Spaces:
Runtime error
Runtime error
File size: 28,045 Bytes
37ca53e eefdc40 eec0e30 37ca53e 22eeb67 37ca53e eefdc40 e0b8682 eec0e30 e0b8682 eec0e30 e0b8682 22eeb67 e0b8682 eec0e30 e0b8682 eec0e30 a0a0d51 eec0e30 a0a0d51 eec0e30 a0a0d51 e0b8682 eefdc40 e0b8682 eefdc40 37ca53e eefdc40 e0b8682 eefdc40 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 0f5a8ce e0b8682 37ca53e eefdc40 37ca53e eefdc40 37ca53e eefdc40 37ca53e e0b8682 37ca53e 13efc9b 37ca53e 13efc9b 60db046 13efc9b 60db046 13efc9b 60db046 b8252ed 13efc9b 37ca53e b8252ed 37ca53e 13efc9b 37ca53e eefdc40 37ca53e 13efc9b 37ca53e eefdc40 60db046 eefdc40 e625573 eefdc40 37ca53e 0f5a8ce 60db046 0f5a8ce e0b8682 37ca53e 9e8e6a4 37ca53e e0b8682 b8252ed 37ca53e e0b8682 e625573 b8252ed 37ca53e e625573 37ca53e e187a4d a0a0d51 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 b8252ed 37ca53e e0b8682 e625573 37ca53e e625573 b8252ed e0b8682 b8252ed e0b8682 37ca53e e0b8682 b8252ed 37ca53e e0b8682 b8252ed e0b8682 37ca53e b8252ed e0b8682 b8252ed e0b8682 37ca53e b8252ed 37ca53e b8252ed e0b8682 b8252ed e0b8682 b8252ed e0b8682 b8252ed e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e eec0e30 37ca53e e0b8682 37ca53e eefdc40 37ca53e 9e8e6a4 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 e187a4d 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e eefdc40 37ca53e eae1b73 e0b8682 eefdc40 e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e e0b8682 37ca53e eefdc40 a0a0d51 37ca53e eefdc40 a0a0d51 37ca53e e0b8682 37ca53e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
"""
BubbleScribe - AI Manga & Comic Translator
Translate manga/comics using GLM-4.6V for OCR + Translation and LaMa for inpainting.
Optimized for NVIDIA T4 GPU
"""
import gradio as gr
import torch
import os
import json
import base64
import re
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
from openai import OpenAI
from concurrent.futures import ThreadPoolExecutor
import threading
# ============================================================
# HARDWARE OPTIMIZATION: NVIDIA T4 (16GB VRAM)
# ============================================================
import cv2
# Enable CUDA optimizations
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Thread pool for parallel operations
executor = ThreadPoolExecutor(max_workers=4)
# ============================================================
# MODEL PRELOADING (Load at startup for faster inference)
# ============================================================
print("🚀 BubbleScribe starting up...")
print(f" Hardware: NVIDIA T4 (16GB VRAM)")
print(f" OCR: Qwen2-VL (API)")
print(f" Inpainting: LaMa (GPU)")
# Load LaMa model at startup
print("📦 Loading LaMa model...")
from simple_lama_inpainting import SimpleLama
lama_model = SimpleLama()
print("✅ LaMa model loaded and ready!")
def load_lama():
"""Get LaMa model (already loaded at startup)."""
return lama_model
# ============================================================
# FONT CACHING
# ============================================================
_font_cache = {}
_font_lock = threading.Lock()
def get_font(size: int):
"""Get a font with caching."""
cache_key = size
if cache_key in _font_cache:
return _font_cache[cache_key]
with _font_lock:
if cache_key in _font_cache:
return _font_cache[cache_key]
font_paths = [
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
"/usr/share/fonts/truetype/noto/NotoSansCJK-Bold.ttc", # CJK support
"/usr/share/fonts/opentype/noto/NotoSansCJK-Bold.ttc",
"C:/Windows/Fonts/arial.ttf",
"C:/Windows/Fonts/arialbd.ttf",
]
for path in font_paths:
if os.path.exists(path):
try:
font = ImageFont.truetype(path, size)
_font_cache[cache_key] = font
return font
except:
continue
font = ImageFont.load_default()
_font_cache[cache_key] = font
return font
# ============================================================
# GLM-4.6V CLIENT (Z.ai API)
# ============================================================
_glm_client = None
def get_glm_client():
"""Get or create GLM client."""
