
-
"\n",
|
| 23 |
-
"if torch.cuda.is_available():\n",
|
| 24 |
-
" torch.backends.cudnn.deterministic = True\n",
|
| 25 |
-
"\n",
|
| 26 |
-
"# Device\n",
|
| 27 |
-
"DEVICE = \"cpu\"\n",
|
| 28 |
-
"print(DEVICE)\n",
|
| 29 |
-
"\n",
|
| 30 |
-
"# Load color map\n",
|
| 31 |
-
"cmap = np.load('cmap.npy')\n",
|
| 32 |
-
"\n",
|
| 33 |
-
"# Make directories\n",
|
| 34 |
-
"os.system(\"mkdir ./models\")\n",
|
| 35 |
-
"\n",
|
| 36 |
-
"# Get model weights\n",
|
| 37 |
-
"if not os.path.exists(\"./models/masksupnyu39.31d.pth\"):\n",
|
| 38 |
-
" os.system(\"wget -O ./models/masksupnyu39.31d.pth https://github.com/hasibzunair/masksup-segmentation/releases/download/v0.1/masksupnyu39.31iou.pth\")\n",
|
| 39 |
-
"\n",
|
| 40 |
-
"# Load model\n",
|
| 41 |
-
"model = NestedUNet(num_classes=40)\n",
|
| 42 |
-
"checkpoint = torch.load(\"./models/masksupnyu39.31d.pth\")\n",
|
| 43 |
-
"model.load_state_dict(checkpoint)\n",
|
| 44 |
-
"model = model.to(DEVICE)\n",
|
| 45 |
-
"model.eval()\n",
|
| 46 |
-
"\n",
|
| 47 |
-
"\n",
|
| 48 |
-
"# Main inference function\n",
|
| 49 |
-
"def inference(img_path):\n",
|
| 50 |
-
" image = Image.open(img_path).convert(\"RGB\")\n",
|
| 51 |
-
" transforms_image = transforms.Compose(\n",
|
| 52 |
-
" [\n",
|
| 53 |
-
" transforms.Resize((224, 224)),\n",
|
| 54 |
-
" transforms.CenterCrop((224, 224)),\n",
|
| 55 |
-
" transforms.ToTensor(),\n",
|
| 56 |
-
" transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),\n",
|
| 57 |
-
" ]\n",
|
| 58 |
-
" )\n",
|
| 59 |
-
"\n",
|
| 60 |
-
" image = transforms_image(image)\n",
|
| 61 |
-
" image = image[None, :]\n",
|
| 62 |
-
" # Predict\n",
|
| 63 |
-
" with torch.no_grad():\n",
|
| 64 |
-
" output = torch.sigmoid(model(image.to(DEVICE).float()))\n",
|
| 65 |
-
" output = torch.softmax(output, dim=1).argmax(dim=1)[0].float().cpu().numpy().astype(np.uint8)\n",
|
| 66 |
-
" pred = cmap[output]\n",
|
| 67 |
-
" return pred\n",
|
| 68 |
-
"\n",
|
| 69 |
-
"# App\n",
|
| 70 |
-
"title = \"Masked Supervised Learning for Semantic Segmentation\"\n",
|
| 71 |
-
"description = codecs.open(\"description.html\", \"r\", \"utf-8\").read()\n",
|
| 72 |
-
"article = \"<p style='text-align: center'><a href='https://arxiv.org/abs/2210.00923' target='_blank'>Masked Supervised Learning for Semantic Segmentation</a> | <a href='https://github.com/hasibzunair/masksup-segmentation' target='_blank'>Github</a></p>\"\n",
|
| 73 |
-
"\n",
|
| 74 |
-
"gr.Interface(\n",
|
| 75 |
-
" inference,\n",
|
| 76 |
-
" gr.inputs.Image(type='file', label=\"Input Image\"),\n",
|
| 77 |
-
" gr.outputs.Image(type=\"file\", label=\"Predicted Output\"),\n",
