Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import zlib
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
import gptzip
|
| 6 |
+
import transformers
|
| 7 |
+
|
| 8 |
+
model = "EleutherAI/pythia-410m"
|
| 9 |
+
|
| 10 |
+
lm = transformers.AutoModelForCausalLM.from_pretrained(model)
|
| 11 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model)
|
| 12 |
+
coder = gptzip.ArithmeticCoder(lm=lm, tokenizer=tokenizer)
|
| 13 |
+
|
| 14 |
+
def compress(string: str) -> str:
|
| 15 |
+
code, num_padded_bits = coder.encode(
|
| 16 |
+
string,
|
| 17 |
+
return_num_padded_bits=True,
|
| 18 |
+
)
|
| 19 |
+
gzip_str = zlib.compress(string.encode())
|
| 20 |
+
gzip_bytes = len(gzip_str)
|
| 21 |
+
return f"Num tokens {len(tokenizer.encode(string))} || GZ: {gzip_bytes} bytes: {gzip_str} || AC: {len(code)} bytes: {code}"
|
| 22 |
+
|
| 23 |
+
demo = gr.Interface(fn=compress, inputs="text", outputs="text")
|
| 24 |
+
demo.launch()
|