global _glm_client
if _glm_client is None:
api_key = os.environ.get("GLM_API_KEY")
if not api_key:
return None
_glm_client = OpenAI(api_key=api_key, base_url="https://api.z.ai/api/paas/v4")
return _glm_client
# ============================================================
# IMAGE UTILITIES
# ============================================================
def encode_image_base64(image: Image.Image, max_size: int = 2048) -> str:
"""Convert PIL Image to base64 string with optional resize."""
# Resize if too large to save bandwidth and API costs
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = (int(image.width * ratio), int(image.height * ratio))
image = image.resize(new_size, Image.Resampling.LANCZOS)
buffered = BytesIO()
image.save(buffered, format="PNG", optimize=True)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def scale_bbox(bbox: list, original_size: tuple, processed_size: tuple) -> list:
"""Scale bounding box coordinates if image was resized."""
if original_size == processed_size:
return bbox
scale_x = original_size[0] / processed_size[0]
scale_y = original_size[1] / processed_size[1]
return [
int(bbox[0] * scale_x),
int(bbox[1] * scale_y),
int(bbox[2] * scale_x),
int(bbox[3] * scale_y)
]
# ============================================================
# JSON REPAIR (Handle malformed model responses)
# ============================================================
def repair_json(text: str) -> str:
"""Attempt to repair common JSON issues from LLM responses."""
# Remove any markdown code blocks
text = re.sub(r'```json\s*', '', text)
text = re.sub(r'```\s*', '', text)
# Fix unescaped newlines in strings
text = re.sub(r'(?<!\\)\n(?=[^"]*"[^"]*(?:"[^"]*"[^"]*)*$)', '\\n', text)
# Fix trailing commas before ] or }
text = re.sub(r',\s*([}\]])', r'\1', text)
# Fix missing commas between objects
text = re.sub(r'\}\s*\{', '},{', text)
# Fix unescaped quotes inside strings (rough heuristic)
# Replace Japanese quotes with escaped ones
text = text.replace('「', '\\"').replace('」', '\\"')
text = text.replace('『', '\\"').replace('』', '\\"')
return text
def safe_parse_json(text: str) -> list:
"""Safely parse JSON with multiple fallback strategies."""
# Strategy 1: Direct parse
try:
json_match = re.search(r'\[[\s\S]*\]', text)
if json_match:
return json.loads(json_match.group())
except json.JSONDecodeError:
pass
# Strategy 2: Repair and parse
try:
repaired = repair_json(text)
json_match = re.search(r'\[[\s\S]*\]', repaired)
if json_match:
return json.loads(json_match.group())
except json.JSONDecodeError:
pass
# Strategy 3: Extract individual objects
try:
objects = re.findall(r'\{[^{}]*\}', text)
results = []
for obj in objects:
try:
parsed = json.loads(repair_json(obj))
if 'bbox' in parsed:
results.append(parsed)
except:
continue
if results:
return results
except:
pass
# Strategy 4: Manual extraction with regex
try:
results = []
# Find bbox patterns
bbox_matches = re.findall(r'"bbox"\s*:\s*\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]', text)
original_matches = re.findall(r'"original"\s*:\s*"([^"]*)"', text)
translated_matches = re.findall(r'"translated"\s*:\s*"([^"]*)"', text)
for i, bbox in enumerate(bbox_matches):
result = {
"bbox": [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])],
"original": original_matches[i] if i < len(original_matches) else "",
"translated": translated_matches[i] if i < len(translated_matches) else ""
}
results.append(result)
if results:
return results
except:
pass
return []
# ============================================================
# DETECTION & TRANSLATION
# ============================================================
def detect_and_translate(image: Image.Image, source_lang: str, target_lang: str, progress=gr.Progress()):
"""Use GLM-4.6V to detect text regions and translate."""
