Spaces:
Paused
Paused
| import gradio as gr | |
| from matplotlib import pyplot as plt | |
| from mapper.utils.io import read_image | |
| from mapper.utils.exif import EXIF | |
| from mapper.utils.wrappers import Camera | |
| from mapper.data.image import rectify_image, pad_image, resize_image | |
| from mapper.utils.viz_2d import one_hot_argmax_to_rgb, plot_images | |
| from mapper.module import GenericModule | |
| from perspective2d import PerspectiveFields | |
| import torch | |
| import numpy as np | |
| from typing import Optional, Tuple | |
| from omegaconf import OmegaConf | |
| description = """ | |
| <h1 align="center"> | |
| <ins>MapItAnywhere (MIA) </ins> | |
| <br> | |
| Empowering Bird’s Eye View Mapping using Large-scale Public Data | |
| <br> | |
| <h3 align="center"> | |
| <a href="https://mapitanywhere.github.io" target="_blank">Project Page</a> | | |
| <a href="https://arxiv.org/abs/2109.08203" target="_blank">Paper</a> | | |
| <a href="https://github.com/MapItAnywhere/MapItAnywhere" target="_blank">Code</a> | |
| </h3> | |
| <p align="center"> | |
| Mapper generates birds-eye-view maps from in-the-wild monocular first-person view images. You can try our demo by uploading your images or using the examples provided. Tip: You can also try out images across the world using <a href="https://www.mapillary.com/app" target="_blank">Mapillary</a> 😉 Also try out some examples that are taken in cities we have not trained on! | |
| </p> | |
| """ | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| cfg = OmegaConf.load("config.yaml") | |
| class ImageCalibrator(PerspectiveFields): | |
| def __init__(self, version: str = "Paramnet-360Cities-edina-centered"): | |
| super().__init__(version) | |
| self.eval() | |
| def run( | |
| self, | |
| image_rgb: np.ndarray, | |
| focal_length: Optional[float] = None, | |
| exif: Optional[EXIF] = None, | |
| ) -> Tuple[Tuple[float, float], Camera]: | |
| h, w, *_ = image_rgb.shape | |
| if focal_length is None and exif is not None: | |
| _, focal_ratio = exif.extract_focal() | |
| if focal_ratio != 0: | |
| focal_length = focal_ratio * max(h, w) | |
| calib = self.inference(img_bgr=image_rgb[..., ::-1]) | |
| roll_pitch = (calib["pred_roll"].item(), calib["pred_pitch"].item()) | |
| if focal_length is None: | |
| vfov = calib["pred_vfov"].item() | |
| focal_length = h / 2 / np.tan(np.deg2rad(vfov) / 2) | |
| camera = Camera.from_dict( | |
| { | |
| "model": "SIMPLE_PINHOLE", | |
| "width": w, | |
| "height": h, | |
| "params": [focal_length, w / 2 + 0.5, h / 2 + 0.5], | |
| } | |
| ) | |
| return roll_pitch, camera | |
| def preprocess_pipeline(image, roll_pitch, camera): | |
| image = torch.from_numpy(image).float() / 255 | |
| image = image.permute(2, 0, 1).to(device) | |
| camera = camera.to(device) | |
| image, valid = rectify_image(image, camera.float(), -roll_pitch[0], -roll_pitch[1]) | |
| roll_pitch *= 0 | |
| image, _, camera, valid = resize_image( | |
| image=image, | |
| size=512, | |
| camera=camera, | |
| fn=max, | |
| valid=valid | |
| ) | |
| # image, valid, camera = pad_image( | |
| # image, 512, camera, valid | |
| # ) | |
| camera = torch.stack([camera]) | |
| return { | |
| "image": image.unsqueeze(0).to(device), | |
| "valid": valid.unsqueeze(0).to(device), | |
| "camera": camera.float().to(device), | |
| } | |
| calibrator = ImageCalibrator().to(device) | |
| model = GenericModule(cfg) | |
| model = model.load_from_checkpoint("trained_weights/mapper-excl-ood.ckpt", strict=False, cfg=cfg) | |
| model = model.to(device) | |
| model = model.eval() | |
| def run(input_img): | |
| image_path = input_img.name | |
| image = read_image(image_path) | |
| with open(image_path, "rb") as fid: | |
| exif = EXIF(fid, lambda: image.shape[:2]) | |
| gravity, camera = calibrator.run(image, exif=exif) | |
| data = preprocess_pipeline(image, gravity, camera) | |
| res = model(data) | |
| prediction = res['output'] | |
| rgb_prediction = one_hot_argmax_to_rgb(prediction, 6).squeeze(0).permute(1, 2, 0).cpu().long().numpy() | |
| valid = res['valid_bev'].squeeze(0)[..., :-1] | |
| rgb_prediction[~valid.cpu().numpy()] = 255 | |
| # TODO: add legend here | |
| plot_images([image, rgb_prediction], titles=["Input Image", "Top-Down Prediction"], pad=2, adaptive=True) | |
| return plt.gcf() | |
| examples = [ | |
| ["examples/left_crossing.jpg"], | |
| ["examples/crossing.jpg"], | |
| ["examples/two_roads.jpg"], | |
| ["examples/japan_narrow_road.jpeg"], | |
| ["examples/zurich_crossing.jpg"], | |
| ["examples/night_road.jpg"], | |
| ["examples/night_crossing.jpg"], | |
| ] | |
| demo = gr.Interface( | |
| fn=run, | |
| inputs=[ | |
| gr.File(file_types=["image"], label="Input Image") | |
| ], | |
| outputs=[ | |
| gr.Plot(label="Prediction", format="png"), | |
| ], | |
| description=description, | |
| examples=examples) | |
| demo.launch(share=True, server_name="0.0.0.0") |