BubbleScribe / app.py
lulavc's picture
Revert to GLM-4.6V (stable)
eefdc40 verified
"""
BubbleScribe - AI Manga & Comic Translator
Translate manga/comics using GLM-4.6V for OCR + Translation and LaMa for inpainting.
Optimized for NVIDIA T4 GPU
"""
import gradio as gr
import torch
import os
import json
import base64
import re
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
from openai import OpenAI
from concurrent.futures import ThreadPoolExecutor
import threading
# ============================================================
# HARDWARE OPTIMIZATION: NVIDIA T4 (16GB VRAM)
# ============================================================
import cv2
# Enable CUDA optimizations
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Thread pool for parallel operations
executor = ThreadPoolExecutor(max_workers=4)
# ============================================================
# MODEL PRELOADING (Load at startup for faster inference)
# ============================================================
print("🚀 BubbleScribe starting up...")
print(f" Hardware: NVIDIA T4 (16GB VRAM)")
print(f" OCR: Qwen2-VL (API)")
print(f" Inpainting: LaMa (GPU)")
# Load LaMa model at startup
print("📦 Loading LaMa model...")
from simple_lama_inpainting import SimpleLama
lama_model = SimpleLama()
print("✅ LaMa model loaded and ready!")
def load_lama():
"""Get LaMa model (already loaded at startup)."""
return lama_model
# ============================================================
# FONT CACHING
# ============================================================
_font_cache = {}
_font_lock = threading.Lock()
def get_font(size: int):
"""Get a font with caching."""
cache_key = size
if cache_key in _font_cache:
return _font_cache[cache_key]
with _font_lock:
if cache_key in _font_cache:
return _font_cache[cache_key]
font_paths = [
"/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf",
"/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf",
"/usr/share/fonts/truetype/noto/NotoSansCJK-Bold.ttc", # CJK support
"/usr/share/fonts/opentype/noto/NotoSansCJK-Bold.ttc",
"C:/Windows/Fonts/arial.ttf",
"C:/Windows/Fonts/arialbd.ttf",
]
for path in font_paths:
if os.path.exists(path):
try:
font = ImageFont.truetype(path, size)
_font_cache[cache_key] = font
return font
except:
continue
font = ImageFont.load_default()
_font_cache[cache_key] = font
return font
# ============================================================
# GLM-4.6V CLIENT (Z.ai API)
# ============================================================
_glm_client = None
def get_glm_client():
"""Get or create GLM client."""
global _glm_client
if _glm_client is None:
api_key = os.environ.get("GLM_API_KEY")
if not api_key:
return None
_glm_client = OpenAI(api_key=api_key, base_url="https://api.z.ai/api/paas/v4")
return _glm_client
# ============================================================
# IMAGE UTILITIES
# ============================================================
def encode_image_base64(image: Image.Image, max_size: int = 2048) -> str:
"""Convert PIL Image to base64 string with optional resize."""
# Resize if too large to save bandwidth and API costs
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = (int(image.width * ratio), int(image.height * ratio))
image = image.resize(new_size, Image.Resampling.LANCZOS)
buffered = BytesIO()
image.save(buffered, format="PNG", optimize=True)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def scale_bbox(bbox: list, original_size: tuple, processed_size: tuple) -> list:
"""Scale bounding box coordinates if image was resized."""
if original_size == processed_size:
return bbox
scale_x = original_size[0] / processed_size[0]
scale_y = original_size[1] / processed_size[1]
return [
int(bbox[0] * scale_x),
int(bbox[1] * scale_y),
int(bbox[2] * scale_x),
int(bbox[3] * scale_y)
]
# ============================================================
# JSON REPAIR (Handle malformed model responses)
# ============================================================
def repair_json(text: str) -> str:
"""Attempt to repair common JSON issues from LLM responses."""
# Remove any markdown code blocks
text = re.sub(r'```json\s*', '', text)
text = re.sub(r'```\s*', '', text)
# Fix unescaped newlines in strings
text = re.sub(r'(?<!\\)\n(?=[^"]*"[^"]*(?:"[^"]*"[^"]*)*$)', '\\n', text)
# Fix trailing commas before ] or }
text = re.sub(r',\s*([}\]])', r'\1', text)
# Fix missing commas between objects
text = re.sub(r'\}\s*\{', '},{', text)
# Fix unescaped quotes inside strings (rough heuristic)
# Replace Japanese quotes with escaped ones
text = text.replace('「', '\\"').replace('」', '\\"')
text = text.replace('『', '\\"').replace('』', '\\"')
return text
def safe_parse_json(text: str) -> list:
"""Safely parse JSON with multiple fallback strategies."""