client = get_glm_client()
if not client:
return None, "Error: GLM_API_KEY not set in Space secrets"
progress(0.1, desc="Analyzing image with GLM-4.6V...")
original_size = image.size
# Convert image to base64 (may resize for API)
img_base64 = encode_image_base64(image, max_size=2048)
# Calculate processed size for bbox scaling
processed_size = original_size
if max(original_size) > 2048:
ratio = 2048 / max(original_size)
processed_size = (int(original_size[0] * ratio), int(original_size[1] * ratio))
prompt = f"""You are a professional manga translator. Your task is to find and translate EVERY piece of {source_lang} text in this image.
IMPORTANT: Scan the ENTIRE image from top to bottom, left to right. Do NOT miss any text!
Find ALL of these text types:
- Main titles and headers
- Character names (above/below portraits)
- Speech bubbles and dialogue
- Narration boxes
- Sound effects (onomatopoeia)
- Labels, captions, descriptions
- Small text and annotations
- Relationship indicators (arrows, connections)
- ANY other visible {source_lang} text
For EACH text region found:
1. bbox: [x1, y1, x2, y2] pixel coordinates
2. original: the exact {source_lang} text
3. translated: natural {target_lang} translation
TRANSLATION GUIDELINES:
- Keep character names in ROMAJI (e.g., 田中太郎 → "Tanaka Tarou", not "Rice Field Middle Fat Man")
- Keep honorifics: -san, -kun, -chan, -sama, -sensei
- Sound effects: Keep original + add meaning (e.g., "ドキドキ" → "Dokidoki (heart pounding)")
- Make dialogue natural and conversational, not literal
- Preserve emotional tone and nuance
- For titles/roles, translate the meaning (e.g., 社長 → "President", 先生 → "Teacher")
Return a JSON array. Example:
[
{{"bbox": [100, 50, 200, 80], "original": "山田花子", "translated": "Yamada Hanako"}},
{{"bbox": [300, 100, 400, 130], "original": "よろしくお願いします", "translated": "Nice to meet you"}}
]
CRITICAL: Find at least 20-50 text regions. This image has many text elements. Scan every corner carefully. Include ALL small labels and character descriptions."""
try:
response = client.chat.completions.create(
model="glm-4.6v-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{img_base64}"}
},
{"type": "text", "text": prompt}
]
}
],
max_tokens=8192
)
progress(0.4, desc="Processing response...")
result_text = ""
msg = response.choices[0].message
# Try multiple response fields
if hasattr(msg, 'content') and msg.content:
result_text = msg.content
if hasattr(msg, 'reasoning_content') and msg.reasoning_content:
result_text = result_text + "\n" + msg.reasoning_content if result_text else msg.reasoning_content
# Strip GLM special tokens
result_text = result_text.replace('<|begin_of_box|>', '').replace('<|end_of_box|>', '')
print(f"📝 GLM-4.6V Response length: {len(result_text)} chars")
print(f"📝 GLM-4.6V Response preview: {result_text[:500] if result_text else 'EMPTY'}...")
# Parse JSON from response with robust error handling
detections = safe_parse_json(result_text)
print(f"📝 Parsed detections: {len(detections)} items")
if detections:
# Scale bboxes back to original size if needed
if original_size != processed_size:
for det in detections:
if 'bbox' in det and len(det['bbox']) == 4:
det['bbox'] = scale_bbox(det['bbox'], original_size, processed_size)
return detections, f"Found {len(detections)} text regions"
else:
# Return debug info when no detections
debug_info = f"No text detected.\n\nDEBUG - API Response ({len(result_text)} chars):\n{result_text[:1000] if result_text else 'EMPTY RESPONSE'}"
return [], debug_info
except Exception as e:
return None, f"Error: {str(e)}"
# ============================================================
# INPAINTING (Optimized for 8 vCPU)
# ============================================================
def create_text_mask(image: Image.Image, detections: list, padding: int = 12) -> Image.Image:
"""Create a mask for inpainting based on detected text regions."""