|
| 78 |
-
" examples=[\"./sample_images/a.png\", \"./sample_images/b.png\", \n",
|
| 79 |
-
" \"./sample_images/c.png\", \"./sample_images/d.png\"],\n",
|
| 80 |
-
" title=title,\n",
|
| 81 |
-
" description=description,\n",
|
| 82 |
-
" article=article,\n",
|
| 83 |
-
" allow_flagging=False,\n",
|
| 84 |
-
" analytics_enabled=False,\n",
|
| 85 |
-
" ).launch(debug=True, enable_queue=True)"
|
| 86 |
-
]
|
| 87 |
-
},
|
| 88 |
-
{
|
| 89 |
-
"cell_type": "code",
|
| 90 |
-
"execution_count": null,
|
| 91 |
-
"metadata": {},
|
| 92 |
-
"outputs": [],
|
| 93 |
-
"source": []
|
| 94 |
-
},
|
| 95 |
-
{
|
| 96 |
-
"cell_type": "code",
|
| 97 |
-
"execution_count": null,
|
| 98 |
-
"metadata": {},
|
| 99 |
-
"outputs": [],
|
| 100 |
-
"source": []
|
| 101 |
-
},
|
| 102 |
-
{
|
| 103 |
-
"cell_type": "code",
|
| 104 |
-
"execution_count": null,
|
| 105 |
-
"metadata": {},
|
| 106 |
-
"outputs": [],
|
| 107 |
-
"source": []
|
| 108 |
-
},
|
| 109 |
-
{
|
| 110 |
-
"cell_type": "code",
|
| 111 |
-
"execution_count": null,
|
| 112 |
-
"metadata": {},
|
| 113 |
-
"outputs": [],
|
| 114 |
-
"source": []
|
| 115 |
-
},
|
| 116 |
-
{
|
| 117 |
-
"cell_type": "code",
|
| 118 |
-
"execution_count": null,
|
| 119 |
-
"metadata": {},
|
| 120 |
-
"outputs": [],
|
| 121 |
-
"source": []
|
| 122 |
-
},
|
| 123 |
-
{
|
| 124 |
-
"cell_type": "code",
|
| 125 |
-
"execution_count": null,
|
| 126 |
-
"metadata": {},
|
| 127 |
-
"outputs": [],
|
| 128 |
-
"source": []
|
| 129 |
-
},
|
| 130 |
-
{
|
| 131 |
-
"cell_type": "code",
|
| 132 |
-
"execution_count": null,
|
| 133 |
-
"metadata": {},
|
| 134 |
-
"outputs": [],
|
| 135 |
-
"source": []
|
| 136 |
-
}
|
| 137 |
-
],
|
| 138 |
-
"metadata": {
|
| 139 |
-
"kernelspec": {
|
| 140 |
-
"display_name": "Python 3.8.12 ('fifa')",
|
| 141 |
-
"language": "python",
|
| 142 |
-
"name": "python3"
|
| 143 |
-
},
|
| 144 |
-
"language_info": {
|
| 145 |
-
"codemirror_mode": {
|
| 146 |
-
"name": "ipython",
|
| 147 |
-
"version": 3
|
| 148 |
-
},
|
| 149 |
-
"file_extension": ".py",
|
| 150 |
-
"mimetype": "text/x-python",
|
| 151 |
-
"name": "python",
|
| 152 |
-
"nbconvert_exporter": "python",
|
| 153 |
-
"pygments_lexer": "ipython3",
|
| 154 |
-
"version": "3.8.12"
|
| 155 |
-
},
|
| 156 |
-
"orig_nbformat": 4,
|
| 157 |
-
"vscode": {
|
| 158 |
-
"interpreter": {
|
| 159 |
-
"hash": "5a4cff4f724f20f3784f32e905011239b516be3fadafd59414871df18d0dad63"
|
| 160 |
-
}
|
| 161 |
-
}
|
| 162 |
-
},
|
| 163 |
-
"nbformat": 4,
|
| 164 |
-
"nbformat_minor": 2
|
| 165 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|