# Strategy 1: Direct parse
try:
json_match = re.search(r'\[[\s\S]*\]', text)
if json_match:
return json.loads(json_match.group())
except json.JSONDecodeError:
pass
# Strategy 2: Repair and parse
try:
repaired = repair_json(text)
json_match = re.search(r'\[[\s\S]*\]', repaired)
if json_match:
return json.loads(json_match.group())
except json.JSONDecodeError:
pass
# Strategy 3: Extract individual objects
try:
objects = re.findall(r'\{[^{}]*\}', text)
results = []
for obj in objects:
try:
parsed = json.loads(repair_json(obj))
if 'bbox' in parsed:
results.append(parsed)
except:
continue
if results:
return results
except:
pass
# Strategy 4: Manual extraction with regex
try:
results = []
# Find bbox patterns
bbox_matches = re.findall(r'"bbox"\s*:\s*\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]', text)
original_matches = re.findall(r'"original"\s*:\s*"([^"]*)"', text)
translated_matches = re.findall(r'"translated"\s*:\s*"([^"]*)"', text)
for i, bbox in enumerate(bbox_matches):
result = {
"bbox": [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])],
"original": original_matches[i] if i < len(original_matches) else "",
"translated": translated_matches[i] if i < len(translated_matches) else ""
}
results.append(result)
if results:
return results
except:
pass
return []
# ============================================================
# DETECTION & TRANSLATION
# ============================================================
def detect_and_translate(image: Image.Image, source_lang: str, target_lang: str, progress=gr.Progress()):
"""Use GLM-4.6V to detect text regions and translate."""
client = get_glm_client()
if not client:
return None, "Error: GLM_API_KEY not set in Space secrets"
progress(0.1, desc="Analyzing image with GLM-4.6V...")
original_size = image.size
# Convert image to base64 (may resize for API)
img_base64 = encode_image_base64(image, max_size=2048)
# Calculate processed size for bbox scaling
processed_size = original_size
if max(original_size) > 2048:
ratio = 2048 / max(original_size)
processed_size = (int(original_size[0] * ratio), int(original_size[1] * ratio))
prompt = f"""You are a professional manga translator. Your task is to find and translate EVERY piece of {source_lang} text in this image.
IMPORTANT: Scan the ENTIRE image from top to bottom, left to right. Do NOT miss any text!
Find ALL of these text types:
- Main titles and headers
- Character names (above/below portraits)
- Speech bubbles and dialogue
- Narration boxes
- Sound effects (onomatopoeia)
- Labels, captions, descriptions
- Small text and annotations
- Relationship indicators (arrows, connections)
- ANY other visible {source_lang} text
For EACH text region found:
1. bbox: [x1, y1, x2, y2] pixel coordinates
2. original: the exact {source_lang} text
3. translated: natural {target_lang} translation
TRANSLATION GUIDELINES:
- Keep character names in ROMAJI (e.g., 田中太郎 → "Tanaka Tarou", not "Rice Field Middle Fat Man")
- Keep honorifics: -san, -kun, -chan, -sama, -sensei
- Sound effects: Keep original + add meaning (e.g., "ドキドキ" → "Dokidoki (heart pounding)")
- Make dialogue natural and conversational, not literal
- Preserve emotional tone and nuance
- For titles/roles, translate the meaning (e.g., 社長 → "President", 先生 → "Teacher")
Return a JSON array. Example:
[
{{"bbox": [100, 50, 200, 80], "original": "山田花子", "translated": "Yamada Hanako"}},
{{"bbox": [300, 100, 400, 130], "original": "よろしくお願いします", "translated": "Nice to meet you"}}
]
CRITICAL: Find at least 20-50 text regions. This image has many text elements. Scan every corner carefully. Include ALL small labels and character descriptions."""
try:
response = client.chat.completions.create(
model="glm-4.6v-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{img_base64}"}
},
{"type": "text", "text": prompt}
]
}
],
max_tokens=8192
)
progress(0.4, desc="Processing response...")
result_text = ""
msg = response.choices[0].message
# Try multiple response fields
if hasattr(msg, 'content') and msg.content:
result_text = msg.content
if hasattr(msg, 'reasoning_content') and msg.reasoning_content:
result_text = result_text + "\n" + msg.reasoning_content if result_text else msg.reasoning_content
# Strip GLM special tokens
result_text = result_text.replace('<|begin_of_box|>', '').replace('<|end_of_box|>', '')
print(f"📝 GLM-4.6V Response length: {len(result_text)} chars")
print(f"📝 GLM-4.6V Response preview: {result_text[:500] if result_text else 'EMPTY'}...")