mask = Image.new('L', image.size, 0)
draw = ImageDraw.Draw(mask)
for det in detections:
bbox = det.get('bbox', [])
if len(bbox) == 4:
x1, y1, x2, y2 = [int(v) for v in bbox]
# Ensure coordinates are valid (x2 > x1, y2 > y1)
if x2 < x1:
x1, x2 = x2, x1
if y2 < y1:
y1, y2 = y2, y1
# Skip invalid boxes
if x2 <= x1 or y2 <= y1:
continue
# Larger padding for cleaner inpainting
x1 = max(0, x1 - padding)
y1 = max(0, y1 - padding)
x2 = min(image.width, x2 + padding)
y2 = min(image.height, y2 + padding)
# Final validation
if x2 > x1 and y2 > y1:
draw.rectangle([x1, y1, x2, y2], fill=255)
return mask
def inpaint_image(image: Image.Image, mask: Image.Image) -> Image.Image:
"""High-quality inpainting using LaMa (GPU-accelerated)."""
try:
lama = load_lama()
# LaMa expects RGB image and binary mask
result = lama(image.convert('RGB'), mask.convert('L'))
return result
except Exception as e:
print(f"⚠️ LaMa failed, falling back to OpenCV: {e}")
# Fallback to OpenCV
img_array = np.array(image.convert('RGB'))
mask_array = np.array(mask)
result = cv2.inpaint(img_array, mask_array, inpaintRadius=12, flags=cv2.INPAINT_NS)
return Image.fromarray(result)
# ============================================================
# TEXT RENDERING (Optimized with word wrapping)
# ============================================================
def wrap_text(text: str, font: ImageFont.FreeTypeFont, max_width: int, draw: ImageDraw.Draw) -> list:
"""Wrap text to fit within max_width."""
words = text.split()
lines = []
current_line = []
for word in words:
test_line = ' '.join(current_line + [word])
bbox = draw.textbbox((0, 0), test_line, font=font)
if bbox[2] - bbox[0] <= max_width:
current_line.append(word)
else:
if current_line:
lines.append(' '.join(current_line))
current_line = [word]
if current_line:
lines.append(' '.join(current_line))
return lines if lines else [text]
def add_translated_text(image: Image.Image, detections: list) -> Image.Image:
"""Add translated text to the inpainted image with smart sizing and positioning."""
result = image.copy()
draw = ImageDraw.Draw(result)
for det in detections:
bbox = det.get('bbox', [])
translated = det.get('translated', '')
if len(bbox) == 4 and translated:
x1, y1, x2, y2 = [int(v) for v in bbox]
# Ensure coordinates are valid
if x2 < x1:
x1, x2 = x2, x1
if y2 < y1:
y1, y2 = y2, y1
box_width = x2 - x1
box_height = y2 - y1
# Skip very small or invalid boxes
if box_width < 20 or box_height < 10:
continue
# Detect if vertical text (tall narrow box with short text)
is_vertical = box_height > box_width * 2 and len(translated) < 10
# Calculate optimal font size based on box dimensions
text_len = max(len(translated), 1)
if is_vertical:
# Vertical: size based on width
estimated_size = min(box_width - 4, 24)
else:
# Horizontal: balance between height and text length
estimated_size = min(
box_height - 4,
int((box_width / text_len) * 1.5),
28
)
estimated_size = max(10, estimated_size)
font = get_font(estimated_size)
# Word wrap for long text
lines = wrap_text(translated, font, box_width - 8, draw)
# Calculate total text height
line_height = estimated_size + 2
total_height = len(lines) * line_height
# If text doesn't fit, reduce font size progressively
while total_height > box_height - 6 and estimated_size > 8:
estimated_size -= 1
font = get_font(estimated_size)
lines = wrap_text(translated, font, box_width - 8, draw)
line_height = estimated_size + 2
total_height = len(lines) * line_height
# Center vertically and horizontally
start_y = y1 + max(2, (box_height - total_height) // 2)
# Draw each line centered
for i, line in enumerate(lines):
text_bbox = draw.textbbox((0, 0), line, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_x = x1 + max(2, (box_width - text_width) // 2)
text_y = start_y + i * line_height
# Ensure text stays within bounds
text_x = max(x1 + 2, min(text_x, x2 - text_width - 2))
text_y = max(y1 + 2, min(text_y, y2 - estimated_size - 2))
# Draw outline for readability (thicker outline)
outline_range = [-1, 0, 1]
for dx in outline_range:
for dy in outline_range:
if dx != 0 or dy != 0:
draw.text((text_x + dx, text_y + dy), line, font=font, fill="black")
# Draw main text in white
draw.text((text_x, text_y), line, font=font, fill="white")
return result
def draw_detections(image: Image.Image, detections: list) -> Image.Image:
"""Draw bounding boxes and labels on image for visualization."""
result = image.copy()
draw = ImageDraw.Draw(result)
font = get_font(12)
colors = ["#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4", "#FFEAA7", "#DDA0DD", "#98D8C8"]
for i, det in enumerate(detections):
bbox = det.get('bbox', [])
original = det.get('original', '')[:30]
translated = det.get('translated', '')[:30]
if len(bbox) == 4:
x1, y1, x2, y2 = [int(v) for v in bbox]
color = colors[i % len(colors)]
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
label = f"{i+1}: {original} → {translated}"
# Draw label background
label_bbox = draw.textbbox((x1, y1 - 18), label, font=font)
draw.rectangle(label_bbox, fill=color)
draw.text((x1, y1 - 18), label, font=font, fill="white")
return result
# ============================================================
# MAIN PIPELINE
# ============================================================
def translate_manga(image, source_lang, target_lang, show_boxes, apply_inpaint, progress=gr.Progress()):
"""Main translation pipeline (GPU-accelerated on T4)."""
if image is None:
return None, None, "Please upload an image"
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Step 1: Detect and translate
progress(0.1, desc="🔍 Detecting text with GLM-4.6V...")
detections, status = detect_and_translate(image, source_lang, target_lang, progress)
if detections is None:
return None, None, status
if len(detections) == 0:
return image, image, status # status contains debug info
# Step 2: Create visualization
progress(0.5, desc="🎨 Creating visualization...")
viz_image = draw_detections(image, detections)
# Step 3: Inpaint and add translated text
if apply_inpaint:
progress(0.6, desc="🖌️ Creating mask...")
mask = create_text_mask(image, detections)
progress(0.7, desc="✨ Inpainting (removing original text)...")
inpainted = inpaint_image(image, mask)
progress(0.9, desc="✍️ Adding translated text...")
result = add_translated_text(inpainted, detections)
else:
result = add_translated_text(image, detections)
det_text = json.dumps(detections, indent=2, ensure_ascii=False)
progress(1.0, desc="✅ Done!")
if show_boxes:
return viz_image, result, det_text
else:
return image, result, det_text
# ============================================================
# BATCH PROCESSING (Utilize all 8 CPUs)
# ============================================================
def translate_batch(images: list, source_lang: str, target_lang: str, progress=gr.Progress()):
"""Process multiple pages in parallel."""
if not images:
return [], "No images uploaded"
results = []
total = len(images)
def process_single(idx_img):
idx, img = idx_img
try:
_, result, _ = translate_manga(img, source_lang, target_lang, False, True)
return (idx, result)
except Exception as e:
return (idx, None)
# Process in parallel using thread pool
progress(0.1, desc=f"Processing {total} pages...")