# Parse JSON from response with robust error handling
detections = safe_parse_json(result_text)
print(f"📝 Parsed detections: {len(detections)} items")
if detections:
# Scale bboxes back to original size if needed
if original_size != processed_size:
for det in detections:
if 'bbox' in det and len(det['bbox']) == 4:
det['bbox'] = scale_bbox(det['bbox'], original_size, processed_size)
return detections, f"Found {len(detections)} text regions"
else:
# Return debug info when no detections
debug_info = f"No text detected.\n\nDEBUG - API Response ({len(result_text)} chars):\n{result_text[:1000] if result_text else 'EMPTY RESPONSE'}"
return [], debug_info
except Exception as e:
return None, f"Error: {str(e)}"
# ============================================================
# INPAINTING (Optimized for 8 vCPU)
# ============================================================
def create_text_mask(image: Image.Image, detections: list, padding: int = 12) -> Image.Image:
"""Create a mask for inpainting based on detected text regions."""
mask = Image.new('L', image.size, 0)
draw = ImageDraw.Draw(mask)
for det in detections:
bbox = det.get('bbox', [])
if len(bbox) == 4:
x1, y1, x2, y2 = [int(v) for v in bbox]
# Ensure coordinates are valid (x2 > x1, y2 > y1)
if x2 < x1:
x1, x2 = x2, x1
if y2 < y1:
y1, y2 = y2, y1
# Skip invalid boxes
if x2 <= x1 or y2 <= y1:
continue
# Larger padding for cleaner inpainting
x1 = max(0, x1 - padding)
y1 = max(0, y1 - padding)
x2 = min(image.width, x2 + padding)
y2 = min(image.height, y2 + padding)
# Final validation
if x2 > x1 and y2 > y1:
draw.rectangle([x1, y1, x2, y2], fill=255)
return mask
def inpaint_image(image: Image.Image, mask: Image.Image) -> Image.Image:
"""High-quality inpainting using LaMa (GPU-accelerated)."""
try:
lama = load_lama()
# LaMa expects RGB image and binary mask
result = lama(image.convert('RGB'), mask.convert('L'))
return result
except Exception as e:
print(f"⚠️ LaMa failed, falling back to OpenCV: {e}")
# Fallback to OpenCV
img_array = np.array(image.convert('RGB'))
mask_array = np.array(mask)
result = cv2.inpaint(img_array, mask_array, inpaintRadius=12, flags=cv2.INPAINT_NS)
return Image.fromarray(result)
# ============================================================
# TEXT RENDERING (Optimized with word wrapping)
# ============================================================
def wrap_text(text: str, font: ImageFont.FreeTypeFont, max_width: int, draw: ImageDraw.Draw) -> list:
"""Wrap text to fit within max_width."""
words = text.split()
lines = []
current_line = []
for word in words:
test_line = ' '.join(current_line + [word])
bbox = draw.textbbox((0, 0), test_line, font=font)
if bbox[2] - bbox[0] <= max_width:
current_line.append(word)
else:
if current_line:
lines.append(' '.join(current_line))
current_line = [word]
if current_line:
lines.append(' '.join(current_line))
return lines if lines else [text]
def add_translated_text(image: Image.Image, detections: list) -> Image.Image:
"""Add translated text to the inpainted image with smart sizing and positioning."""