futures = list(executor.map(process_single, enumerate(images)))
futures.sort(key=lambda x: x[0])
results = [f[1] for f in futures if f[1] is not None]
progress(1.0, desc=f"✅ Processed {len(results)}/{total} pages")
return results, f"Processed {len(results)} pages successfully"
# ============================================================
# UI
# ============================================================
LANGUAGES = [
"Japanese",
"Korean",
"Chinese (Simplified)",
"Chinese (Traditional)",
"English",
"Spanish",
"Portuguese",
"French",
"German",
"Italian",
"Russian",
"Thai",
"Vietnamese",
"Indonesian",
"Arabic"
]
css = """
.gradio-container {
max-width: 1400px !important;
}
.header {
text-align: center;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 10px;
margin-bottom: 20px;
}
.header h1 {
color: white;
margin: 0;
font-size: 2.2em;
}
.header p {
color: rgba(255,255,255,0.9);
margin: 5px 0 0 0;
}
.stats {
background: rgba(102, 126, 234, 0.1);
padding: 10px;
border-radius: 8px;
margin: 10px 0;
font-size: 0.9em;
}
"""
with gr.Blocks(title="BubbleScribe", css=css, theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div class="header">
<h1>✍️ BubbleScribe</h1>
<p>AI-powered manga & comic translator using GLM-4.6V + LaMa</p>
</div>
""")
gr.HTML("""
<div class="stats">
⚡ <strong>Models:</strong> GLM-4.6V (OCR & Translation) + LaMa (Inpainting)
</div>
""")
with gr.Tabs():
# Single Page Tab
with gr.Tab("📄 Single Page"):
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="📤 Upload Manga Page", type="pil")
with gr.Row():
source_lang = gr.Dropdown(
choices=LANGUAGES,
value="Japanese",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=LANGUAGES,
value="English",
label="Target Language"
)
with gr.Row():
show_boxes = gr.Checkbox(label="Show detection boxes", value=True)
apply_inpaint = gr.Checkbox(label="Apply inpainting", value=True)
translate_btn = gr.Button("🔄 Translate", variant="primary", size="lg")
with gr.Column(scale=2):
with gr.Row():
detection_output = gr.Image(label="🔍 Detected Text Regions")
result_output = gr.Image(label="✨ Translated Result")
detections_json = gr.Textbox(
label="📋 Detected Text (JSON)",
lines=8,
max_lines=15
)
translate_btn.click(
fn=translate_manga,
inputs=[input_image, source_lang, target_lang, show_boxes, apply_inpaint],
outputs=[detection_output, result_output, detections_json]
)
# Batch Processing Tab
with gr.Tab("📚 Batch (Multi-Page)"):
gr.Markdown("**Upload multiple pages** to translate them all at once using parallel processing.")
with gr.Row():
with gr.Column(scale=1):
batch_images = gr.Gallery(
label="📤 Upload Multiple Pages",
columns=3,
height=300,
object_fit="contain"
)
with gr.Row():
batch_source = gr.Dropdown(
choices=LANGUAGES,
value="Japanese",
label="Source Language"
)
batch_target = gr.Dropdown(
choices=LANGUAGES,
value="English",
label="Target Language"
)
batch_btn = gr.Button("🚀 Translate All Pages", variant="primary", size="lg")
with gr.Column(scale=2):
batch_output = gr.Gallery(
label="✨ Translated Pages",
columns=3,
height=400,
object_fit="contain"
)
batch_status = gr.Textbox(label="Status", interactive=False)
batch_btn.click(
fn=translate_batch,
inputs=[batch_images, batch_source, batch_target],
outputs=[batch_output, batch_status]
)
gr.Markdown("""
### 💡 Tips
- **Single Page:** Best for previewing detections and fine-tuning
- **Batch Mode:** Process entire chapters quickly (parallel processing)
- Works best with clear, high-contrast text in speech bubbles
- Sound effects may not always be detected
### 🔧 Powered By
- **GLM-4.6V** - Text detection & translation (Z.ai API)
- **LaMa** - Text removal inpainting (GPU-accelerated)
""")
gr.HTML("""
<div style="text-align: center; margin-top: 20px; padding: 10px; background: rgba(0,0,0,0.05); border-radius: 8px;">
<strong>Models:</strong> <a href="https://huggingface.co/zai-org/GLM-4.6V" target="_blank">GLM-4.6V</a> (OCR & Translation) •
<a href="https://github.com/advimman/lama" target="_blank">LaMa</a> (Inpainting) •
<strong>Created by:</strong> <a href="https://huggingface.co/lulavc" target="_blank">@lulavc</a>
</div>
""")
print("✅ BubbleScribe ready!")
if __name__ == "__main__":
demo.launch()
|