result = image.copy()
draw = ImageDraw.Draw(result)
for det in detections:
bbox = det.get('bbox', [])
translated = det.get('translated', '')
if len(bbox) == 4 and translated:
x1, y1, x2, y2 = [int(v) for v in bbox]
# Ensure coordinates are valid
if x2 < x1:
x1, x2 = x2, x1
if y2 < y1:
y1, y2 = y2, y1
box_width = x2 - x1
box_height = y2 - y1
# Skip very small or invalid boxes
if box_width < 20 or box_height < 10:
continue
# Detect if vertical text (tall narrow box with short text)
is_vertical = box_height > box_width * 2 and len(translated) < 10
# Calculate optimal font size based on box dimensions
text_len = max(len(translated), 1)
if is_vertical:
# Vertical: size based on width
estimated_size = min(box_width - 4, 24)
else:
# Horizontal: balance between height and text length
estimated_size = min(
box_height - 4,
int((box_width / text_len) * 1.5),
28
)
estimated_size = max(10, estimated_size)
font = get_font(estimated_size)
# Word wrap for long text
lines = wrap_text(translated, font, box_width - 8, draw)
# Calculate total text height
line_height = estimated_size + 2
total_height = len(lines) * line_height
# If text doesn't fit, reduce font size progressively
while total_height > box_height - 6 and estimated_size > 8:
estimated_size -= 1
font = get_font(estimated_size)
lines = wrap_text(translated, font, box_width - 8, draw)
line_height = estimated_size + 2
total_height = len(lines) * line_height
# Center vertically and horizontally
start_y = y1 + max(2, (box_height - total_height) // 2)
# Draw each line centered
for i, line in enumerate(lines):
text_bbox = draw.textbbox((0, 0), line, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_x = x1 + max(2, (box_width - text_width) // 2)
text_y = start_y + i * line_height
# Ensure text stays within bounds
text_x = max(x1 + 2, min(text_x, x2 - text_width - 2))
text_y = max(y1 + 2, min(text_y, y2 - estimated_size - 2))
# Draw outline for readability (thicker outline)
outline_range = [-1, 0, 1]
for dx in outline_range:
for dy in outline_range:
if dx != 0 or dy != 0:
draw.text((text_x + dx, text_y + dy), line, font=font, fill="black")
# Draw main text in white
draw.text((text_x, text_y), line, font=font, fill="white")
return result
def draw_detections(image: Image.Image, detections: list) -> Image.Image:
"""Draw bounding boxes and labels on image for visualization."""
result = image.copy()
draw = ImageDraw.Draw(result)
font = get_font(12)
colors = ["#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4", "#FFEAA7", "#DDA0DD", "#98D8C8"]
for i, det in enumerate(detections):
bbox = det.get('bbox', [])
original = det.get('original', '')[:30]
translated = det.get('translated', '')[:30]
if len(bbox) == 4:
x1, y1, x2, y2 = [int(v) for v in bbox]
color = colors[i % len(colors)]
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
label = f"{i+1}: {original}{translated}"
# Draw label background
label_bbox = draw.textbbox((x1, y1 - 18), label, font=font)
draw.rectangle(label_bbox, fill=color)
draw.text((x1, y1 - 18), label, font=font, fill="white")
return result
# ============================================================
# MAIN PIPELINE
# ============================================================
def translate_manga(image, source_lang, target_lang, show_boxes, apply_inpaint, progress=gr.Progress()):
"""Main translation pipeline (GPU-accelerated on T4)."""
if image is None:
return None, None, "Please upload an image"
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Step 1: Detect and translate
progress(0.1, desc="🔍 Detecting text with GLM-4.6V...")
detections, status = detect_and_translate(image, source_lang, target_lang, progress)
if detections is None:
return None, None, status
if len(detections) == 0:
return image, image, status # status contains debug info
# Step 2: Create visualization
progress(0.5, desc="🎨 Creating visualization...")
viz_image = draw_detections(image, detections)
# Step 3: Inpaint and add translated text
if apply_inpaint:
progress(0.6, desc="🖌️ Creating mask...")
mask = create_text_mask(image, detections)
progress(0.7, desc="✨ Inpainting (removing original text)...")
inpainted = inpaint_image(image, mask)
progress(0.9, desc="✍️ Adding translated text...")
result = add_translated_text(inpainted, detections)
else:
result = add_translated_text(image, detections)
det_text = json.dumps(detections, indent=2, ensure_ascii=False)
progress(1.0, desc="✅ Done!")
if show_boxes:
return viz_image, result, det_text
else:
return image, result, det_text
# ============================================================
# BATCH PROCESSING (Utilize all 8 CPUs)
# ============================================================
def translate_batch(images: list, source_lang: str, target_lang: str, progress=gr.Progress()):
"""Process multiple pages in parallel."""
if not images:
return [], "No images uploaded"
results = []
total = len(images)
def process_single(idx_img):
idx, img = idx_img
try:
_, result, _ = translate_manga(img, source_lang, target_lang, False, True)
return (idx, result)
except Exception as e:
return (idx, None)
# Process in parallel using thread pool
progress(0.1, desc=f"Processing {total} pages...")
futures = list(executor.map(process_single, enumerate(images)))
futures.sort(key=lambda x: x[0])
results = [f[1] for f in futures if f[1] is not None]
progress(1.0, desc=f"✅ Processed {len(results)}/{total} pages")
return results, f"Processed {len(results)} pages successfully"
# ============================================================
# UI
# ============================================================
LANGUAGES = [
"Japanese",
"Korean",
"Chinese (Simplified)",
"Chinese (Traditional)",
"English",
"Spanish",
"Portuguese",
"French",
"German",
"Italian",
"Russian",
"Thai",
"Vietnamese",
"Indonesian",
"Arabic"
]
css = """
.gradio-container {
max-width: 1400px !important;
}
.header {
text-align: center;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 10px;
margin-bottom: 20px;
}
.header h1 {
color: white;
margin: 0;
font-size: 2.2em;
}
.header p {
color: rgba(255,255,255,0.9);
margin: 5px 0 0 0;
}
.stats {
background: rgba(102, 126, 234, 0.1);
padding: 10px;
border-radius: 8px;
margin: 10px 0;
font-size: 0.9em;
}
"""
with gr.Blocks(title="BubbleScribe", css=css, theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div class="header">
<h1>✍️ BubbleScribe</h1>
<p>AI-powered manga & comic translator using GLM-4.6V + LaMa</p>
</div>
""")
gr.HTML("""
<div class="stats">
⚡ <strong>Models:</strong> GLM-4.6V (OCR & Translation) + LaMa (Inpainting)
</div>
""")
with gr.Tabs():
# Single Page Tab
with gr.Tab("📄 Single Page"):
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="📤 Upload Manga Page", type="pil")
with gr.Row():
source_lang = gr.Dropdown(
choices=LANGUAGES,
value="Japanese",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=LANGUAGES,
value="English",
label="Target Language"
)
with gr.Row():
show_boxes = gr.Checkbox(label="Show detection boxes", value=True)
apply_inpaint = gr.Checkbox(label="Apply inpainting", value=True)
translate_btn = gr.Button("🔄 Translate", variant="primary", size="lg")
with gr.Column(scale=2):
with gr.Row():
detection_output = gr.Image(label="🔍 Detected Text Regions")
result_output = gr.Image(label="✨ Translated Result")
detections_json = gr.Textbox(
label="📋 Detected Text (JSON)",
lines=8,
max_lines=15
)
translate_btn.click(
fn=translate_manga,
inputs=[input_image, source_lang, target_lang, show_boxes, apply_inpaint],
outputs=[detection_output, result_output, detections_json]
)
# Batch Processing Tab
with gr.Tab("📚 Batch (Multi-Page)"):
gr.Markdown("**Upload multiple pages** to translate them all at once using parallel processing.")
with gr.Row():
with gr.Column(scale=1):
batch_images = gr.Gallery(
label="📤 Upload Multiple Pages",
columns=3,
height=300,
object_fit="contain"
)
with gr.Row():
batch_source = gr.Dropdown(
choices=LANGUAGES,
value="Japanese",
label="Source Language"
)
batch_target = gr.Dropdown(
choices=LANGUAGES,
value="English",
label="Target Language"
)
batch_btn = gr.Button("🚀 Translate All Pages", variant="primary", size="lg")
with gr.Column(scale=2):
batch_output = gr.Gallery(
label="✨ Translated Pages",
columns=3,
height=400,
object_fit="contain"
)
batch_status = gr.Textbox(label="Status", interactive=False)
batch_btn.click(
fn=translate_batch,
inputs=[batch_images, batch_source, batch_target],
outputs=[batch_output, batch_status]
)
gr.Markdown("""
### 💡 Tips
- **Single Page:** Best for previewing detections and fine-tuning
- **Batch Mode:** Process entire chapters quickly (parallel processing)
- Works best with clear, high-contrast text in speech bubbles
- Sound effects may not always be detected
### 🔧 Powered By
- **GLM-4.6V** - Text detection & translation (Z.ai API)
- **LaMa** - Text removal inpainting (GPU-accelerated)
""")
gr.HTML("""
<div style="text-align: center; margin-top: 20px; padding: 10px; background: rgba(0,0,0,0.05); border-radius: 8px;">
<strong>Models:</strong> <a href="https://huggingface.co/zai-org/GLM-4.6V" target="_blank">GLM-4.6V</a> (OCR & Translation) •
<a href="https://github.com/advimman/lama" target="_blank">LaMa</a> (Inpainting) •
<strong>Created by:</strong> <a href="https://huggingface.co/lulavc" target="_blank">@lulavc</a>
</div>
""")
print("✅ BubbleScribe ready!")
if __name__ == "__main__":
demo.launch()